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Abstract

In this paper we address the statistical problem of testing if a stationary process is Gaussian.
The observation consists in a finite sample path of the process. Using a random projection technique
introduced and studied in [7] in the frame of goodness of fit test for functional data, we perform
some decision rules. These rules really stand on the whole distribution of the process and not only on
its marginal distribution at a fixed order. The main idea is to test the Gaussianity on the marginal
distribution of some random linear combinations of the process. This leads to consistent decision
rules. Some numerical simulations show the pertinence of our approach.
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1 Introduction

In many concrete situations the statistician observes a finite path Xi,..., X, of a real
temporal phenomena. A common modeling is to assume that the observation is a finite
path of a second order weak stationary process X := (X;),.7 (see, for example, [15]).
This means that the random variable (r.v.) X; is, for any t € Z, square integrable and
that the mean and the covariance structure of the process is invariant by any translation
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on the time index. That is, for any ¢,s € Z, E(X;) does not depend on ¢ and E(X;Xj)
only depends on the distance between ¢ and s. A more popular frame is the Gaussian
case where the additional Gaussianity assumption on all finite marginal distributions of
the process (X;), 7, is added. In this case, as the multidimensional Gaussian distribution
only depends on moments of order one and two, the process is also strongly stationary.
This means that the law of all finite dimensional marginal distributions are invariant if
the time is shifted:

(X1, X)) & (Xepr, -+, Xewn), (t € Z,n €N).

Gaussian stationary process are very popular because they share plenty of very nice prop-
erties concerning their statistics or prediction (see, for example, [3] or [29]). Hence, an
important topic in the field of stationary process is the implementation of a statistical
procedure that allows to assess Gaussianity. In the last three decades, many works have
been developed to build such methods. For example, in [11] a test based on the analysis
of the empirical characteristic function is performed. In [21] based on the skewness and
kurtosis test or also called Jarque-Bera test. In [24] based on both, empirical charac-
teristic function and skewness and kurtosis. In [30] we can find another test, this based
on the bispectral density function. An important drawback of these tests is that they
only consider a finite order marginal of the process (generally the order one marginal!).
Obviously, this provides tests at the right level for the intended problem; but these tests
could be at the nominal power against some non-Gaussian alternatives. For example, in
the case of a strictly stationary non-Gaussian process having one-dimensional Gaussian
marginal.

In this paper, we propose a procedure to assess that a strictly stationary process
is Gaussian. Our test is consistent against every strictly stationary alternative satisfying
regularity assumptions. The procedure is a combination of the random projection method
(see [7] and [8]) and classical methods that allow to assess that the one-dimensional
marginal of a stationary process is Gaussian (see the previous discussion).

Regarding the random projection method, we follow the same methodology as the
one proposed in [8]. Roughly speaking, it is shown therein that (only) a random projec-
tion characterizes a probability distribution. In particular, we employ the results of [7]
where the main result of [8] is generalized to obtain goodness-of-fit tests for families of
distributions, and in particular for Gaussian families.

Therefore, given a strictly stationary process, (X;);ez, we are interested in constructing
a test for the null hypothesis Hy : (X})iez is Gaussian. Notice that Hy holds if, and only
if, (Xt)i<o is Gaussian. So that, using the random projection method, [7], this is, roughly
speaking, equivalent to that a (one-dimensional) randomly chosen projection of (X;):<o
is Gaussian. This idea allows to translate the problem into another one consisting on
checking when the one-dimensional marginal of a random transformation of (X;)i ez is
Gaussian. This can be tested using a usual procedure. Here, we will employ the well-
known Epps test, [11], and Lobato and Velasco skewness-kurtosis test, [21]. We also use
a combination of them as a way to alleviate some problems that those tests present.



Furthermore, Epps test checks whether the characteristic function of the one-dimensional
marginal of a strictly stationary process coincides with the one of a Gaussian distribu-
tion. This checking is performed on a fixed finite set of points. As a consequence, it
cannot be consistent against every possible non-Gaussian alternative with non-Gaussian
marginal. However, in our work, the points employed in Epps test will be also drawn
at random. This will provide the consistency of the whole test. Regarding Lobato and
Velasco skewness-kurtosis test we will prove the consistency of the test under different
hypothesis than those in [21].

The paper is organized as follows. In the next section we will give some basic defini-
tions and notations. In Section 3, we discuss some useful known results. One concerns
the random projection method, some Gaussianity tests for strictly stationary processes
and another a procedure for multiple testing. It also contains a new result characterizing
Gaussian distributions. In Section 4 we introduce our procedure and analyze its asymp-
totic behavior. Section 5 contains some details on the practical application of the method
and Section 6 includes the results of the simulations. The paper ends with a discussion.
In the whole paper all the processes are assumed to be integrable.

2 Notations and basic definitions

If Y is a random variable, we denote by ®y its characteristic function; ®, . denotes the
characteristic function of the Gaussian distribution with mean 1 € R and variance v > 0.

H denotes a separable Hilbert space with inner product (-,-) and norm || - ||. {v,}5%,
denotes a generic orthonormal basis of H and V,, the n-dimensional subspace spanned by
{vi,...,v,}. For any subspace, V C H we write V= for its orthogonal complement. If D
is an H-valued random element, then Dy, denotes the projection of D on the subspace V
of H.

X and (X;)iez denote indistinctly a process. Through the following, when we say that
a process is stationary we mean that it is strictly stationary. Given a stationary process
X, let us denote, if they exists, uy := E[X,] the mean and px . := E[(Xy — pux)¥], with
k € N, the centered moment of order k. Further, let vx(¢) := E[(Xo — ux)(X; — ux)],
with t € Z, be the autocovariance of order ¢.

Let X, X5, ..., X,,, n € N be a sample of equally spaced observations of the random
process X. Let fix :=n~' 3" | X; be its sample mean, fixy :=n"'> " (X; — fix)", for
k € N, its sample centered moment of order k£ and

n—|t|
Ax () =0~ (X — fix) (X — fix),
i=1
for |t| < n — 1, the sample autocovariance of order ¢. When it is clear to which process
they are referring we suppress the subindex X. Note that then we write px as pi. For
the sake of simplicity, let us denote vy := vx(0) and analogously 4x := §x(0).

Finally, by i.i.d.r.vs. we mean independent and identically distributed random vari-

ables.



We assume that all the random elements are defined on the same, rich enough, prob-
ability space (Q2, o, IP).

3 Preliminary results

In this section we discuss both a characterization of Gaussian distributions in infinite
dimensional spaces, a characterization of the one-dimensional Gaussian distributions and
two tests of Gaussianity for stationary processes. We also recall some facts on multiple
testing procedure. All this material are tools for our results.

Excluding the characterization of the one-dimensional Gaussian distributions (Propo-
sition 3.4), the results in this section are well known and they are included here for the
sake of completeness.

3.1 Characterization of Gaussian distributions in Hilbert spaces

The result of this subsection comes from [7]. It is based on the use of dissipative distri-
butions which are defined next.

Definition 3.1. Let D be an H-valued random element. We will say that its distribution
is dissipative if there exists an orthonormal basis (v,)22, of H, such that

1. IP (Dvnl = 0) =0, for all n > 2 (see Section 2 for the definition of V,,).

2. The conditional distribution of Dy, given Dy is absolutely continuous with respect
to the n-dimensional Lebesgue measure.

Theorem 3.6 in [7] states the following:

Theorem 3.2 (Cuesta-Albertos et al. (2007)). Let n be a dissipative distribution on H.
If X is an H-valued random element and

n({h € H: the distribution of (X, h) is Gaussian}) > 0,

then X is Gaussian.

The importance of this result relies on the fact that if 7 is dissipative then the following
0 — 1 law holds

n({h € H: the distribution of (X, h) is Gaussian}) € {0, 1}.
Moreover, X is not Gaussian if, and only if,
n({h € H: the distribution of (X,h) is Gaussian}) = 0.

In other words, if we ask if the distribution of X is Gaussian, then the only thing we
have to do is to select at random a point h € H using a dissipative distribution and check
if the real-valued random variable (X, h) is Gaussian. We will obtain the right answer
with probability one.



3.2 Characterization of one-dimensional Gaussian distributions

We start this subsection by stating the definition of analytic characteristic function which
has been taken from [20].

Definition 3.3. A characteristic function ® is said to be analytic if there exist

e a complex valued function, ¢, of the complex variable z which is holomorphic in a
circle {z : |z| < p}, where p > 0,

e a positive real number ¢ such that ®(t) = ¢(t), for |t| < 0.

That is, an analytic characteristic function is a characteristic function which coincides
with a holomorphic function in some neighborhood of zero.

Some properties on analytic characteristic functions may be found in [20]. In partic-
ular, it is proved therein that the characteristic function of a Gaussian distribution is
analytic (this is a well known fact). Some other well-known distributions having analytic
characteristic function are the binomial, Poisson and gamma distributions but not the
Cauchy one.

The following result will be useful to assess that our goodness of fit test will work with
all non-Gaussian alternatives.

Proposition 3.4. Let P be a Borel probability measure defined on R. Assume that P is
absolutely continuous with respect to the Lebesque measure. Let Y be a r.v. having an
analytic characteristic function @y .

Then, Y s Gaussian if, and only if,

Im € R, 3s € RT such that P({y € R : &y (y) = ®,,,(y)}) > 0. (1)

Proof.
Necessary part is obvious. Let us show the sufficiency. As Y satisfies (1), and P is
absolutely continuous, we have that the set R := {y € R : ®y(y) = ®,,+(y)} is infinite
and not denumerable. Thus, it contains at least an accumulation point.

Furthermore, the function y — ®y(y) — @, 5(y) is analytic, and it vanishes on R.
Therefore, this function has a non-isolated zero but the only analytical function with at

least a non-isolated zero is the null function which proves the result (see for example
[28]). m

Proposition 3.4 may be seen as a spectral counterpart of Theorem 3.2.

3.3 Classical tests of Gaussianity for stationary processes

Through this section we present some useful popular tests for checking whether a station-
ary random process (Y;)iez, is Gaussian.



3.3.1 Epps test

The test discussed in this section is a particular case of the one studied in Section 3 of
[11]. We begin with some notations and definitions. Given N > 1, let us define

Av ==, )T ERY i # N\ foralli #£ 3§, i,j=1,...N},

where 7 denotes transposition.
Let A € Ay and let g(\) be the 2N-dimensional column vector composed by the real and
complex parts of the empirical characteristic function computed at A. That is

1 n
g(A) = — Z(COS()\ Y;),sin(AY;), ..., cos(AnY;),sin(AnY;))".
n
=1
Further let, for v € R real and p > 0, the 2/N-dimensional vector composed by the real
and complex parts of ®, , computed at A:

Gup(N) = (Re(Dyp (M), Im (@, (A1), -, Re(@y (M), Im(Dsp (M)

We denote by fy (0, (py,vv), A) the spectral density matrix (see for example [2]) of the
process

(9(Ye, A))sez := ((cos(A1Yy),sin(A1Y7), . .., cos(AnY?), Sm()‘NYt)))teZ

at frequency 0. Notice that if we assume that (V)7 is a Gaussian stationary process
with
Z |||y (t)] < oo, for some ¢ > 0, (2)

teZ

then the existence of fy (0, (uy,7y),A) is one of the conclusions of Lemma 2.1 in [11]. For
the construction of the test statistic we will use the following estimator of fv (0, (py, vy ), A):

[n2/°]

£(0,)) = (2mn)~ ZGY;O, +2Z WE’JZGYH, : (3)

where G(Yii,A) = (9(Yi, A) — §(A\)(9(Yigi, A) — G(A)T and |- denotes the integer part.
The estimator (3) was used in [11], but with 2/5 replaced by a general constant in the
interval (0,1/2). Notice also that it is a particular case of the one proposed in [12]. In [11]
it is proved that if (V}),ez is Gaussian, stationary and satisfies (2), then f(0,\) converges
almost surely to fy (0, (uy,vy),A). Let G () be the generalized inverse of 27rf(0, A) and
let Qn(v, p, \) be the quadratic form

Qu(v,p. A) = (G(N) = 90 (N)" G (A) (9(N) = 9up (V) - (4)
Let © be an open bounded subset of R x R* and let A € Ay. We state two assumptions.



H1. The set Og(A) :={(v,p) € O : ®, ,(N\;) = Ppy 4y (Ni), 7 = 1,..., N} is nowhere dense
in ©.

H2. For each (v, p) € ©g(A) we have, fy(0,(v,p),\) = fy(0, (uy,vv),A) and

0Py (M) _ 0% y(N)

_ =1, N.
8(‘1'7 y) (z,y)=(v,p) 8(x’ y> (z,y)=(1y 7y)

Theorem 3.5 below describes the Gaussianity test studied in [11].

Theorem 3.5 (Epps (1987)). Let (Yi)iez be a stationary Gaussian process satisfying (2).
Let © be an open and bounded subset of R x RT and A € Ay such that H1. and H2.
hold. Further, let (pn,vn) be the minimizer on © nearest to (fiy,?y) of the map

(v, p) = Qn(v, p, A).

Assume further that fy (0, (uy,vy),\) is positive definite. Then, for each fixzed N € Ay,
nQn(fin, Yn, A) converges in distribution to Xy _,.

Remark 3.5.1. Obviously a test based on Theorem 3.5 may be not consistent. Indeed,
it only focuses on the values of the characteristic function at some points. In other words,
the test could not detect some alternatives with Gaussian one-dimensional marginal. Even
the test fails against alternatives with non-Gaussian one-dimensional marginal but that
satisfy that the characteristic functions of the one-dimensional marginal coincides with
the one of the corresponding Gaussian at the selected points.

3.3.2 Lobato and Velasco test

The test to assess normality of time series discussed in this Subsection was introduced
in [21]. It uses the skewness-kurtosis test statistic, also called Jarque-Bera test (see [6]
and [18]), but improves previous tests of this kind because the statistic is studentized by
standard error estimators. B

Given a process Y, let us denote Fy := 231" 4y (1) (3y (t) + Ay (n — t))*~' + 4. This
is an estimator of Fj, := Y ;> 4y (t)*. The test proposed in [21] handles the statistic:

G, — niiss  n(fiya — 3fiy5)?
6F; 24F), '

Theorem 3.6 (Lobato and Velasco (2004)). Let (Y;)iez be an ergodic stationary process.
o If (Yi)iez is Gaussian and satisfies S 5 |7y (t)| < 0o, then Gy — X3 in distribution.

o If (Y})iez satisfies

- E[¥}"] < o0,
DD -Z;’j_lzoo |kq(t1,...itqe1)| < o0, for q=2,...,16, where ky(t1,...,t4-1)

denotes the qth-order cumulant of Y1,Y1 ¢, ..., Yige, o,

7



— S LEIEY, — ¥ For) — ml1V? < oo, for k = 3,4, where F_, denotes the
o-field generated by Y;, j < —t, and

= E[(Yo — )" — pu]? + 2 320 B([(Yo — 1) — pua] [(Ve — 10)* — pus]) > 0, for ke = 3,4,

then the statistic Gy diverges to infinity whenever fys # 0 or pys # 3/1%/72.

In Section 4 we will prove this theorem under lighter assumptions on the alternative.
We will need the following recent result taken from [19]. It is an improvement of the
well-known result in [1].

Theorem 3.7 (Kavalieris (2008)). Let (Y;)iez be a stationary process with the represen-
tation

Y, = Zk(i)et_i, Z |k(7)| < o0, sz(z) < o0, Ele,] = 0, where (€;) are i.i.d.r.vs.. (5)
i=1 i=1 i=1

Assume that E[|e,|*] < oo for some 2 < a < 4. If 1, < en® for 0 < 8 <1 and ¢ > 0, then

2 _ — 2/a—1
Jnax |7(t) —~v(t)] = o(n ) almost surely.

3.4 Multiple testing

In Section 5 we will propose to use several tests to assess the Gaussianity of a process.
Thus we obtain several p-values pq, ..., pr, where k is the number of procedures used.

The most popular way to handle several p-values is to use the Bonferroni correction.
However, it is very well-known that this procedure is too conservative. Several alternatives
have been proposed in the literature in order to alleviate this problem. Here, we will
employ the false discovery rate (FDR). The FDR is the expected proportion of wrongly
rejected hypotheses along the k tests. Taking into account that all the hypothesis we have
are equivalent, the FDR coincides with the level of the procedure.

The FDR was introduced in Benjamini and Hochberg [4] for independent tests. Here,
we employ the improvement proposed in [5] that does not require dependence assumptions
among the tests. This procedure, when applied to our case, works as follows:

Theorem 3.8 (Benjamini and Yekutieli (2001)). Let us assume that we apply k statistical
tests to check the same null hypothesis and that the ordered p-values that we obtain are

P(1), - D) Where pay < ... < Py
Let a € (0,1). The FDR of the test which rejects if the set

. < Q0
1Py K
v k2§:1j_1

18 not empty s, at most, «.



Therefore, according to the previous theorem, if we denote

po—ij mln pl)/l

we can reject at any level a > py and then, we can take py as the resulting p-value of the
procedure.

4 A Gaussianity test for stationary processes

In this section we present a universal test to check if the distribution of a stationary
process is Gaussian. Thus, given X := (X}),cz a stationary process of real-valued random
variables we are interested in constructing a test for the null hypothesis

H, : X is Gaussian
against the alternative
H, : X is not Gaussian.

Notice Hy holds if, and only if, for all t € N, (X1,..., X;)T is a Gaussian vector. As
X is stationary, it is equivalent to the distribution of (X});<o is Gaussian. In addition, it
is the sames as the Gaussianity of the process X® := (X;);<t, for any ¢t € Z. To check
whether X® is Gaussian, we only need to include X in an appropriate Hilbert space,
then select a vector h using a dissipative distribution, and compute the scalar product
(X® h) because, according to Theorem 3.2, almost surely, X®) is Gaussian if, and only
if, (X(t h) is Gaussian.

Concerning the Hilbert space in which the process is included, let us consider the space

of sequences
12 = {(xn)neN : inan < OO} 3

neN

with ag := 1 and a,, = n~2,(n > 1) endowed with the scalar product

(x,y) = Z TpYnln, Where X = (Z,)nen, Y = (Yn)nen-
neN

It is easy to see that if X is a stationary process and if the variance of X, is finite,
then, almost surely, X € [? and that the Gaussianity in this space is equivalent to the
(usual sense) Gaussianity of X®. The reason is that E[Y" N X7 ,a,] is finite if it is so
the variance of X;.

Now we need a dissipative distribution on 2. We will use the so-called Dirichlet dis-
tribution (see [26]). We build this distribution using the so-called stick breaking method.
That is, let ay, s > 0 and consider the probability distribution which selects a random
point in I? according to the following iterative procedure:



e [y € [0,1] is chosen with the beta distribution of parameters «; and as.

e Givenn>1,10, €1[0,1— 2?2—01 l;] is chosen with the beta distribution of parameters

: -
oy and o, times 1 — > 7" " 1;.

Let us define H, = (I,/a,)"? for n > 0 and take H = (Hy,...)". It can be easily
checked that the distribution of H is dissipative (see Definition 3.1). Moreover, H € [?
almost surely because, as shown in Proposition 4.1, ||H|| = 1, almost surely.

Proposition 4.1. Let H = (H,),>0 be a stochastic process constructed as described above.
Let a := a1 /(g +az) be the mean of the beta distribution of parameters a; and ag. Then,
we have that

1. Ell,] = a(1 — )™, for every n € N*.
2. |H|| = 1, almost surely.

Proof.

Obviously 1. holds for n = 0. Thus, let us assume that 1. is satisfied for n € N* and
let us show that it also holds for n 4+ 1. By construction, we have that if § is a random
variable with beta distribution of parameters a; and a», then

n

E[lns1] = E[] (1 - ZE[@]) =« (1 =) a(l- a)z) = a(l —a)"*,

1=0

where last equality comes from the application of the formula giving the sum of n numbers
in a geometric progression. Concerning 2., we have that

B =S B0 =3 1< 1 ©
=0 1=0

Indeed, by construction, for every n € N, Y°" ,1; < 1. However, applying 1., we have that

[e.o]

E[[H|] =) a(l-a) =1.

=0
So that, by (6) we obtain 2. O

Now, let h = (h;);en be a fixed realization of the random element H, drawn indepen-
dently of the process X. Let us consider the process Y = (Y;);ez given by the projections
of (X®),cz on the one-dimensional subspace generated by h, i.e.

Y; = Z hl-Xt,iai,t €. (7)

=0

As we will see in Proposition 4.3, the properties of the process X are inherited by the
process Y. Moreover, according to Theorem 3.2, to assess the Gaussianity of X is enough

10



to do the job on the one-dimensional marginal distributions of Y. This can be done for

instance with Epps or Lobato and Velasco tests presented in Section 3.3 whenever Y

satisfies the appropriate assumptions. The following Subsections are devoted to this task.
We begin by proving Lemma 4.2 which is necessary for Proposition 4.3.

Lemma 4.2. Let X be an ergodic and stationary process such that Y .- |yx(t)| < oco. If
we select H as described above, then,

1. Y2 Hia; < 0o almost surely.

o0

2. Almost surely, the random variable L := 3 7 _

conditionally integrable given H.

Proof.
1. It is straightforward because the Cauchy-Schwartz inequality gives that

o - 1/2 o 1/2 o 1/2
Z H;a; < (Z li> <1 + Z 1/2’2) = (1 + Z 1/2’2) < 00, almost surely,
i=0 i=0 i=1 i=1

where last equality comes from Proposition 4.1.
To prove 2., let h = (hg, hy,...) be a fixed realization of H. We have that

HiHja;a| X i — px||Xo—j — px] is

E[Lh] = ) hhjea;BI|X_; — px|[Xi—j — px]]
ij—=0
o (o, 0) 2
< Z hihja;a;(E[(X_; — MX)2])1/2(E[(Xt_j — ,UX)Q])I/2 = VX (Z hiai> :
ij—=0 i

Thus, L is conditionally integrable thanks to 1. and that yx <Y 2, [vx(t)| < co. O

In the sequel vy n(t) denotes the conditional autocovariance of order ¢ of Y given h.
That is, denoting by pyn the conditional expectation of ¥, given h,

Yymn(t) == E[(Yo — pyn)(Y: — pyyn) |h].

Proposition 4.3. Let (X;)icz be an ergodic and stationary process such that oo, t%|yx (t)] <
oo, with ¢ > 0. Then, conditionally on h, the process (Y;)iez defined in (7) is ergodic and
stationary. In addition, E[|Y,||h] and Y2 t¢|yyn(t)| are finite.

Proof.
(Xt)iez is a stationary ergodic process. So that, conditionally on h, (Y;)iez is also a
stationary ergodic process (see [10] page 458).

Using the definition of the process Y we have

i hiai’X—i’

=0

= E[| Xo|] Z hia; < 00, a.s.

=0

E[|Yo| |h] <E h

11



because of 1. in Lemma 4.2.
By 2. in Lemma 4.2, we have that

Win(t) = E[Y_ hibjasa;(X—i — px)(Xo—y — pix) b

i.j=0

exists. So that, using the dominated convergence theorem, we obtain that

Yyin(t Z hihja;a;vx(t —j+1)

3,7=0
and N N .
D Chwm®)] < Y hihjaia; Yt (t =5 +1)l.
t=0 i,j=0 t=0

Obviously, > 7o hihjaa; Y77, tyx(t — j+1i)| =: Ty + Ty + Ty, where
o Iy = Z(;io hja; Zfij hiai Yo t|yx (t = 5 + 1)),
o Tr = z;io hja; ZZ& hia; Ztoin-i—l tyx(t — 5+ 1),
o Ty =37 hja; Y1) hiay 300ty (t — j + ).

If i > j,as t € N* and ¢ > 0, we have t¢ < (t — j +1)¢. Thus,

T1<Zh a]ZhaZZt—j—i-z) |vx t—j+z]<2h aJZhalztchx

because ¢t — j +1i > t. Then, > ;2 t¢|yx(t)| < co and so, 1. in Lemma 4.2 implies 7} < oo.

Concerning 75, as j > i and t — j + 4 > 0, we can apply the c.—inequality (see
[22] p.157) to t = (t — j + i) + (j — i) to obtain that there exists ¢ > 0 such that
t<ce(t—74+9) 4 ce(j —i) <2c(t—j+1i)S. Thus,

0o 0o 7j—1 00
T < 2C<Zh CL]ZhCLZ Z (t— j+i)chx(t—j+i)| < QCCZhjathiaz’ZtCWX(t)
=0 i=0 t=0

t=2j+1

Then, using the same tricks as for T} we obtain that Ty < oc.
For T3, the fact that Y ;o t¢|yx(t)] < oo, implies that there exists an R > 0 such that
|vx ()| < R for all t € Z. Therefore,

T3<R<Zhal>2ha] 27)¢(2j +1) = <Zhaz>T*

=0 7=0

12



By 1. in Lemma 4.2, to show that 75 < oo, we only need to prove that 75 < oo.
Furthermore, applying Jensen inequality and 7. in Proposition 4.1, we have that

E[T3] <) a}/?(25)(2) + 1)al?(1 — a)/2. (8)
j=0

This last series is convergent (v € (0,1)). Hence, 75 is finite almost surely and the proof
is ended. 0

4.1 Conditions to apply Epps test

In this subsection we analyze the theoretical behavior of Epps test when applied to the
randomly projected process (see Theorem 4.7). Moreover, in a corollary (Corollary 4.8)
we will show that if A is drawn randomly, then the Epps test is consistent against many
more alternatives.

Let us first state Lemma 4.4 that gives the consistency for the estimator of the spectral
density function at zero defined in (3). Let us denote by kjnno(q, 7, g+7; A) the fourth-order
cumulant of Zy;, Zgm, Zrn, and Zg,,, where, for instance, Z, ,,, is the m-th component
of the vector g(Yy, A) — guy v (A) (see Subsection 3.3.1).

Lemma 4.4. Let A € Ay. If Y is a stationary process such that

[e.9]

sup Z |ktmno(q, 7, q + 15 N)| < 00 for each I,m,n 0 € {1,...,N}, 9)

—oco<q<oo &
r=—o00

then, f(0,A) — fy (0, (ty,7y), A) almost surely.

Proof.

It is straightforward from the proof of Lemma 2.2 in [11] but substituting by (9) the use
of (2) and Gebelein inequality, [14], for Gaussian processes. Gebelein inequality says that
the autocovariance of a multidimensional process is smaller or equal than the product of
variances of the marginals. O

Lemma 3.1 in [11] proves that if Y is a stationary Gaussian process that satisfies
(2), then (9) holds. In [23], Gebelein inequality is extended to two-dimensional vectorial
processes with diagonal densities. So that, any stationary process that satisfies (2) and
whose two-dimensional marginal has diagonal density, also satisfies (9).

Let © be an open and bounded subset of R x R*. In [11], it is proved that H1 and H2
(see Subsection 3.3.1) are satisfied if )\; is equal to a rational number times A\, i = 2, ..., N.
Now, thanks to Lemma 4.5 below, we have that A can be taken at random and still fulfill
H1 and H2.

Lemma 4.5. Assume that X = (\y,..., Ax)T € Ay (N > 1) is drawn randomly and
has distribution Py having the following properties. First Py is such that Ay and Ay are
independent and identically distributed and have a density. Further, for N > 2, \; is a
rational number times A\1. Then, H1 and H2 are fulfilled almost surely.
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Proof.
Proceeding as in [11] we have that

Oo(A) CH{(v,yy) : vA1 = uy Ay + 21k and vy = puy Ao + 27k, with k, k" € Z}.

Now, in order to get that the cardinal of ©¢(\) is larger than one, we need \s is equal

to a rational number times \;. However, this happens with probability zero and so, with
probability one ©¢(\) C {(uy,vy)}. Thus, H1 and H2 follow directly. O

Note that in case N > 1 Lemma 4.5 remains valid if we draw independently at random
Ai, © = 3,...,N. In addition, thanks to this lemma we have the following corollary of
Theorem 3.5.

Corollary 4.6. Let (Yi)iez be a stationary Gaussian process which satisfies (2) and X be
as in Lemma 4.5. Let (fin,Vn) be the minimizer on © of the map (v, p) — Qn(v, p, \) near-
est to (f1,%) If we assume that fy (0, (uy, vy ), A) is positive definite, then nQy(tn, Yn, A)
converges in distribution to Xy _,.

In the next theorem, the function (),, also depends on the random h. However, for the
sake of simplicity we have not express the functional relationship.

Theorem 4.7. Let X be an ergodic stationary process satisfying (2). Draw respectively
A as in Lemma 4.5 and h independently of A using Pg (as described above).

Assume that, conditionally on h, Y defined in (7) satisfies (9), that the characteristic
function of its one-dimensional marginal is analytic and that fym(0, (yn, Yvin), A) exists
and is positive definite for almost every h. Let Qn(-,-,\) be the quadratic form defined
in (4) applied to 'Y and (fi,y,) its minimizer on © nearest to (flyn,Jy|n). Let further
A:={(\h) : nQn(tin, Yn, \) —a a non-degenerated distribution}.

Then, X is Gaussian if, and only if, (P\ ® Pu)[A] > 0.

Proof.

Necessary part is obvious, because if X is Gaussian, then Y also is Gaussian and Propo-
sition 4.3 implies that Y satisfies the assumptions of Corollary 4.6.

Let us show the sufficient part. As (Py ® Pu)[A] > 0 we have that there exist h and A
with A\; # 0 and Ay # 0 such that nQ,, (ttn, Yn, A) converges in law to a non-degenerated
distribution. In addition, we may assume without loss of generality that ®y (A;) # 0
and Py, (A2) # 0. Indeed, as Py, is an analytic characteristic function it has only isolated
Z€eros.

Therefore, Q,,(t4n, Yn, A) converges in probability to zero. By Lemma 4.4, f (0, ) converges
to fyn(0, (4yin, Yvn), A). Thus, lim, G} is positive definite because it is the inverse of
27 fyn(0, (1ty'n, Yy |n), A). This together with (4) gives that

g(\) — gunn/nO‘) —c.p. 0. (10)

Since X is an ergodic stationary process, by [10] page 458 we have that (g(Y;, M),y is
also an ergodic stationary process. Thus, as E|cos(\;Yy)| < oo and E|sin(\;Yp)| < oo for
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alli =1,..., N, we have by Theorem 2 of Chapter IV in [16] that

g(A) —c.p. Elg(Yo, V)]
From this and (10) we may conclude that ®,, ., ()\;) converges in probability to ®y,(\;)
(i=1,..,N).
Let us see how this implies that the sequence {(fn, ¥n) tnen converges. We have that

2
lim |, .. (\)| = lim e=7/2 = |®y. (\,)], in probability,

n—oo

and, since A\; # 0 and Py, (A1) # 0, this implies that there exists s € R such that
s = lim,, 4 7, in probability. Note that there exists 6 € [0, 27) such that

CI)YO()‘l) - |CI)Y0(>‘1)| exp(ié’).

As A\ # 0, if we take m := 6/, then, we have that @y, (A1) = Dy 5(A1).
)\2

Analogously, we have that |®y,(A\g)| = lim, . e "27/2  in probability, and as s =

lim,, o 7, We obtain

2
By (Ao)| = €2 (11)
Denoting r = A\y/A1, we obtain that

(I)Yo()‘Q) — lime"}‘l“” _ ( q)Yo(/\l) )T — eir)\lm.
[y (A2)| | Dyg (A1)]

Together with (11) this gives @y, (A2) = Py, s(AN2).

As Ay was drawn independently from A\; with a distribution absolutely continuous with
respect to the Lebesgue measure and as @y, is analytic, by Proposition 3.4 we get that
Yy is Gaussian. Then, by Theorem 3.2, we obtain that the process X is Gaussian. O

Remark 4.7.1. It is only necessary to assume that X is ergodic to prove the inverse part
in Theorem 4.7 since every stationary Gaussian process which satisfies (2) is ergodic. (see
for example [17])

Applying the arguments of Theorem 4.7 directly to the process X, we obtain the
following corollary. It gives a modification of Epps test with better consistency properties.

Corollary 4.8. Let X be an ergodic stationary process. Assume that the characteristic
function of its one-dimensional marginal is analytic. Assume further that (2) holds. Let
us take A as in Lemma 4.5, Qn(+, -, A) as in (4), let (jin,vn) be its minimizer on © nearest
to (fix,¥x) and

B :={\: nQu(ftn;Vn, N) —aq a non-degenerated distribution}.
If we assume that fx (0, (ux,vx),A) exists and is positive definite, then, X is Gaussian
if, and only if, P\(B) > 0.
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Remark below can be obviously deduced from Theorems 3.5 and 4.7. This remark
allows to perform a test based on the asymptotic distribution of nQy, (i, Yn, A).

Remark 4.8.1. Theorem 4.7 and Corollary 4.8 remain valid if we change in the definition
of sets A and B “non-degenerated distribution” by “chi-squared distribution with 2(/N—1)
degrees of freedom”.

In addition, we have the following corollary.

Corollary 4.9. Under the assumptions of Theorem 4.7, (P) ® Pu)[A] € {0,1} and X is
Gaussian if, and only if, (P ® Pu)[A] = 1.

Analogously, under the assumptions of Corollary 4.8, Py(B) € {0,1} and X is Gaus-
sian if, and only if, P\(B) = 1.

4.2 Conditions to apply Lobato and Velasco test

In this subsection we show that a slight modification of the statistic éy satisfies Theorem
3.6 under different assumptions than the ones used in [21].
The test statistic is i X v
nfly n(fy — 3i3)
6| Fs| 24| Fy|

Y:
with
Fk—227 () +A(rn +1 =) +4%,

where, according to Theorem 3.7, we take 7, < en® for By = 1-2/a,c>0and 2 < a < 4.
Thus, the differences between Gy gnd Gy are the absolute values in the denominator and
the number of terms involved in F},.

Theorem 4.10. Let (X;)iez be an ergodic and stationary process such that Y.~ |yx (t)] <
oo. We have that

1. If (Xy)iez is a Gaussian process, then Gy —q X3.

2. If (X; — px)iez can be written as (5) and E[X{] < oo, then, conditionally on h, Gy
diverges almost surely to infinity whenever psz # 0 or py # 3ua.

Proof.
Using Proposition 4.3 for { = 0 we get that (Y;);ez is an ergodic and stationary process
with 3720 [1(1)] < .

If (Xi)iez is Gaussian, the process (Y;)iez is also Gaussian. Thus, assumptions of
the first part of Theorem 3.6 hold for the process (Y;)icz and so Gy —4 x3. Now,
as Y is Gaussian, by [13] page 568, we have that Fj, > 0 for k& = 3,4. Repeating the
proof of Lemma 1 in [21], we have that lim, . F, = F, and so, we may conclude that
lim, . Gy = lim,,_ . Gy which shows 1.

Let us prove now statement 2. First, let us show that E[|Y|*|h] < oo, almost surely, for
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k =1,...,4. By Hélder inequality we have that |Yo| < (3257, a:i)V2(> 050, hia; X2,)1/? and,
as by Proposition 4.1 >~°  hia; = 1, almost surely, we can apply Jensen inequality. We

obtain that )
YO4 < <Z ai) (Z h?aiX‘li) , almost surely.
i=0 i=0

Thus, E[|Yy|¥|h] < oo, almost surely, for k = 1,...,4. By [10], page 458, we have that

(Ytk’) 1ez 18 stationary and ergodic, for all £ = 1,...,4. Therefore, Theorem 2 of Chapter

IV in [16] implies that

lim fi, = pg, for almost every h and k = 2,3, 4. (12)

Further, let us prove that lim,, |f7k| < oo for almost every h and k = 3,4. We have
WAE 222 ( . ) (O (T, + 1 — 1),
t=1 7=0
Taking into account that |a*=9b/| < |a|* + |b|*, with k € N, j € N and j < k, we have
Bl < Ay I+ 25 Ay OFF + 1y (7 + 1= 1)),
=1

and then we obtain |Fy,| < 251(327, |5y (£))*. Let us prove now that

lim » Ay (1)] < co.
t=0

Note that as E[X{}] < oo, we also have

0o 4

o> E(Xo-ux)] = > [[kGIE

]

Jlyeesja=1r=1 r=1
= E[eﬂZk * + Ele3)? Z k(i
Jj=1 1,j=1,i#]

because (€,) are i.i.d.r.vs. with E[e;] = 0. So that E[e]] < co. Further, using Theorem 3.7
we obtain that

Tn

> (Fx®)] = x (1))

t=0

< (mn+1)o (n2/o‘_1) =o(1).

Thus, lim,, oo > [9x(t)| < 00. Then, by proceeding similarly as in the proof of Propo-
sition 4.3, we get lim, oo Y ;" |¥(t)] < co and so, lim,_. |F}| < oo for k = 3,4. Using
(12) we may conclude that 2. holds. O
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Finally, applying Theorem 4.10 directly to the process X, we obtain the following
corollary.

Corollary 4.11. Let (X;):ez be an ergodic and stationary process such that Y- |yx (t)| <
co. We have that

1. If (X})iez is a Gaussian process, then Gx —4 X3.

2. If (Xy — px)tez can be written as (5) and E[X]] < oo, then, conditionally on h, Gx
diverges almost surely to infinity whenever jix s # 0 or x4 # 3,u§(72.

5 The tests in practice

In this section we discuss the practical implementation of the gaussianity test. We start
doing some remarks on Epps test.

5.1 Remark on Epps test

Although Theorem 3.5 works for any A € Ay, with N > 1, which satisfying H1 and H2,
in [11] it is stated that:

o When either N is large or the spacing between the A\; is small, relative to the scale
of the data, the matriz 2w f(0, ) often appears computationally singular.

o Also, values of \; which are large, relative to the scale of the data, makes difficult to
find a minimum of Q,(-,, \) with much precision.

Epps suggests to take

A =E5/\/F, with € >0,57=1,...,N. (13)

Recall that 4 denotes the sample variance of the process. He proved that Theorem 3.5
works taking such A. In the simulations of Epps, and also in the ones of [21], N = 2 and
(&, &) = (1,2).

However, we need to draw A randomly in order to have a consistent test (Theorem 4.7).
So, we take N = 2, & distributed as the absolute value of a standard normal distribution
and & distributed as the absolute value of a normal distribution with mean zero and
variance 4. With this selection, although seldom, we have found that f(0,\) could be
singular. This is the main reason to choose G ()) as the generalized inverse of 27 f (0, ).

Another important practical issue is the procedure used to find the minimizer nearest
to (f,7) of the map (v, p) — Qn(v, p, A). In the simulations of [11] and [21] they use the
simplex method developed in [25]. We did the same. The code of such method can be
found in [27] under the name amoeba.
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5.2 The random projection procedure to test Gaussianity

The theoretical development of Section 4 was carried out assuming that the observed
sample is infinite. However, in practice, only a finite number of measurements Xy, ..., X,
are available. So that, only a finite number of components of h are computed. This last
difficulty is handled by fixing a small § > 0 (equal to 107! in the simulations that we
present in Section 6) and by taking h = (hy, ..., h,,)? with

m — 1 =min{min {¢ : ||(ho,..., h)"|| > 1 =0} ,n— 1},

where hg, ..., h,,_1 are drawn by the stick breaking procedure described in Section 4. Fur-
ther, hy, is fixed such that ||h|| = 1. Concerning the projected process, some possibilities
are available, but here we use

min(m,t)

th: Z hiXt_iai, tZO,...,TL.
1=0

Let us give a short comment on the choice of the parameters a;, as > 0 of the beta
distribution used to generate h. Here we have to deal with the following situation: If m
is large, then the random variables Y; are linear combinations of many random variables
from the first sample and then, because of the Central Limit Theorem, the distribution of
the random variables Y; will become closer to a normal law. That will cause some loss of
power when the marginal of X is not Gaussian. Thus, in order to detect a non-Gaussian
marginal, it is wise to select a; and as in such a way that m is small or even 0 or 1. This
goal is achieved if we take ap = 1 and oy > 1. Our selection in Section 6 is a; = 100.
However, in this case the samples Yj,...,Y, and X,,..., X, are quite similar. So that,
the test will not be good in detecting non-Gaussian alternatives with Gaussian marginal.
In order to overcome this problem we should take h in such a way that the projections
mix several variables from the initial sample. To achieve this goal we need to take as >
but with ay being not too big to avoid the effect of the Central Limit Theorem. In this
case, a selection like oy = 2 and ay = 7 seems appropriate. Therefore, it seems that in a
practical situation we should decide which alternative is more plausible and then, select
the appropriate parameters. However, there is another possibility: select two projections
(one with each pair of parameters) and apply Theorem 3.8 to mix the p-values. This is
our proposal.

Finally, we need a Gaussianity test for the one dimensional marginal of (Yy,...,Y,).
We have seen two such tests (which have some advantages and disadvantages discussed in
Section 6) and we can also mix them. Having all these requirements in mind, we propose
the following procedure:

1. Draw h™" with the £3(100, 1) distribution and apply Epps test to the projections to
obtain the p-value p™).

2. Draw h® (independently of h™") with the 3(100,1) distribution and apply Lobato
and Velasco test to the projections to obtain the p-value p®.

19



3. Draw h® (independently of h¥ and h®) with the §(2,7) distribution and apply
Epps test to the projections to obtain the p-value p®.

4. Draw h™ (independently of h™ h® and h®) with the £(2,7) distribution and
apply Lobato and Velasco test to the projections to obtain the p-value p¥.

5. Combine the p-values p™, ... p using the procedure described in Section 3.4 to
decide the Gaussianity hypothesis at the level a. Thus, ordering these four p-values
such that p) < ... < p4) we obtain that the p-value of the random projection test
is equal to (25/3) - min;—1 4 py)/i.

6 Simulations

In this section we study the behavior of the proposed procedure in different situations.
We have used the same distributions as in [21], in order to perform comparisons. Further,
we will study a situation where the process has Gaussian marginal but is not Gaussian
(see Section 6.1). In addition, in Subsection 6.2 we apply the random projection test to
real data.

The authors of [21] study the case of an AR(1) process depending on a parameter ¢
defined by

Xy = qXp1 + &y, (14)

where ¢ € {—-.9,—.5,0,.5,.6,.7,.8,.9}, t € Z and ¢; are i.i.d. random variables with
distribution D, which may be any of the following ones:

e standard normal (N(0,1)),
e standard log-normal (log N),

Student ¢ with 10 degrees of freedom, (¢y9),

chi-squared with 1 (x%) and 10 degrees of freedom (x%,),
e uniform on [0,1] (U(0,1)),

e beta with parameters (2,1) (5(2,1)).

To simulate the process, we generate a large number of independent realizations ¢;, t =
1,..., M with distribution D, and we take

® X1 =£&1
L] Xt = th—l +6t7 t= 2,...,M

It is obvious that if ¢ # 0, this process is not stationary. For instance, Var[X;| =
Var[e;](1 — ¢*)/(1 — ¢*) which is not constant and, obviously, the differences increase
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with |¢|. In order to alleviate this problem, we disposed a certain number, past, of ob-
servations. We have taken past equal to 1000 and n = M — past equal to 100, 500, 1000,
which are the sample sizes handled in [21].

We have performed 5000 simulations in each situation. In every run we have computed
the p-values using the asymptotic distributions. This could have caused that sometimes
the rejection rates under the null hypothesis are far away from the nominal level (mostly
for the lowest sample size n = 100) and that they decrease under some alternatives with
the sample size (mostly for high values of |g|).

There are some differences between our rates and those published in [21]. We think
they could be due to the fact that the past taken in [21] is not large enough. For example,
in the case n = 100, ¢ = .7 and D, being (3(2, 1) we obtain a rejection rate of .2214 when
using Epps test while in [21] they obtain one of .080, which is appreciatively worse. As
explained before, our simulations were made with past= 1000, but from Table 6.1 we see
that .080 is a rejection rate reasonable for past = 0 and that the rejection rates increase
with past, approaching to the value we have obtained.

past‘ 0 1 2 10
rejections | .0750 1378 .1998 .2210

Table 6.1. Rejection rates along 5,000 simulations for different past, with Epps test,
n =100, D. a B(2,1) and g = .7.

We have observed the same problem with Lobato and Velasco test, excepting that with
this other test our rejection rates are lower than those reported in [21].

Furthermore, another difference to bold between what we do here and [21] is that in
Subsection 4.2 a sum until 7, is involved in the estimation of Fj while in [21] the sum
goes until n — 1, where n is the sample size. Here, we have to take 7, < cn®, where
Bo =1—2/a with 2 < @ < 4 and ¢ > 0. Thus, 5y may be as close as desired to .5 and
so, we have decide to fix its value at 3y = .5 for the simulations. In order to select the
right value of ¢, we have made a small analysis to see how sensitive is the method to this
parameter. We run Lobato and Velasco test under the null hypothesis for all values of
qand ¢ = 1,2,...,¢,, where ¢, = [/n] and n = 100,500, 1000. Therefore, c¢199 = 10,
cs00 = 22 and c1900 = 31. The results suggest that the value of ¢ has not much influence
in the rejection rates and so, we choose ¢ = 1. The results for the cases ¢ = 0 and ¢ = .5
appear in Figure 1. It is worth saying that the situation for ¢ = —.9 is a bit different
than for the other values, as with ¢ = —.9 the rejection rates look constant till a point in
which those rates strongly decrease.

Tables 6.2, 6.3 and 6.4 contain the rejection rates for several procedures when applied at
the level .05. Next we mention the procedures we have selected and make some comments
on the results of our simulations.

1. Epps test, E-test. We take (£1,&) = (1,2) in (13).

It seems that this test behaves poorly when D, is t1y. Moreover, broadly speaking, its
power decreases for the considered alternative distributions when |g| increases, having
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Figure 1: Rejection rates under the null hypothesis for an AR(1) process with ¢ = 0 (upside graph), and
g = .5 (downside graph), using Lobato and Velasco test, for different values of ¢ and sample sizes.

low powers when |¢g| = .9. Note also that under the null hypothesis (excepting the
case ¢ = 0 with n = 1000), the rejection rates are above the level of the test and
that they increase with |q|.

The power decreases when the sample size increases in the cases in which |¢| = .9 and
the alternative is t19, X%y, U(0,1) or 3(2,1) (and even with ¢ = .8 when D, = t1).

2. Lobato and Velasco test, G-test. The rejection rates displayed have been sim-

ulated using the statistic Gx. However, they are similar to those obtained using
Gx.
The G-test has very low powers when |g| is large, sometimes even lower than those of
the E-test. In addition it suffers from a lack of power when D, is U(0,1) or 3(2,1).
The rejections under the null hypothesis are above the level of the test only in 4
cases out of 24. In contrast with the E-test, here the rejection rates under the null
hypothesis decrease when ¢ increases.

3. Combined Epps and Lobato and Velasco test, GE-test. In previous para-
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graphs we have commented some problems of the E and G tests which go, let us
say, in opposite directions. In order to solve these problems we combine both tests,
using the multiple testing procedure presented in Section 3.4.

As stated in Subsection 5.1, the GE-test have been obtained by drawing indepen-
dently & with absolute value of a standard normal distribution and & with absolute
value of a normal distribution with mean zero and standard deviation 2. However,
it is worth noting that the rejection rates we have obtained have been a bit larger
than in the case we take (£1,&) = (1,2).

We can observe from Tables 6.2, 6.3 and 6.4 that this combination gives rejection
rates between those of the E and G-tests although closest to the highest one, and,
sometimes, even above. This is due to, as we have previously said, the rejection rates
of E are here a bit larger than when (£1,&) = (1, 2).

. Random projection test, RP-test. We apply this test following the guidelines
provided in Subsection 5.2.

When ¢ is negative and we are under the alternative, we always get the highest
rejection rates with the RP-test. The most striking behavior of this test happens
for ¢ = .9 and D. = x3, and (2, 1), where the RP-test obtains rejection rates larger
than 0.8 while the second more successful test remains below 0.25. For the remaining
values, it happens that the rejection rates using the RP-test are between the rates
obtained with the E, G and GE tests but closer to the highest than to the lowest.
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q Test | N(0,1) log N X3 3o U(0,1) pB(2,1)
B 1264 .0508 .1104 .0656 .1124  .1390 1354
-9 G 0292 1414 .0310 .0840 .0332 .0290  .0266
GE 0942 1422 0908 .1072 .0920 .1020 1010
RP | 1380 .8070 .1742 .7576 .3076 .2620  .3902
B 0724 6780 .0556 .8514 .2058 .5408 4914
-5 G 0504 9986 .1692 .9986 .4602 .0102  .1696
GE | .0774 9976 .1582 .9972 4552 4454 4154
RP | .0752 .9998 .1980 1 5824 .6404  .7460
E 0632 9616 .0830 .9964 .5372 9918 9704
0 G .0458 1 .2820 1 7898 5404 7520
GE | .0732 1 .2402 1 8074 .8596  .8706
RP 0772 1 2288 1 7640 8496  .9054
E 0682 .8594 .0608 .9582 .2610 .5618  .5562
S5 G 0384 9990 .1696 .9982 4118 .0010  .1102
GE | .0642 9990 .1444 9988 .4700 .4680  .4882
RP 0750 9908 1132 9880 .5226 .3256  .7500
B 0710  .6118 .0582 .8106 .2006 .3462  .3650
6 G 0358 9884 1162 9772 2858 .0012  .0592
GE | .0640 .9882 .1144 9832 .3218 .2800  .3086
RP 0802 .9536 .1030 .9262 .5164 .2580 @ .7744
D) 0838  .3250 .0626 .4640 .1492 .2032 2214
7 G 0260 .9076 .0814 8196 .1610 .0036  .0334
GE 0714 9042 .0866 .8448 .1998 .1634 1802
RP 0784 .8022 .0926 .7010 .5754 .2902  .8060
B 1034 1552 .0810 .2004 .1324 .1620 1596
8 G .0206 .6146 .0466 .4406 .0708 .0046  .0166
GE 0726  .6118 .0796 .4488 1122 1154 1136
RP 0896  .4928 .0932 .3264 .6766 .3950  .8782
D) A752 1264 1618 1368 .1612  .1870 .1680
9 G 0106 .1558 .0094 .0714 .0150 .0054  .0086
GE 1074 1844 0968 .1190 .0980  .1182 1072
RP 1168 1982 1174 1338 8702  .6788  .9662

Table 6.2. Rejection rates at level .05 of a process defined by (14). Sample size n = 100.
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q Test | N(0,1) log N X3 3o U(0,1) pB(2,1)
B 0744 3720 .0584 2162 .0712 .0918  .0850

-9 G 0708 8838 .0840 .6202 .1142 .0462  .0754
GE | .0780 .8604 .0924 .5400 .1116 .0866  .0952

RP | .0810 .9990 .2260 .9928 .6924 .4630  .6918

B .0594 1 1334 1 7730 .9924 9922

-5 G 0472 1 4580 1 9960 9656 9976
GE | .0476 1 3784 1 9912 9514 9914
RP | .0490 1 .5090 1 9998 19946 1
B .0566 1 3292 1 9982 1 1

0 G .0480 1 7428 1 1 1 1
GE | .0510 1 .6756 1 1 1 1
RP | .0554 1 .6188 1 1 1 1
E .0654 1 1476 1 8808 9918  .9960

S5 G .0454 1 4340 1 9972 9704 L9988
GE | .0516 1 .3816 1 9924 9504 9962
RP | .0618 1 .2656 1 9610 7440 9634
E 0566  .9998 .1026 1 7084 8286 .9090

6 G 0470 1 .3336 1 9582 4678  .8858
GE | .0570 1 .2692 1 9388  .6944  .8870
RP | .0610 1 1794 1 8604 4730  .9006
B 0708 .9996 .0786 1 4704 4042 5810

7 G 0474 1 .1970 1 7992 .0644  .4040
GE | .0598 1 1670 1 7332 3640 5768
RP | .0702 1 1282 1 6986  .2616  .8786

E 0776 9780 .0710 .9638 .2500 .1948  .2564
8 G 0744 9998 0976 .9980 .3908 .1524 = .2628
GE | .0702 .9998 .1102 .9978 .3972 .1848  .2960
RP | .0710 .9986 .0910 .9908 .6834 .2484  .9208
D) 1156 5708 .0944 4674 1526  .1430  .1560
9 G 0232 8356 .0370 .5404 .0764 .0138  .0336
GE | .0802 .8708 .0838 .6378 .1490 .1092  .1390
RP | .0860 .7996 .0770 .5510 .8430 .4818  .9772

Table 6.3. Rejection rates at level .05 of a process defined by (14). Sample size n = 500.
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q Test | N(0,1) log N X3 3o U(0,1) pB(2,1)
B 0648 .7836 .0578 4572 .0826 .0888  .0942
-9 G 0902 9934 1206 .8932 .2448 .0760  .1358
GE | .0880 .9856 .1002 .8560 .2190 .1004  .1450
RP | .0940 1 3344 9998  .8686  .5876  .8056
B .0530 1 2574 1 9764 1 1
-5 G .0436 1 6778 1 1 1 1
GE | .0450 1 .6040 1 1 1 1
RP 0378 1 7498 1 1 1 1
E .0490 1 .5946 1 1 1 1
0 G .0546 1 9364 1 1 1 1
GE | .0486 1 9162 1 1 1 1
RP .0422 1 8734 1 1 1 1
E .0550 1 2534 1 9966 1 1
S5 G 0482 1 6788 1 1 1 1
GE 0424 1 .6016 1 1 1 1
RP 0484 1 4348 1 9994 9738 9996
B .0566 1 718 1 9580 9800 9974
6 G 0472 1 5112 1 9996 9724 9996
GE | .0464 1 4234 1 9996  .9550  .9986
RP .0584 1 2812 1 9902 7110 9804
D) .0594 1 1162 1 77200 6338 8632
7 G 0418 1 3104 1 9744 3642 8830
GE | .0558 1 .2380 1 9672 5642 8724
RP 0598 1 1754 1 8888  .3554  .9036
B 0690 9998 .0720 1 4342 2288 4108
8 G .0500 1 1638 1 6804  .0432  .3284
GE .0670 1 1294 1 6708  .2216 4450
RP .0654 1 .0996 1 7144 1920 L9076
D) 0902 9152 .0880 .7690 .1836 .1170  .1686
9 G 0346 .9944 .0636 .9136 .1574 .0174  .0574
GE | .0690 .9926 .0798 .9206 .2178 .1040  .1596
RP 0736 9844 0678 .8580 .8328 .3946 9774

Table 6.4. Rejection rates at level .05 of a process defined by (14). Sample size n = 1000.

6.1 A strictly stationary non-Gaussian process with Gaussian marginal

In this subsection we discuss the behavior of the proposed procedure when used on a non-

Gaussian process with Gaussian marginal. We have worked with the process introduced

in Example 2.3 in [9]. Its construction is explained here for the sake of completeness.
Let p be a prime number, and let Yp, U and {Z,,,,, » =0, 1, ...} be mutually indepen-
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dent random variables all uniformly distributed on {0,1,...,p — 1}. Set
Zmpsk = Zmp® (kYy), k=0,...,p—1,m=0,1,2,...

where @ stands for sum modulus p. According to [9] the sequence W,, = Z,, 1y is composed
by pairwise independent random variables and it is stationary. Moreover, these random
variables are not mutually independent because, by construction, for every m € N we
have that

Zm-p + Zm~p+1 +...+ Zm-p+p—1 = p(p - 1)/27

and so,
me_U + me_U+1 + ...+ me—U+p—1 = p(p - 1)/2 (15)

Therefore, the knowledge of the random variables W,,_¢, W, _v41, ..., Wh_p4p—2 com-
pletely determines the value of W,,_y4p,—1.

Now, given k € {0,...,p — 1}, let ¢x be the quantile of order k/p of the standard
Gaussian distribution. For every n € N, let us define the random variable W, conditionally
to W, as follows: If W,, = k, then draw the value of W with a standard Gaussian
distribution conditioned to be in the interval (gx, gx+1), and independent of all the other
random variables.

Since W), is uniformly distributed on {0, 1,...,p — 1}, we obviously have that W’ is a
standard Gaussian r.v.. Moreover, the sequence (W) inherits the remaining properties
of (W,). It is a strictly stationary sequence of pairwise independent Gaussian random
variables.

However, if n > p — 1 and we are aware of the values Wy _;,... . Wy ;. », we can
recover the values W,_y, ..., W,_y4p—2 and, because of (15), we may deduce the value
of Wi—v4p-1. With this information, we know to which interval Wy .., belongs.
Therefore, the random variables (W)),, are not mutually independent and so, the process
is not Gaussian.

We have simulated the previous process 5000 times for different values of p and sample
sizes n = 100, 500, 1000. Then, we have applied the RP test at the level a = .05. The
rejection rates appear in Table 6.5.

p=2 p=3 p=>5 p=7 p=11 p=13 p=17
n =100 | .1448 .1268 .1676 .1516 .1602  .1380  .1146
n =500 | .3698 .3654 .4938 5154 5822  .5590  .5588
n = 1000 | .6382 .6386 .6814 .7250 .7802  .7608  .7700

Table 6.5. Rejection rates for different sample sizes applying the RP test to the W*
process at the level o = .05.

For comparison, we show in Table 6.6 the rates of rejection when using the E, G
and GE tests in the case p = 5. Since these tests check for the non-Gaussianity of the
marginal, the rejection rates are not too high. However, it is worth to pay some attention
to the rejection rates in this table. To begin with, they are below the intended level
(except GE with n = 100), but, more surprisingly, they show some decrease when the
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sample size increases. We think that this is due to the fact that these tests see the process
W* as more Gaussian than a Gaussian process.

The reason is that when we generate observations of a Gaussian process, approximately
a proportion of 1/p observations are in the interval (gx,qxr1), with & € {0,...,p — 1}.
However, the process W* generate exactly a proportion of 1/p observations in each interval
(G, qr+1)- So that, it has a “more Gaussian” behavior than expected. Consequently the
rejection rates are lower than .05 and this fact becomes more apparent when n increases.

n =100 n =500 n=1000
E | .0338 .0266 .0186
G| .0372 .0336 .0326

GE | .0520 .0336 .0206

Table 6.6. Rejection rates using the E, G and GE tests of the W* process with p =5, at
the level o = .05.

6.2 Real data

In this subsection we work with the well-known Canadian lynx and Wolfer sunspot data
in order to illustrate the behavior of the random projection test. The Canadian lynx data
consists on the annual record of the number of lynxes trapped in the Mackenzie River
district of the North-West Canada for the period from 1821 to 1934 while the Wolfer
sunspot data consists on the annual record of the sunspot activity in the period from
1700 to 1960. These data were used in [11] and previously in [30], obtaining in both cases
that the processes are not Gaussian.

We perform the random projection procedure to the lynx and sunspot data following
the indications in Subsection 5.2. The obtained p-values are displayed in Table 6.7 together
with those gotten in [11] and in [30].

RP Epps S.R. & G
lynx | 1.029 x 1077 1.402 x 107°> 1.084 x 1077
sunspot | 1.314 x 1075 7.356 x 10~ 2.818 x 10~*

Table 6.7. p-values using the RP-test and the tests proposed in [11] and in [30] for the
lynx and sunspot data.

In these examples we obtain p-values having approximatively the same magnitudes as
those of [11] and [30].

7 Discussion

In this paper we have introduced the random projection test, RP-test, to check the
Gaussianity of stationary processes. Given a sample, this test is based in a three steps
procedure. First, it is required to draw a vector h in a suitable Hilbert space. Then,

28



the sample is projected on the one-dimensional space spanned by h. Finally, we take
advantage of the fact that, with probability one, the initial process is Gaussian if the
marginal of the projected one is Gaussian. Therefore, we only need to use a test to
check the Gaussianity of the marginal of a stationary process. In the final step we use a
combination of the Epps and Lobato and Velasco tests.

The comparison of the RP-procedure with the Epps and Lobato and Velasco tests (as
well as with the combination of them) in situations in which the marginal is not Gaussian
is not bad, and there are cases in which the proposed test is clearly better. Moreover, the
RP test is able to detect alternatives with Gaussian marginal, while the other tests are
not designed to do this task.

In spite of the rejection rates shown in Table 6.5 are above the nominal level, they are
not so high, mostly when the sample size is 100. A simple way to improve these rates is
to increase the number of random projections using the correction described in Section
3.4. From Table 7.1 it can be seen how an increase in the number of employed random
projections improves noticeably the rates. In this table half of the projections are taken
using the (100, 1) distribution and the other half with the 5(2,7) and in each case we
compute half of the p-values with the E test and the other half with the G test.

k=2 k=3 k=5 k=38
n—100 | 1448 1906 2288 2674
n =500 | 3654 5772 6988 8064
n—=1000 | 6314 .7688 8498 8628

Table 7.1. Rejection rates for different sample sizes applying the RP test with 2F pro-
jections to the W* process with p = 5.
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