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1 Introduction

Recent advances in technology allow significantly more data to be recorded over
a period of time, leading to samples composed of trajectories which are measured
on each of a number of individuals. Such data are common in different fields,
including health sciences, engineering, physical sciences, chemometrics, finance
and social sciences. They are often referred to as functional data or longitudinal
data (this last term being preferred in health and social sciences). In this context,
the data can be considered as independent, identically distributed realizations of
a stochastic process taking values in a Hilbert space. For instance, we might
have a random sample{X1(t), . . . , Xn(t) : t ∈ T} of trajectories with values in
the Hilbert spaceL2(T), whereT is an interval inR.
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Concerning the mathematical procedures to handle these data, it happens that,
on the one hand, there are many problems whose solution is known from a
theoretical point of view, while its implementation is difficult in practice if the
dimension of the space which contains the data is infinite (or, simply, large). Of
course, on the other hand, there are some problems whose solution is known for
finite-dimensional data but it is unknown for functional data.

These kind of problems appear not only in Statistics but in many other fields in
Mathematics. A way to circumvent them has been to employ randomly chosen
projections. Broadly speaking, this procedure can be described as follows. Let
us assume that we have to deal with a problem related tod-dimensional objects.
The random projection method consists of choosing, at random, a subspace
of dimensionk (wherek is low when compared tod), solve the problem in
thek-dimensional subspace and, then, translate the solution to the original (d-
dimensional) space.

Many of these applications are based on the fact that random projections ap-
proximately preserve pairwise distances with high probability (see, for instance,
[21], Section 1.2 or Lemma 2.2 in [6] for two precise formulations of this state-
ment).

We do not try to be exhaustive, but some applications of these ideas, can
be seen, for instance, in [21], where they are employed to obtain approximate
algorithms in problems of high computational complexity; or in [12] where the
authors propose the use of randomly chosen projections as a tool to identify
images and, then, detect copyright violations on images posted on the Internet.

It is curious that, though Statistics lies at the heart of the random projection
method, this idea has seldom been applied to statistical problems. We are only
aware of some results in which random projections have been used to estimate
mixtures of distributions [8, 22], but even these papers have not been written
from a purely statistical point of view but rather from the perspective of learning
theory.

On the other hand, in [5] a generalization of the Cramér-Wold theorem was
proved. Some results in this paper (Corollary 3.2 and Theorem 4.1) state that,
under suitable conditions, a randomly chosen projection determines a distribu-
tion. We consider that these results could provide the basis to start the statistical
analysis we refer to in previous paragraph and with this idea, we describe in
this paper how they can be applied to obtain goodness-of-fit tests to a single
distribution or to test whether two independent samples come from the same
distribution.

Perhaps it is worth stressing that the proposed tests will be based on just a
single (randomly chosen) one-dimensional projection. This is exactly contrary to
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Projection Pursuit paradigm which, if applied to the above mentioned problems,
would dictate consideration of every possible one-dimensional projection. Note
that this renders Projection Pursuit extremely sensitive to the dimension and,
then, it runs directly into the problems we mentioned in the beginning.

We remark that the results in [5] are valid in any separable, even infinite-
dimensional, Hilbert space, and are thus applicable to the analysis of stochastic
processes.

The organization of this paper is as follows. In Section 2 we present some
of the results in [5]. To be precise, in fact we present a slight generalization
of them which allows us to write them in a slightly sharper and perhaps more
friendly way. Then, in Section 3 we show how these results can be applied to
construct statistical tests. In Section 4, we present some simulations to show
how the procedure behaves in practice. We conclude with the application, in
Section 5, of the proposed method to a real data set. The data consist of the
spectrograms of 95 healthy women and those of 121 women who suffered from
ovarian cancer. They have been downloaded from http://ncifdaproteomics.com/
OvarianCD_PostQAQC.zip. All computations, including the simulations, have
been carried out with MatLab. Original codes are available from the first-named
author upon request.

2 Basic results on random projections

We begin by establishing some notation, as well as a few basic elementary results.
LetH be a real, separable Hilbert space (finite- or infinite-dimensional). We

write 〈∙ , ∙〉 for the inner product onH, and‖ ∙ ‖ for the corresponding norm.
Given x ∈ H, we denote byP〈x〉 the marginal ofP onto the one-dimensional
subspace generated byx. Namely, if πx denotes the orthogonal projection of
H on the one-dimensional subspace spanned byx, andB is a Borel set in this
subspace, then,

P〈x〉(B) := P[π−1
x (B)].

Given two Borel probability measuresP, Q onH, we define

E(P, Q) :=
{
x ∈ H : P〈x〉 = Q〈x〉

}
.

The setE(P, Q) is closed and, hence, Borel-measurable. This set will play a
central role in what follows. Obviously, the very well known Cramér–Wold
theorem forH can be stated in terms ofE(P, Q).

Proposition 2.1. If E(P, Q) = H, thenP = Q.
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It is well known (see [17, Theorem 1]) that a compactly supported Borel
probability measure onR2 is determined by its marginals onto any infinite set of
lines. This result was generalized in [7, Theorem 1] by replacing the compactness
condition by some hypothesis on the moments of the distribution, but it is not
possible to generalize this result toRd whend ≥ 3. In some sense, the goal of the
main result in [5] was to formulate the ‘correct’ condition in high-dimensional
spaces. We will employ the following definition.

Definition 2.2. Let P be a Borel distribution on the separable Hilbert spaceH.
We will say thatP is determined by its moments if for everyn ∈ N, it happens
that

∫
‖x‖n P(dx) < ∞, and if Q is another Borel distribution onH such that

∫
〈x, y〉n P(dy) =

∫
〈x, y〉nQ(dy), for everyx ∈ H andn ∈ N,

thenP = Q.

Some conditions to ensure that a distribution is determined by its moments
have been proposed in the literature. For instance, it is very well known that if
the moment generating function ofP is finite on a neighborhood of the origin,
then P is determined by its moments. A more general condition, the so-called
Carleman condition, is provided, for instance in [18, p.19] for the case in which
H is finite dimensional but it is easily extended to cover also the general case as
follows.

Proposition 2.3 (Carleman condition).LetP be a Borel distribution on the sep-
arable Hilbert spaceH. Assume that the absolute momentsmn :=

∫
‖x‖n P(dx)

are finite and satisfy
∑

n≥1 m−1/n
n = ∞. Then,P is determined by its moments.

In the finite-dimensional case, the key result in [5] on the determination of a
distribution by its one-dimensional marginals is Theorem 3.1. It relies on the
following definition: a polynomialp onRd is calledhomogeneous of degreem
if p(t x) = tm p(x) for all t ∈ R and allx ∈ Rd. A subsetS of Rd is called a
projective hypersurfaceif there exists a homogeneous polynomialp onRd, not
identically zero, such thatS = {x ∈ Rd : p(x) = 0}.

Most of the proof of Theorem 3.1 in [5] consists of proving the following
result.

Proposition 2.4. Let P, Q be Borel probability measures onRd, whered ≥ 2.
Assume that:

•
∫

‖x‖n P(dx) < ∞, for everyn ∈ N;
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• the setE(P, Q) is not contained in any projective hypersurface inRd.

Then
∫

〈x, y〉n P(dy) =
∫

〈x, y〉nQ(dy), for everyn ∈ N andx ∈ H.

From this point, it is trivial to finish the proof of Theorem 3.1 in [5] and also
to obtain the following slight generalization of this theorem.

Theorem 2.5. Let P, Q be Borel probability measures onRd, whered ≥ 2.
Assume that:

• P is determined by its moments;

• the setE(P, Q) is not contained in any projective hypersurface inRd.

ThenP = Q.

Remark. In [5] some counterexamples and results are included which show that
the conditions in this result are sharp but we do not include them here.

Particularly important, from the point of view of applications, is the following
corollary which corresponds to Corollary 3.2 in [5].

Corollary 2.6. Let P, Q be Borel probability measures onRd, whered ≥ 2.
Assume that:

• P is determined by its moments;

• the setE(P, Q) is of positive Lebesgue measure inRd.

ThenP = Q.

Proof. This is an immediate consequence of Theorem 2.5, because every pro-
jective hypersurface is of Lebesgue measure zero inRd. �

To extend Corollary 2.6 to infinite-dimensional spaces, we need to find a sub-
stitute for Lebesgue measure, which no longer has any sense in this setting. The
substitute will be a non-degenerate gaussian measure. For the sake of complete-
ness, we state here the definition. For more details on gaussian measures, see
e.g. [11, §7.5 and §7.6].

Definition 2.7. LetH be a separable Hilbert space. A Borel probability measure
μ onH is calledgaussianif each of its one-dimensional marginals is gaussian.
It is non-degenerateif, in addition, each of its one-dimensional marginals is
non-degenerate.
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The following result is the infinite-dimensional generalization of Corollary 2.6.
The main technical difficulty in this result relies on the fact that it is not obvious
that if a infinite-dimensional distribution,P, is determined by its moments, and
we consider a finite-dimensional projection ofP, then this projection is also
determined by its moments. However, if we assume thatP satisfies Carleman’s
condition, then it is obvious that their marginals also do, and, in consequence,
they are determined by their moments. This was a keystone in the proof of
Theorem 4.1 in [5]. Here, we will employ Proposition 2.4 to circumvent this
difficulty.

Theorem 2.8.LetH be a separable Hilbert space, and letμ be a non-degenerate
gaussian measure onH. Let P, Q be Borel probability measures onH. Assume
that:

• P is determined by its moments;

• the setE(P, Q) is of positiveμ-measure.

ThenP = Q.

Proof. The first part follows the same steps as the proof of Theorem 4.1 in [5].
To this end, take an orthonormal basis of eigenvectors{ek}k≥1 of the covariance
operator ofμ. Thenμ is the product measure of its marginals onFk (the finite
dimensional subspace generated by{e1, . . . , ek}) and onF⊥

k (the orthogonal
complement ofFk). Let us denote byPk andQk the marginal distributions ofP
andQ on Fk respectively.

ObviouslyPk satisfies first hypothesis in Proposition 2.4.
If we employ Fubini’s theorem and carry out the same computations as in the

proof of Theorem 4.1 in [5], we find that thek-dimensional Lebesgue measure
of E(Pk, Qk) is strictly positive. Thus, by Proposition 2.4, for everyn ∈ N, and
x ∈ Fk, we have

∫
〈x, y〉n Pk(dy) =

∫
〈x, y〉nQk(dy). (1)

Now, if n is an even integer, then for everyk and everyy ∈ Fk we have
‖y‖n = cn,k

∫
〈x, y〉n σk(dx), whereσk denotes Lebesgue measure on the unit

sphere ofFk, and cn,k is a positive constant depending only onn, k. Thus,
integrating (1) with respect toσk, and using Fubini, we obtain

∫
‖y‖n Pk(dy) =

∫
‖y‖n Qk(dy).
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In other words, writingπk for the orthogonal projection ofH onto Fk,
∫

‖πk(y)‖n P(dy) =
∫

‖πk(y)‖n Q(dy).

Lettingk → ∞ and using the monotone convergence theorem, we deduce that
∫

‖y‖n P(dy) =
∫

‖y‖n Q(dy).

As the left-hand side is finite, so is the right-hand side (for all evenn and hence
for all n).

Returning to (1), it says that for alln ∈ N, and allx ∈ H,
∫

〈πk(x), πk(y)〉n P(dy) =
∫

〈πk(x), πk(y)〉n Q(dy).

The modulus of the integrand is bounded by the functiony 7→ ‖x‖n‖y‖n, which
is both P- and Q-integrable. So we can letk → ∞ and use the dominated
convergence theorem to obtain

∫
〈x, y〉n P(dy) =

∫
〈x, y〉n Q(dy).

SinceP is determined by its moments, we conclude thatP = Q. �

3 Application: Goodness-of-fit tests

Goodness-of-fit tests of Kolmogorov–Smirnov type are the most widely used
tests to decide whether it is reasonable to assume that some one-dimensional
data come from a given distribution. The problem is the following: Given
i.i.d. real random variablesX1, . . . , Xn on a probability space(�,A, ν), can we
accept that their underlying common distribution is a givenP0? Thus, in terms
of a statistical test-of-hypothesis problem, the null hypothesisH0 is that the true
underlying distributionP is equal toP0, while the alternative hypothesisHA is
that P 6= P0.

To carry out this test, Kolmogorov [9] suggested using the statistic

Dn := sup
t∈R

|Fn(t) − F0(t)|, (2)

whereF0 is the distribution function ofP0, andFn is the empirical distribution
function, defined by

Fn(t) :=
1

n

n∑

i =1

I(−∞,t](Xi ) (t ∈ R),

rejecting the null hypothesis whenDn is large.
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If F0 is continuous, and the null hypothesis holds, then the statisticDn has
the important property of being distribution-free, i.e. its distribution does not
depend on the true underlying distributionP0, but only onn. This distribution
was tabulated by Smirnov [20] and Massey [14, 15], and is available in most
statistical packages. Kolmogorov [9] also found the asymptotic distribution of√

nDn whenH0 holds. This distribution coincides with that of the maximum of
a Brownian bridge. Its explicit expression is

lim
n→∞

ν(
√

nDn ≤ t) = 1 − 2
∞∑

k=1

(−1)k+1e−2k2t2
(t > 0).

Later on, Smirnov [19] and Kolmogorov [10] treated the two-sample prob-
lem with similar techniques. Here, we have two independent random samples
X1, . . . , Xn andY1, . . . , Ym, taken from the distributionsP andQ respectively,
and the problem is to decide whether it is reasonable to assume thatP = Q.
Thus, the null hypothesisH0 is now P = Q, while the alternative hypothesis
HA is P 6= Q. Denoting byFn andGm the respective empirical distributions
obtained from each sample, the proposed statistic for this problem was

Dn,m := sup
t∈R

∣
∣Fn(t) − Gm(t)

∣
∣.

The properties ofDn,m are very similar to those ofDn. In particular, under the
null hypothesis, ifP (and henceQ) is continuous, thenDn,m is distribution-free.
Moreover,

lim
min(n,m)→∞

ν

(√
mn

m + n
Dn,m ≤ t

)
= 1 − 2

∞∑

k=1

(−1)k+1e−2k2t2
(t > 0).

Turning now to higher dimensions, to the best of our knowledge there are
still no satisfactory extensions of the Kolmogorov–Smirnov tests, even for two-
dimensional data. All proposals fail on at least one of the following two counts:
(i) being independent of a reference basis on the space, i.e. equivariant with
respect to orthogonal transformations, and/or (ii) being distribution-free. One of
the main problems in constructing a distribution-free test in higher dimensions
is to define appropriate correlates of the rank statistics in order to obtain the
analogue ofFn, the empirical distribution function. (Recall that, given distinct
real numbersx1, . . . , xn, the rankRi of xi is the place thatxi occupies in the
ordered vectorx(1) < . . . < x(n) obtained by ordering the original vector, i.e.
xi = x(Ri ).)
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The results in this section will provide goodness-of-fit tests for random el-
ements taking values in a separable Hilbert spaceH. In particular, this will
provide goodness-of-fit tests for stochastic processes. As far as we know, this is
the first such proposal in this setting. The problem that we shall analyze is the
following: Let PX denote the common probability law of the random elements
X1, . . . , Xn in H. Given a probability measureP0 onH, provide a procedure
to decide when the data call into question the null hypothesisH0 : PX = P0 in
favor of the alternativeHA : PX 6= P0.

The procedure we propose consists of (i) to choose a random directionh in
H, according to a non-degenerate gaussian lawμ onH, and then (ii) to apply
the standard Kolmogorov–Smirnov test to the orthogonal projections of the data
onto the one-dimensional subspace spanned byh. Thus, according to (2), we
compute the statistic

Dn(h) := sup
t∈R

∣
∣Fh

n (t) − Fh
0 (t)

∣
∣, (3)

where now

Fh
0 (t) := P0

{
x ∈ H : 〈x, h〉 ≤ t

}
and

Fh
n (t) :=

1

n

n∑

i =1

I(−∞,t](〈Xi , h〉) (t ∈ R),

and reject the null hypothesis whenDn(h) is large enough.
The properties of the proposed procedure are summarized in the following

theorem. We shall say thatP is continuousif each of its one-dimensional pro-
jections is continuous. This is equivalent to demanding that every closed affine
hyperplane inH be of P-measure zero.

Theorem 3.1.Let{Xn}n≥1 be a sequence of independent, identically distributed
random elements, defined on the probability space(�,A, ν), and taking values
in a separable Hilbert spaceH. Let P0 be a probability measure onH. Given
h ∈ H andn ≥ 1, defineDn(h) as in(3).

(a) Suppose that the common distribution of{Xn}n≥1 is P0. Suppose also that
P0 is continuous. Then, for allh ∈ H \ {0} and all n ≥ 1, the statistic
Dn(h) has the same distribution asDn. In particular, this distribution is
independent ofh, and

lim
n→∞

ν
(√

nDn(h) ≤ t
)

= 1 − 2
∞∑

k=1

(−1)k+1e−2k2t2
(t > 0).
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(b) Suppose that the common distribution of{Xn}n≥1 is Q 6= P0. Sup-
pose also thatP0 is determined by its moments. Then, given any non-
degenerate gaussian measureμ onH, for μ-almost allh ∈ H we have

ν
(

lim inf
n→∞

Dn(h) > 0
)

= 1.

Part (a) of the theorem tells us how, given a levelα, we can findcα,n (indepen-
dent ofh) such that, under the null hypothesis,

ν(Dn(h) > cα,n) = α,

thereby providing anα-level conditional test. Part (b) of the theorem says that
the test is consistent against every possible alternative.

Proof Theorem 3.1.

(a) If the common distribution of{Xn}n≥1 is P0, then the common distribution
function of the real random variables{〈Xn, h〉}n≥1 is justFh

0 , which is con-
tinuous. Also, the empirical distribution function of〈X1, h〉, . . . , 〈Xn, h〉
is exactlyFh

n . Therefore this part follows by the standard properties of the
one-dimensional Kolmogorov–Smirnov test.

(b) By Theorem 2.8, ifQ 6= P0, then, forμ-almost allh ∈ H, there exists
th ∈ R such that

P0
{
x ∈ H : 〈x, h〉 ≤ th

}
6= Q

{
x ∈ H : 〈x, h〉 ≤ th

}
.

Let δh be the absolute value of the difference. Then, using the triangle
inequality,

Dn(h) ≥
∣
∣Fh

n (th) − Fh
0 (th)

∣
∣ ≥ δh −

∣
∣Fh

n (th) − Gh(th)
∣
∣,

whereGh(t) := Q {x ∈ H : 〈x, h〉 ≤ t}. By the strong law of large num-
bers,Fh

n (th) → Gh(th) ν-almost surely. The result follows. �

We remark that our aim is to provide a so-called ‘universal’ test, namely a test
valid in any context, rather than trying to be optimal in a particular setting. In
fact, in some of the simulations that we shall present later, we shall restrict the
alternative to a particular parametric family, and it is well known that, against this
restricted alternative, there are more powerful tests. The problem is that these
tests are not, in general, consistent against every possible alternative, whereas
our proposed procedure is. This point will be taken up again later.
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In practice, for a given problem, instead of taking just one random direction,
we can choose a finite set of directionsh1, . . . , hk at random, and then consider as
statisticDk

n := max1≤i ≤k Dn(hi ), the maximum of the projected one-dimensional
Kolmogorov–Smirnov statistics over thek directions. The asymptotic distribu-
tion of this statistic is easy to derive. A drawback of this approach is that we
lose the distribution-free property, since the distribution ofDk

n will depend on
the covariance function of the underlying distributionPX.

On the other hand, if the sample size is large, then we can still obtain a
distribution-free statistic as follows. Split the sample intok subsamples,

{
Xm1, . . . , Xmni

}
, i = 1, . . . , k ,

selectk independent directions{h1, . . . , hk} at random, then, for eachi =
1, . . . , k, compute the one-dimensional Kolmogorov–Smirnov statistic of the
projection of the subsample

{
Xm1, . . . , Xmni

}
on the direction given byhi , and,

finally, compute the maximum of these quantities. The distribution of the statistic
thereby obtained is just that of the maximum ofk independent one-dimensional
Kolmogorov–Smirnov random variables, and is therefore still distribution-free.
However, it should be remarked that in general this procedure entails a loss of
power, which is not good statistical behavior.

As we can see, the random projection method serves to reduce the problem
so we can apply univariate goodness-of-fit tests to the projected data. Once the
data are projected, we can use not only the Kolmogorov–Smirnov test, but any
other univariate goodness-of-fit test. In particular, for mixtures of stochastic
processes, a modified Kolmogorov–Smirnov test like that proposed by [13] can
be applied. The test will remain distribution-free, as long as the univariate test
applied to the projected data has this property.

The two-sample problem can be treated in a very similar way. Let us assume
that our data are independent, identically distributed realizations{X1, . . . , Xn},
{Y1, . . . , Ym} of two random processes taking values in the separable Hilbert
spaceH. Let PX andPY stand for the common probability laws of the random
elementsXi and Yj , respectively. A goodness-of-fit test for the two-sample
problem in this context will be a procedure to decide between the null hypothesis
H0 : PX = PY and the alternativeHA : PX 6= PY, based on{X1, . . . , Xn} and
{Y1, . . . , Ym}.

As in the one-sample case, we propose the following procedure: first choose a
random directionh ∈ H, according to the gaussian measureμ, and then calculate
the following statistic:

Dn,m(h) := sup
t∈R

∣
∣Fh

n (t) − Gh
m(t)

∣
∣,

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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where

Fh
n (t) :=

1

n

n∑

i =1

I(−∞,t](〈Xi , h〉) and Gh
m(t) :=

1

m

m∑

j =1

I(−∞,t](〈Yj , h〉),

rejecting the null hypothesis ifDn,m(h) is large enough. Under the null hypothe-
sis, the asymptotic distribution of(mn)1/2(m + n)−1/2Dn,m(h) as min(n, m) →
∞ is the same as for the one-sample problem.

The possibility of handling the maximum deviation on a finite set of directions
can be treated similarly in this case to that of the one-sample problem.

4 Simulations

In this section we present some simulations to show how the proposed tests
work in practice. We consider the one-sample and the two-sample problems and
we also analyze how using more than one random projection can contribute to
increasing the power of the procedure. In all the examples we takeH = L2[0, 1].
In the two-sample case we consider only one random projection. There are two
reasons for this. Firstly the effect of taking more than one projection is similar
to that obtained in the one sample case. Secondly, the computational burden
increases strongly if more than one projection is handled because in this case the
projected test is not distribution-free and the rejection region must be computed
via simulations (see Subsection 4.2).

As mentioned in the Introduction, our aim in this section is to give an idea
about how the results in the previous sections can be applied to obtain sound
statistical procedures. We have not tried here to optimize them.

4.1 One-sample case. One random projection

In this section we assume that we have a random sampleX1, . . . , Xn of tra-
jectories inL2[0, 1] and we want to test the null hypothesis that its underlying
distribution (the one which produced the data) is that of the standard Brownian
motionW on[0, 1]. To symplify the computations, the random direction will be
chosen takingμ also to be the distribution of standard Brownian motion.

The proposed procedure only requires us to consider the scalar products
〈Xi , h〉, and it happens that, under the null hypothesis, the distribution of these
real random variables isN(0, σ 2(h)), where

σ 2(h) :=
∫ 1

0

∫ 1

0
min(s, t)h(s)h(t) ds dt.
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Therefore, under the null hypothesis, our procedure is equivalent to the Kolmo-
gorov–Smirnov goodness-of-fit test applied to determine if a one-dimensional
sample comes from theN(0, σ 2(h)) distribution.

To analize the behavior of our test under the alternative, we generate samples
from some rescaled and shifted Brownian processesS(t) := sW(t) + f (t),
wheres 6= 0. In this case, the distribution of〈S, h〉 is also normal, with variance
s2σ 2(h), and mean

μ(h) :=
∫ 1

0
f (t)h(t) dt.

Therefore, in some sense, the quality of the proposed procedure depends on the
difference betweenμ(h) and zero, on that betweens and 1, and, of course, on
the capacity of the Kolmogorov–Smirnov test to detect them.

We will takes = .5, .75, 1, 1.5, 2. Whens 6= 1, we will take f (t) = 0. When
s = 1 we will consider f (t) = δt for δ = 0, .25, .5, 1 and f (t) = sin(π t). If
s = 1 andδ = 0, then the samples are generated by a standard Brownian motion
and, therefore we are under the null hypothesis. This case is included to verify
that the procedure provides the right level values under the null hypothesis.

Let us focus now on the cases = 1 and f (t) = δt , with δ 6= 0. For this family
of alternatives, the problem could also be handled by testing the null hypothesis
H0: ‘the distribution ofS(1) is N(0, 1)’, againstHA: ‘the distribution ofS(1) is
N(δ, 1) for someδ 6= 0’. We can do this test performing the well-known Normal
test for the mean of a normal distribution when the variance is known. Moreover,
Prof. Barrio [2] kindly informed us that, by employing Girsanov’s Theorem, it
is possible to show that this test is uniformly most powerful against this family
of alternatives, thus providing a gold standard for comparisons when handling
this family of alternatives. However, this test would be useless in detecting
alternatives such as the distribution ofS(1) is standard Normal.

Notice that the distribution under the null hypothesis is continuous. Thus,
the projected test is distribution-free and the rejection region can be computed
directly with the Kolmogorov-Smirnov test.

Concerning the simulations, we assume that the trajectories in the sample are
observed on the equally spaced points 0= t0 < . . . < t100 = 1. This allows us
to generate the standard Brownian motion from a discrete version which exploits
the independent-increments property, i.e. we start at 0 at time zero, and define
iteratively the value at the next time by adding an independentN(0, 1/100)
variable.

We have applied our procedure and the standard Normal test described above
to 5000 random samples with sizes 30, 50, 100 and 200. The results are reported
in Table 4.1.
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s = 1, f (t) = δt s = 1 f (t) = 0

Size withδ = f (t) = ands =

0 .25 .5 1 sin(π t) .5 .75 1.5 2

30 rejections K Sp .050 .176 .509 .934 .903 .444 .063 .234 .598

N1 .048 .288 .780 .999 .052 0 .006 .186 .328

average K Sp .516 .364 .152 .024 .035 .087 .382 .239 .077

N1 .496 .269 .052 0 .490 .704 .595 .373 .294

50 rejections K Sp .052 .258 .726 .959 .938 .848 .099 .369 .861

N1 .053 .437 .940 1 .052 0 .008 .184 .326

average K Sp .515 .294 .076 .016 .023 .026 .300 .154 .024

N1 .498 .188 .012 0 .506 .707 .596 .372 .292

100 rejections K Sp .049 .455 .911 .976 .957 .999 .264 .678 .996

N1 .049 .697 1 1 .054 0 .009 .184 .329

average K Sp .504 .180 .029 .010 .017 .002 .166 .055 .002

N1 .502 .075 0 0 .490 .703 .599 .380 .290

200 rejections K Sp .046 .709 .965 .981 .970 1 .642 .966 1

N1 .051 .939 1 1 .051 0 .009 .194 .332

average K Sp .497 .081 .015 .008 .012 0 .057 .008 0

N1 .503 .013 0 0 .499 .706 .590 .368 .289

Table 4.1: Application of proposed procedure to the Brownian process
S(t) = sW(t)+ f (t). The null hypothesis is the standard Brownian motion (i.e.f (t) = 0
ands = 1). As alternative hypotheses we takes = 1 and f (t) = δt, δ = 0.25, 0.5, 1
or f (t) = sin(π t) and f (t) = 0 ands = .5, .75, 1.5, 2. Samples sizes are 30, 50, 100
and 200.K Spdenotes the proposed test whileN1 stands for the standard Normal test
applied at S(1). ‘Rejections’ denotes the proportion of rejections of the null hypothesis
over 5000 trials. ‘average’ is the average of thep-values over these replications.

The columnδ = 0 corresponds to the behavior under the null hypothesis of a
test at the levelα = 0.05. The remaining columns correspond to the behavior
under different alternatives. We have chosen two parameters to measure the
behavior of both tests: the ‘rate of rejections’ and the ‘averagep-value’, which
we now explain.

Recall that, for each random sample, the proposed procedure consists of select-
ing, at random,h ∈ H, and then computing the probability that the Kolmogorov-
Smirnov statisticDn takes a value greater than the observed value ofDn(h). We
call this probability thep-value, and reject the null hypothesis if thep-value is
less than 0.05. Otherwise we accept the null hypothesis. The Normal test works
similarly. The averagep-value is simply the mean of the observedp-values. An
optimal procedure should provide averages close to 0.5 if the null hypothesis
holds, and close to 0 under the alternative.

Bull Braz Math Soc, Vol. 37, N. 4, 2006



“main” — 2006/11/22 — 14:34 — page 15 — #15

RANDOM PROJECTIONS AND GOODNESS-OF-FIT TESTS 15

The rate of rejections is the proportion of times in which the procedure rejects
the null hypothesis. Thus, this parameter should be close to 0.05 under the null
hypothesis. Under the alternative, the bigger this parameter is, the better. This
rate is an estimate of the power of the test under the simulated conditions.

We can summarize the results in Table 4.1 as follows. The proposed test
performs well under the null hypothesis,δ = 0. When we have a linear shift, the
test performs clearly worse than the Normal test. The loss of power is around
40% in the worst case (δ = .25 and sample size equal to 50), becoming less if
we increaseδ or the sample size. Roughly speaking, we can say that we have
a loss of efficiency around 50% because we need to double the sample size in
order to get a performance similar as to the Normal test.

On the other hand, if we change the alternative and we consider a sinusoidal
shift, as expected, the Normal test becomes useless (with the same performance
as under the null hypothesis) while the projected test works remarkably well.

Finally, in all the cases in which there is no shift but we change the variance,
the random procedure clearly outperforms the Normal test. In those cases, the
projected process is a zero-mean (real) random variable with variances2σ 2(h).
However, it happens that the Normal test depends on the absolute value of the
sample mean of the values att = 1. This value is compared with the correspond-
ing one if the sample were produced from a standard normal distribution. When
s < 1, it is expected the observed difference be less than the corresponding one
under the null hypothesis. The expected difference increases withsand becomes
larger than the target whens > 1. This explains the increase (decrease) observed
in the rejections-rows (average-rows) for the Normal test. On the other hand,
the projected test behaves more reasonably detecting more easily the alternative
when the difference betweens and 1 increases.

Let us pay some attention to the loss of power in the models with linear
drift. It can be due to two facts: the loss of information caused by considering
just an one-dimensional projection, and the loss of power due to employing the
Kolmogorov-Smirnov test.

In order to separate these factors, we have done the following. First we have
applied the Kolmogorov-Smirnov test to the sample composed of the values at
t = 1 to test the null hypothesis that those values come from a standard Normal
distribution. On the other hand, as previously stated, under the null hypothesis,
the projections are a random sample taken from theN(0, σ 2(h)) distribution and
we can check this applying the Normal test to the projections.

The results appear in Table 4.2, where we have denoted byK SpandN p the
Kolmogorov-Smirnov and Normal tests applied to the projections, andK S1 and
N1 the Kolmogorov-Smirnov and Normal tests applied to the values att = 1.
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rejections average
Size δ K Sp N p K S1 N1 K Sp N p K S1 N1
30 0 .051 .052 .054 .050 .506 .499 .510 .500

.25 .175 .221 .227 .282 .361 .324 .318 .276
.5 .510 .626 .650 .779 .153 .111 .089 .051
1 .939 .958 .997 1 .023 .017 .001 0

50 0 .049 .044 .050 .046 .508 .503 .515 .501
.25 .252 .325 .318 .416 .301 .254 .249 .195
.5 .721 .824 .870 .941 .077 .052 .028 .012
1 .965 .971 1 1 .013 .011 0 0

100 0 .050 .053 .052 .052 .507 .505 .503 .494
.25 .448 .562 .584 .708 .176 .134 .114 .074
.5 .916 .946 .994 .999 .027 .019 .002 0
1 .978 .981 1 1 .008 .007 0 0

200 0 .048 .048 .052 .053 .508 .499 .501 .497
.25 .720 .814 .865 .941 .078 .055 .029 .013
.5 .964 .971 1 1 .013 .011 0 0
1 .984 .985 1 1 .007 .007 0 0

Table 4.2: Application of proposed procedure to the Brownian process
S(t) = W(t) + δt . The null hypothesis is the standard Brownian motion (i.e.δ = 0).
As alternative hypotheses we takeδ = 0.25, 0.5, 1. Samples sizes are 30, 50, 100 and
200. K Spdenotes the proposed test,N p stands for the standard Normal test applied to
the projections,K S1 andN1 are the Kolmogorov-Smirnov and Normal tests applied to
the sample of values at 1. ’Rejections’ denotes for the proportion of rejections of the
null hypothesis along 5000 trials. ’average’ is the average of thep-values along those
trials.

Differences observed between the values shown in Table 4.2 and the corre-
sponding ones in Table 4.1 are due to the randomness of the experiments.

Roughly speaking again, the results obtained withN p are only a little bit
worse than those obtained withK S1, thus suggesting that the loss of power
due to taking a random projection are similar to that observed when using the
Kolmogorov-Smirnov test against the optimal one for the family of alternatives
under consideration.

We can summarize our point of view saying that the behavior of the projected
test is quite encouraging, because the observed loss of power with respect to the
optimal test in the case of linear shifts is outweighed by the gain we achieve in
the remaining cases.
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4.2 One-sample case. More than one random projection

The goal of this sub-section is to show how the consideration of more than one
projection leads to an increase of the power of the test, or, in other words, to
increase the number of rejections under the alternative. As in Subsection 4.1,
under the null hypothesis we will assume that the distribution which produced
the sample is of standard Brownian motion. We will analyze the power of the
projected tests only for alternatives of a standard Brownian motion with a linear
drift because as stated in Subsection 4.1, in this case we know the maximum
attainable power.

We will use the statisticDk
n introduced in Section 3 for this problem. Thus,

givenk ∈ N and a random sampleX1, . . . , Xn of trajectories, we have to choose
at randomk vectorsh1, . . . , hk ∈ H using a non-degenerate gaussian lawμ

onH, then compute the projections of the sample on thek one-dimensional
subspaces which these vectors span, compute the Kolmogorov-Smirnov statistic
in all of them and then take the maximum of these values.

As in Subsection 4.1, we will takeμ to be the distribution of standard Brownian
motion. We have takenk = 1, 2, 3, 5, 10 and 25. As for the sample size, we
have chosen the worst case obtained in that subsection. Thus, we have fixed the
sample size atn = 50.

The statisticDk
n is not distribution-free ifk > 1, its distribution depend-

ing on the vectors chosen and on the distribution we are considering under the
null hypothesis. However, it is easy to simulate this distribution because, once
the vectors have been chosen, we only need fixB ∈ N and, then, repeat for
b = 1, . . . , B the following: producen trajectoriesWb

1 , . . . , Wb
n with standard

Brownian–motion distribution and compute for each one the value of the statistic
Dk

n. In this way we obtain a random sample, with sizeB, of the distribution ofDk
n

under the null hypothesis. Let us denote these values byDk,b
n , b = 1, . . . , B. By

the Glivenko-Cantelli theorem, ifB is large enough, the empirical distribution
based on these values is close to the distribution ofDk

n under the null hypothesis,
and, in consequence, we can reject the null hypothesis if the value we obtained
for this statistic lies in the upper 5% of the sorted sample.

This procedure is theoretically simple but computationally very expensive. To
understand this, it is enough to say that whereas repeating one of the previous
simulations 5000 times took about 12 minutes, to complete 1000 repetitions of
this procedure on the same computer took about 16 hours. This is the reason that
in this case we only include the values for 1000 trials.

The procedure to simulate the discrete approximation of the trajectories is
the same as in Section 4.1. The results are reported in Table 4.3. They show
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that taking more than one projection increases the power of the proposed test.
However, this increase is not spectacular and a greater increase is obtained when
going fromk = 1 to k = 2 projections. Further down the table, the increases
are not so big and, it seems that going fromk = 10 tok = 25 even decreases
the power.

The way to choose an optimal number of random directions remains an open
problem. This limited simulation suggests that if we weigh the slim increase
in rejections against the big increase in computational burden, it seems that it
is not worth taking more than one projection. However, this issue deserves
more research in order to figure out if this behavior depends on the specific
characteristics of the particular problem considered in the simulation, or if it
also appears in other situations.

δ = 0 δ = .25 δ = .5 δ = 1
Dk

n N pk Dk
n N pk Dk

n N pk Dk
n N pk

k = 1 .057 .057 .261 .317 .730 .849 .965 .969
k = 2 .054 .057 .270 .326 .777 .902 .998 .999
k = 3 .061 .054 .273 .325 .783 .903 .999 1
k = 5 .066 .059 .278 .321 .784 .899 .999 1
k = 10 .066 .059 .285 .316 .795 .896 .999 1
k = 25 .064 .060 .273 .320 .796 .881 .999 1

N1 .053 .437 .940 1

Table 4.3: Application of proposed procedure to the Brownian process
S(t) = W(t)+δt . The null hypothesis is the standard Brownian motion (i.e.δ = 0). As
alternative hypotheses we takeδ = 0.25, 0.5, 1. Samples size is fixed at 50. Columns
Dk

n (respectively,N pk) show the results obtained to apply the test based onDk
n (the nor-

mal test) to thek projections fork = 1, 2, 3, 5, 10. Last row shows the results obtained
with the standard normal test applied to the valuesS(1). The table shows proportion of
rejections along 1000 repetitions excepting for the Normal test where we reproduce the
values shown in Table 4.1.

4.3 Two-sample. One random projection

In our next example we consider the two-sample problem. To this end, we have
selected some diffusions. Those processes are used very often to represent asset
prices because of their nice properties (see, for instance [16]). A diffusion is a
solution of the stochastic differential equation

d Xt = b(t, Xt)dt + σ(t, Xt)dWt , (4)
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whereWt , t ∈ T, is a standard Brownian motion andT ⊂ R is an interval. Here,
we will takeT = [0, 1]. For suitable selections ofb (usually called drift) andσ
(the volatility), the solution of the equation (4) belongs toL2(T) and, therefore,
our theory is applicable.

In particular, the model (4) includes the standard Brownian motion and, if
we takeb(t, Xt) constant, we obtain the Brownian motions with linear drift we
treated in Subsections 4.1 and 4.2.

To perform the simulations, we obtained the values forXt at the pointsti =
i /N, i = 0, . . . , N, where we choseN = 100. Thus, we fixedX0 = 0, and for
everyi ≥ 1, we define

Xi +1 = Xi + b(ti , Xti )
1

N
+ σ(ti , Xti )Zi (5)

where{Zi , i = 1, . . . , N} are independent and identically distributed random
variables with centered gaussian distribution with varianceN−1. However, in
those cases in whichσ(ti , 0) = 0, we have employed formula (5) only fori ≥ 2,
replacingσ(t0, Xt0) by 1 to simulateXt1, because, otherwise we would have
obtained a constant zero trajectory.

Simulations were performed fixing the sample size at 100. We performed
5000 trials for every combination of the selected drifts and volatilities. For the
reasons we mentioned in Subsection 4.2, we selected just one random direction
to project. The results appear in Table 4.4, where we present the proportion of
rejections of the hypothesis that both samples come from the same distribution
and, also, the mean of thep-values we obtained over the 5000 trials.

We consider the results obtained very promising, because in most cases we
obtain quite high rejection rates.

We were surprised by the fact that values in the main diagonal in Table 4.4
are a bit biased. One would expect the proportion of rejections to be around .05,
and all of them (except one which is .049) are above this quantity. Moreover,
the mean of thep-values should be .500 and all of them are above this quantity.
After analyzing the situation, we consider that the most probable explanation
for it is the approximation which MatLab uses for the exact distribution of the
two-sample Kolmogorov-Smirnov statistic. We consider that this does not affect
substantially the results obtained.

5 An application: Analysis of spectrograms

Proteomics, broadly speaking, is a recently developed family of procedures al-
lowing researchers to analyze proteins. Some of these techniques allows one to
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σ(t, Xt ) = 1 andb(t, Xt ) = b(t, Xt ) = 0 andσ(t, Xt ) =
0 t Xt sin(π t) sin(π Xt ) 2 t Xt sin(π t) sin(π Xt )

(A.1) (A.2) (A.3) (A.4) (A.5) (B.1) (B.2) (B.3) (B.4) (B.5)

(A.1) reject .058

aver .518

(A.2) reject .503 .058

aver .176 .522

(A.3) reject .346 .660 .049

aver .181 .095 .520

. (A.4) reject .887 .346 .886 .054

aver .039 .247 .038 .526

(A.5) reject .434 .755 .181 .923 .055

aver .163 .062 .259 .025 .517

(B.1) reject .871 .932 .204 .979 .676 .052

aver .026 .015 .295 .058 .058 .511

(B.2) reject .952 .997 .995 .997 .976 1 .050

aver .012 .001 .001 .001 .005 0 .529

(B.3) reject 1 1 1 1 1 1 .920 .054

aver 0 0 0 0 0 0 .026 .525

(B.4) reject .293 .830 .902 .984 .894 .997 .743 .995 .056

aver .221 .039 .024 .005 .037 .002 .061 .001 .518

(B.5) reject 1 1 1 1 1 1 .994 854 .999 .053

aver 0 0 0 0 0 0 .001 051 0 .527

Table 4.4:Application of the two sample procedure to two diffusions solvingd Xt =
b(t, xt )dt + σ(t, Xt )dWt for several values ofb andσ . The null hypothesis is that both
distributions coincide. Sample size is fixed at 100. Table shows proportion of rejections
along 5000 repetitions as well as the mean value of the obtainedp-values. Key in rows
refers to the corresponding case in columns: ‘reject’ stands for proportion of rejections
and ‘aver’ for the mean of thep-values.

separate mixtures of complex molecules according to their rate mass/charge. A
spectrogram is a curve showing the number of molecules (or fragments) found
for every mass/charge ratio. Thus, molecules with the same mass/charge ratio
are indistinguishable by a spectrogram. Taking into account that, in principle,
the ratios can take every positive value, a spectrogram is aN-valued map defined
onR+.

The idea behind the application of the spectrograms is that, when a cancer
starts to grow, its cells produce a different kind of proteins than those produced
by healthy cells. Moreover, the amount of commonly produced proteins may be
different. Figure 1 shows spectrograms of a healthy woman (right-hand graph)
and of a woman suffering from ovarian-cancer (left-hand graph). In this case, the
observation interval was[699.99, 12000]; i.e., the spectrograms, instead of being
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defined onR+, are defined on this interval. However, in the measurement process,
some discretization is required and, at the end, the obtained data belonged to the
spaceR373401. Two modifications have been done on the original data before
to start our analysis. First, they were normalized to take values between 0 and
1. The value 0 already was observed in every women. Thus, the modification
consisted just in dividing every trajectory by its maximum. Then, in order to
lower the computational requirements, we reduced the data to be defined on
R14936 by adding together the proteins found in the first 25 coordinates, then
the proteins found in the following 25 coordinates,. . . The last coordinate was
rejected.

Figure 1: Spectrograms of a healthy woman(left-hand graph) and of a woman
suffering from ovarian cancer (right-hand graph).

More details on spectrograms and statistically related aspects of their analysis,
can be found in the December 2003 issue ofChance, (see [3]). The same data
we are studying here were analyzed from the classification point of view in [1]
and [4].

The analysis we have carried out here has been the following. As stated in
the introduction, the data are 216 spectrograms. 95 of them corresponding to
healthy women and 121 to women suffering from ovarian cancer.

A possibility which we must reject from the outset is that the data contains so
great a variability that, if we take two samples at random, then the null hypothesis
of being produced from a common distribution is rejected. We mean that, it
should not happen that, if we take two disjoint groups of healthy women, or two
disjoint groups of cancer-suffering women, then the null hypothesis of being
produced from a common distribution is rejected. Once this step is fixed, we
can safely assume that the spectrogram from the healthy women (respectively,
cancer-suffering women) are a random sample of an unknown distribution and
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we can test the null hypothesis that both distributions coincide. According to the
theory exposed above, this null hypothesis should be rejected.

In order to check these hypothesis, we did the following. We split the healthy
women into two groups at random, the first one with 48 members and the second
one with 47. These groups are called Healthy1 and Healthy2. Then we split,
also at random, the ill women into a group with 61 women, called Cancer1, and a
second one with 60, the group Cancer2. Finally, we chose, using the distribution
of a standard Brownian motion, a vectorh ∈ L2[0, 1] at random (to be precise,
the approximation to such a vector employing the pointsti = i /N, i = 0, . . . , N
whereN = 14936), we have computed the projections and we have checked the
following series of null hypotheses

H1
0 : the distributions which generated samples in groups Healthy1

and Healthy2 coincide

H2
0 : the distributions which generated samples in groups Healthy1

and Cancer1 coincide

H3
0 : the distributions which generated samples in groups Healthy1

and Cancer2 coincide

H4
0 : the distributions which generated samples in groups Healthy2

and Cancer1 coincide

H5
0 : the distributions which generated samples in groups Healthy2

and Cancer2 coincide

H6
0 : the distributions which generated samples in groups Cancer1

and Cancer2 coincide.

We repeated this procedure 1000 times. According to the theory, the hypothe-
sesH1

0 andH6
0 should be rejected around 5% of the time, and the mean of the

p-values should be around 0.500. Moreover, the remaining hypotheses should
be rejected a high proportion of times and the mean of thep values should be
very low.

These results are shown in Table 5.1, and, roughly speaking, they coincide
with what we expect.
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Healthy1 Healthy2 Cancer1
Healthy2 .048

(.525)
Cancer1 .958 .954

(.015) (.015)
Cancer2 .951 .952 .045

(.013) (.013) (.512)

Table 5.1: Application of the two sample procedure to check, first, the homogene-
ity of the spectrograms from healthy (respectively cancer-suffering) women, and, then,
whether the distributions which generated the spectrograms of healthy and cancer suf-
fering women coincide. In every cell it is checked the hypothesis that the distribution
which generated the spectrograms in the groups which determine it coincide. Table
shows proportion of rejections as well as, in parenthesis, the mean ofp-values over
1000 trials in which both populations were split, at random, in two groups.
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