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Abstract Depths are used to attempt to order the points of a multidimen-
sional or infinite dimensional set from the “center of the set” to the “outer of
it”. There are few definitions of depth which are valid in the functional case.
One of them is the so-called random Tukey depth, which is based on some ran-
domly chosen one-dimensional projections and thus varies (randomly) from
computation to computation. Some theoretical properties of this depth are
well-known, but it has not yet been studied from a practical point of view.
The aim of this paper is to analyze its behavior in classification problems, the
interest of this study being increased by the random character of the depth.
To do this, we compare the performance of the random Tukey depth in a real
data set with the results obtained with the López-Pintado and Romo depths.

1 Introduction

Given a probability P defined in a multidimensional or infinite-dimensional
space X , a depth attempts to order the points in X from the “center (of
P )” to the “outer (of P )”. Obviously, this problem includes data sets if we
consider P as the empirical distribution associated to the data set at hand.

In the multidimensional setting, the first definition of depth was estab-
lished by Mahalanobis (in [12]). This definition is based on the well known
Mahalanobis distance. If µ and Σ are, respectively, the mean and covariance
matrix of P , then, the Mahalanobis depth of x with respect to P is

DH(x, P ) :=
1

1 + (x− µ)tΣ−1(x− µ)
, x ∈ Rp.
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From this starting point, subsequent definitions of depth (see [9]) clarified
that depths as well as having some robustness properties, are a highly flexi-
ble tool for handling nonparametrically statistical problems involving testing,
classification, descriptive statistics,... This, in turn, has led to the study of the
possibility of introducing depths in the functional setting. However, most of
the known multidimensional depths cannot be generalized to the functional
case because the dimension of the space under consideration plays a key role
in them, or alternatively, because of the associated computational difficul-
ties. For instance, the computation of the Tukey depth (a precise definition
appears in (1)) is unfeasible for dimensions as low as eight if the sample size
is only 100.

As far as we know, some definitions of depth valid for functional spaces
have been proposed in [5], [6], [7] and [11]. In this paper, we are particularly
interested in the so-called random Tukey depth which was studied in [3, 4]
because these papers leave some practical issues open. Our goal here is to
make a first attempt to show how these gaps can be filled when handling
classification problems.

Let us begin with some definitions. Apart from its lack of robustness,
the Mahalanobis depth has some flaws: it is not defined if the mean or the
covariance matrix does not exist and it treats P as symmetric (because points
at the same Mahalanobis distance from the mean have the same depth). A
reasonable way to overcome these problems in the one dimensional case could
be to define the depth of the point x with respect to P by

D1(x, P ) := min{P (−∞, x], P [x,∞)}

which is a monotone transformation of the Mahalanobis depth if µ and Σ
exist and P is symmetric, thus providing the same order of the points.

The Tukey depth was introduced in [16] and can be defined as follows. Let
P be a probability on Rp and v ∈ Rp. If Πv denotes the projection on the one-
dimensional subspace generated by v and Pv the one-dimensional marginal
of P on the same subspace, then, the Tukey depth of x with respect to P is

DT (x, P ) := inf{D1(Πv(x), P v) : v ∈ Rp}. (1)

The computational problems we mentioned above, led the authors of [3]
to introduce the random Tukey depth, which is a random approximation of
the Tukey depth. In [3], the following generalization to Hilbert spaces was
proposed:

Definition 1. Let X be a separable Hilbert space, P be a probability distri-
bution on X , ν be a Gaussian distribution with non-degenerated marginals
on X and v1, ..., vk be i.i.d. random vectors with distribution ν. The random
Tukey depth of x ∈ X with respect to P based on k random vectors chosen
with ν is
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DT,k,ν(x, P ) := min{D1(Πvi
(x), P vi

) : i = 1, ..., k}.

The random Tukey depth was used in [3], in the finite dimensional case,
to handle several classification and testing problems and, in addition, it was
shown there that this depth has some useful properties in the infinite and
finite cases. In particular, it was shown that in the infinite dimensional case, it
satisfies most of the requirements of the definition stated in [8] and formalized
in [17] for a statistical depth.

However, in [3] nothing is said about the influence that the selection of ν
and k might have in practice. The aim of this paper is to make a preliminary
analysis of these issues from the point of view of a classification problem, and,
at the same time, to compare the results obtained with the random Tukey
depth with those provided in [10] with the depths proposed in [11].

The situation we have chosen to carry out this comparison is the supervised
classification problem which was carried out in [10]. In this paper, the authors
analyze a data set consisting of the growth curves of a sample of 39 boys and
54 girls, the aim being to classify them, by sex, using just this information.
We represent the data in Figure 1.

0 2 4 6 8 10 12 14 16 18
60

80

100

120

140

160

180

200

Age in years

H
ei

gh
t i

n 
ce

nt
im

et
er

s 
of

 g
irl

s

0 2 4 6 8 10 12 14 16 18
60

80

100

120

140

160

180

200

Age in years

H
ei

gh
t i

n 
ce

nt
im

et
er

s 
of

 b
oy

s

Fig. 1 Growth curves of 54 girls (left-hand side) and 39 boys (right-hand side) measured
31 times each between 1 and 18 years of age.

Heights were measured in centimeters 31 times in the period from one
to eighteen years. In the period from one to two years, the measures
were taken every three months, in the period from three to seven years
one time a year and, finally, in the period from eight to eighteen years
two times a year. The data are in the file growth.zip, downloaded from
ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab. On this web-page,
some notes that make use of the data can also be found. These notes were
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designed to accompany the books [13, 14]. In addition, these data are used
in the recent book [15].

It is well-known that when handling this kind of data, it is useful to con-
sider not only the growth curve but also accelerations of height (see, for
instance, [13]). However, we only consider here the growth curves, as did
[10], because our interest lies in comparing our results with those obtained
by them.

It should be noted that the distribution ν which appears in Definition
1 does not need to be Gaussian. In fact, as shown in [1], any dissipative
distribution works here. Thus, in the finite dimensional case, the uniform
distribution on the unit sphere may be enough. Regrettably, in the functional
setting, there is no distribution like this which can be taken as a reference.
Although some papers have already appeared using random projections (in
the finite and in the infinite dimensional cases), as far as we know, except for
a small comment in [2] in the finite dimensional case, none of them has paid
attention to the problem of the precise selection of ν.

A preliminary step in addressing this question is given in Section 2, where
we also comment on the selection of the number of vectors used in the defini-
tion of the random Tukey depth. Then, in Section 3 we compare the results
obtained with the random Tukey depth with those obtained in [10].

2 Distribution and number of vectors for the random
Tukey depth in practice

In order to analyze the effect of the selection of ν in the random Tukey depth
in classification problems, the idea is to analyze the same data using two
strategies: firstly, one that does not admit variations in ν, i.e. ν is a fixed
distribution. Secondly, one that selects ν from a parametric family of distri-
butions, thus making it possible to chose the parameters which determine ν
in a data-dependent way.

The parametric family we handle has two real parameters a ≥ 0 and c ≥ 0,
and is defined forthwith. Let us assume that we are in a two-class classifica-
tion problem and that we have two training samples X = {X1(t), ..., Xn(t)}
and Y = {Y1(t), ..., Ym(t)}, where, t ∈ [0, T ]. First, compute the point-wise
median in both samples: mX(t), and mY(t), t ∈ [0, T ]. Then, given a, c let
ν = Sa,c be the solution of the of the following stochastic differential equation

Sa,c(0) = c and dSa,c(t) = |mX(t)−mY (t)|adB(t),

where B is a standard Brownian motion.
The fixed distribution that we compare with is the standard Brownian

motion, which is the member of the family corresponding to the case a = c =
0.
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In the following section, we choose a ∈ {0, 1}. Note that when a = 0 the
difference between the functions mX and mY has no influence on ν. The
constant c specifies the initial value for the solution. We have tried the values
c = 0, 1, 5. The reason for introducing c is that the Brownian motion always
starts at 0 and is continuous, thus erasing the differences in the early states
of the processes.

In practice, we will assume that the trajectories have been measured in
the same finite set of values t1 < . . . < th. Then, given a and c, to simulate
the random trajectories we have taken

Sa,c(t1) = c

Sa,c(ti) = Sa,c(ti−1) + |mX(ti)−mY (ti)|aZi, i = 2, ..., 31,

where Zi, i = 2, ..., h, are independent random variables with distribution
N(0, ti − ti−1) .

Concerning k, in [3] the authors carry out some simulations to select k
in the finite dimensional case for dimensions ranging from p = 2, 8, 50 and
several sample sizes. Those results suggest that high values for k are not
required. The results that follow in Section 3 have been obtained by selecting
k ∈ {1, ..., 100}. Although the upper bound for k might be considered too
low, we have repeated the process replacing 100 by 1,000 and the results
obtained have been similar.

We propose the use of leave-one-out cross validation to choose the right
value of k, as well as those of a and c when required.

3 The procedure in practice

As stated, in this section, we compare the results of classifying the heights
data set when employing the random Tukey depth with those obtained with
the depths proposed in [11]. To do this, we have repeated the study made in
[10] with three differences:

1. Most importantly, we have replaced the functional depths handled there
with the random Tukey depth.

2. In [10], the authors consider the curves as elements in L1[0, 1], which is
not possible here, because we need a separable Hilbert space. Thus, we
have taken H = L2[0, 1].

3. In [10], the authors smoothed the original data using a spline basis. We
have omitted this step because it is not necessary for our method.

Regarding item 2., remember that the heights were measured 31 times on
times ti ∈ [1, 18], i = 1, ..., 31 where
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ti = 3/4 + i/4 for i = 1, ..., 5,

ti = i− 3 for i = 6, ..., 10
ti = 2.5 + i/2 for i = 11, ..., 31.

If i = 2, . . . , 30, then the observation X(ti) represents the height of the indi-
vidual in the interval ((ti+ti−1)/2, (ti+1+ti)/2). Taking into account that, in
the last part of the study, the measurements were taken every half a year, we
can assume that X(t31) is valid for the period (17.5, 18.5). Finally, it seems
safe to assume that the X(t1) is not valid for representing previous heights.
Therefore, we can assume that the interval in which the measurements have
been taken is [1, 18.5]. In consequence, first, we need to modify the time in
order to transform the interval [1, 18.5] into [0, 1] and, then, we can employ
properties of the Rieman integral to make the approximation

< X, sa,c > =
∫ 1

0

X (17.5u + 1) sa,c(17.5u + 1)du ≈
31∑

i=1

X(ti)sa,c(ti)∆i,

where sa,c is drawn with distribution Sa,c and ∆i denotes the length of the
interval associated to the point ti. Then, if we define t0 = 1 and t32 = 18.5,
we have

∆i = (ti+1 − ti−1)/35, i = 1, ..., 31.

In [10], the authors consider three possibilities for splitting the sample into
training and validation sets. For the sake of brevity, we split the sample using
only leave-one-out cross-validation.

Let us briefly explain how the whole process works. Note that we have a
sample of size 93. Therefore, we have repeated 100 times the following: for
each observation in the sample, we consider the training sample composed
of the remaining 92 observations. Then, we have generated at random 100
vectors with each of the distributions of the random variables Sa,c for a = 0, 1
and c = 0, 1, 5, which gives 6 different samples of random directions with size
100 each.

Firstly, we have focused our attention on the S0,0 distribution. Here we
only have to select the value of k. As stated previously, this value is chosen
by leave-one-out cross-validation applied to the remaining sample with 92
observations. Henceforth, this procedure is called S0,0.

Moreover, we have applied the procedure allowing variations in a and
c. Here, also using leave-one-out cross-validation, we have chosen the best
combination of k, a and c. Henceforth, this procedure is denoted by Sa,c. Note
that in this case, it may occur that the chosen a and c satisfy a = c = 0;
thus, the Sa,c procedure should give better results than S0,0.

The results of the comparison appear in Table 1, which includes the ob-
tained failure rates using the three methods proposed in [10] when applied to
the random Tukey depth and to the depths proposed in [11]. These methods
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are: distance to the trimmed mean (Mα,β), weighted average distance (AM)
and trimmed weighted average distance (TAM). We have chosen α = β = 0.2
as in [10]. The depths handled in [10] are the band depth determined by
three different curves (DS3), by four different curves (DS4) and the gener-
alized band depth (DGS). Their error rates are contained in the last three
columns of Table 1 and have been taken from Tables 1-3 in [10]. The previous
two columns of Table 1 concern the random Tukey depth. The first includes
the failure rates when using the procedure S0,0 and the second when using
Sa,c.

Classification Random Tukey Depths proposed in [10]
method S0,0 Sa,c DS3 DS4 DGS

Mα,β .1858 .1825 .1828 .1828 .1613

AM .1403 .1368 .2473 .2473 .1935

TAM .1542 .1430 .2436 .2436 .1690

Table 1 Rates of mistakes when classifying the growth curves by sex for the shown meth-

ods and depths.

According to Table 1, if we employ the Mα,β method, the random Tukey
depth with the procedure S0,0 works worse than the other depths and, when
coupled with Sa,c performs similarly to the DS3 and DS4 depths but worst
than the DGS. However, for the AM and TAM methods, the random Tukey
depth provides better results than the depths used in [10] when we take the
standard Brownian motion and even better when parameters a, c in Sa,c are
chosen with cross-validation.

The medians of the number of random vectors used have been 1 for each
of the three methods with S0,0. In the case of Sa,c, the median of the number
of random vectors has been 2 for the Mα,β method and 1 for both of the
other two methods.

4 Conclusions

The Tukey depth is one of the best-behaved multidimensional depths but it
cannot be used in the functional setting. However, the random Tukey depth,
which approximates it in multidimensional spaces, does work in functional
settings.

The definition of the random Tukey depth involves choosing a distribution.
We have seen how in practice the behavior of this functional depth varies
depending on the chosen distribution. Specifically, its performance increases
when the distribution is data driven.

Furthermore, to compute the random Tukey depth, a finite number of
vectors have to be drawn with this chosen distribution. This number is of
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great importance since the computational time needed to compute the ran-
dom Tukey depth depends on it. In [3] it was seen that this number is low
in multidimensional spaces and, in view of our experience, it seems that it is
also surprisingly low when dealing with functional data.
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