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Abstract

In this paper a procedure to handle complicated ANOVA designs for functional data is proposed.
The procedure is based on the analysis of randomly chosen one-dimensional projections. The paper
contains some theoretical results as well as some simulations and the analysis of some real data sets.
Functional data include multidimensional data, thus the paper includes a comparison between the
propoesed procedure and some usual MANOVA tests.
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1 Introduction

The popularization of the computers has allowed that many processes are continuously
monitored, thus providing data which are functions, the so-called functional data. Those
include the changes in value of a particular share or index in the stocks market, the
temperatures in a given localization, the levels of a pollutant in the atmosphere,... but it
is also possible to include in this setting data which are not functions, but that are highly
multidimensional like those handled in genomics. Classical references on functional data
are [18] and [19].

A natural statistical problem is to decide on the existence or not of differences in
the process of interest when some conditions which may affect it vary. We refer to,
for example, to the existence of differences in the behavior of the temperatures between
different localizations, between the values of the stocks in American, English, German
and Japanese markets,...

This problem is usually handled by employing a model which assumes the existence of
an underlying function describing the typical evolution of the process under consideration,
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assuming that the data we have at hand have been obtained by adding random fluctuations
to this typical function. Thus, the problem becomes a kind of functional ANOVA problem.
A basic reference on the functional ANOVA is [18].

Let us state the problem more precisely. Let us assume that we have a real-valued
random process X = {X(t), t ∈ [a, b]}, measured along the closed and bounded interval
[a, b]. Assume that there are R different conditions which may affect the process and
that it have been measured nr times under each of those conditions, giving the sample
Xr

i (t), i = 1, ..., nr, r = 1, ..., R. Assume also that for every r = 1, ..., R, there exists a
(non random) function f r : [a, b] → IR such that

Xr
i (t) = f r(t) + εr

i (t), t ∈ [a, b], i = 1, ..., nr, (1)

where εr
i are independent and identically distributed random functions centered in mean

(thus, E[εr
i (t)] = 0 for every i, r, t).

In [18], as well as in many other papers on the subject, it is taken advantage of the fact
that the measurements are usually only made in a finite set of values {t1, ..., tm} ⊂ [a, b].
The idea is to apply a real ANOVA analysis for every value tj. Thus, we would obtain
m values for the F -test, one for each tj. If all F -values are below the rejection value,
we can, safely, say that there is no evidence of differences between the functions f r. The
problems begin when we obtain some F -values inside the rejection area because the usual
procedure to handle multiple comparisons (Bonferroni’s inequality) is quite conservative.

Moreover, even in the case that R = 1, and that the distribution of (ε1
i (t1), ..., ε

1
i (tm))

is standard Gaussian, it is shown in [12] that if we want to test the null hypothesis f 1 = 0,
then the powers of the likelihood ratio test converge to the level of the test if m → ∞,
and ‖ (f 1(t1), ..., f

1(tm)) ‖ → ∞, with ‖ (f 1(t1), ..., f
1(tm)) ‖ = o(m1/2). The asymptotic

distribution of the likelihood ratio test for the MANOVA when m/(n−R) → γ ∈ (0,∞)
was obtained in [25] (here we denote n = n1 + . . . + nR).

To solve those problems, a kind of bootstrap procedure is proposed in [18]. Alterna-
tively, in [13] a criteria to select a finite subset of tj’s is proposed. Both procedures are
employed, for instance, in [24].

Other approaches are based on the application of a dimension-reduction and/or smooth-
ing technique (see, for instance, [1], [2], [3], [4], [14], [16]). Different points of view are
handled in [10], [15] and [21]. In [10] an F -test based on the squares of the norms of the
between samples and within samples differences is proposed. In [15] and [21] the authors
analyze the behavior of the traces of the between and within covariance matrices.

A common drawback of previous solutions is that they are intended to solve only one-
way problems. Thus, in spite that the design handled in [24] is three-ways, no interaction
between factors is analyzed. The same happens in [2] or [4] where no interaction between
the fixed and random factors is considered.

In this paper we propose a simple technique which allows to test complicated designs,
including interactions, covariables,...

This technique is based on Theorem 4.1 in [9] which, roughly speaking, states that if
we have two different distributions, one of them verifying a condition on their moments,
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and we randomly choose a marginal of them, those marginals are almost surely different.
We state here this result for further reference.

Theorem 1.1 Let H be a separable Hilbert space with norm ‖ − ‖. Let µ be a Gaussian
distribution on H such that that each of its one-dimensional projections is non-degenerate.

Let P and Q be two probability distributions on H such that the absolute moments

mk :=
∫
‖x‖kdP (x) are finite and satisfy

∑
k≥1 m

−1/k
k = ∞. If P 6= Q, then

µ
{
v ∈ H : P ◦ Π−1

v = Q ◦ Π−1
v

}
= 0,

where Πv is the orthogonal projection on the one-dimensional subspace generated by v.

The assumption
∑

k≥1 m
−1/k
k = ∞ is known as Carleman’s condition and is a sufficient

condition to that the distribution P to be determined by its moments (see [23]). It is
satisfied, for instance, for all Gaussian or with bounded support distributions

Thus, according to Theorem 1.1, if we want to test the null hypothesis

H0 : f 1 = .... = fR

in (1), we only need to randomly take a one-dimensional projection and analyze the associ-
ated one-dimensional projections of the random functions in the sample. This analysis can
be carried out using a one-dimensional ANOVA to test if the means of those projections
are the same.

We have presented this reasoning in the one-way ANOVA just to simplify the expo-
sition, but, obviously, the procedure can be extended to cover more complicated linear
models.

The test that we propose here is conditional on the obtained one-dimensional projection
which has to be chosen independently of the sample at hand. Conditional tests are not
new in Statistics. In fact, most of bootstrap procedures are conditional (on the obtained
sample), but we can trace conditional procedures, at least, to the exact Fisher test for
contingency tables.

We also want to remark that since Theorem 1.1 holds if we take H = IRd, then the
proposed procedure can be used as an alternative to the usual MANOVA.

The paper follows the following scheme: In Section 2 we develop the procedure. In
Section 3 we present some simulations. In Section 4 we analyze a real data set related
to temperatures in different locations in Spain; this is a two-way ANOVA model plus
a continuos covariable. Section 5 is devoted to compare the proposed procedure with
some usual MANOVA tests. The paper ends with a Discussion where we comment on the
possibility to apply the proposed procedure to more general abstract spaces.

2 The procedure

In this section H will denote a separable Hilbert space endowed with norm ‖ − ‖ and
scalar product 〈·, ·〉. All the random variables will be assumed to be defined on the same,
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rich enough, probability space. Moreover, without loss of generality we will assume that
the closed interval in which we measure the process is [0, 1].

2.1 The model. Assumptions

We begin generalizing the model (1) to a two-ways ANOVA model with a covariable.
Obviously, other models can be treated similarly.

Let R,S ∈ IN and assume that for every r = 1, ..., R, s = 1, ..., S there exist Xr,s
i , i =

1, ..., nr,s ∈ IN random functions in H, such that

Xr,s
i (t) = m(t) + f r(t) + gs(t) + hr,s(t) + γr,s

i Y (t) + εr,s
i (t), t ∈ [0, 1], (2)

where

1. The function m is non random and describes the overall shape of the process.

2. The (non random) functions f r, gs, hr,s belong to H and account, respectively, for
the main effect of the first and second factors and for the interaction between them.

In order to make the model identifiable, we will assume, as usually, that, for every
t ∈ [0, 1], r0 = 1, ..., R and s0 = 1, ..., S∑

r

f r(t) =
∑
s

gs(t) =
∑
r

hr,s0(t) =
∑
s

hr0,s(t) = 0.

3. The γr,s
i ∈ IR are random and known quantities which influence the process according

to the weights given by the (non-random and unknown) function Y ∈ H. They play
the same role as the covariables in the one-dimensional case.

4. The random trajectories εr,s
i are assumed to be H-valued, independent and centered

in mean. Moreover, for each r, s, εr,s
i , i = 1, ..., nr,s are identically distributed and

satisfy Carleman’s condition, i.e. we assume that
∑

k

(
E‖εr,s

1 ‖k
)−1/k

= ∞, for every
r, s.

We are interested into testing the following null hypotheses

HA
0 : f 1 = . . . = fR = 0

HB
0 : g1 = . . . = gS = 0

HI
0 : h1,1 = . . . = hR,S = 0

HC
0 : Y = 0

against the alternatives that theirs negations hold.
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2.1.1 Homoscedasticity and Gaussian hypotheses.

It is well known that the homoscedasticity plays an important role in ANOVA techniques.
Here, it is equivalent to say that, for every i, r, s, the distribution of εr,s

i does not depend
on the remaining terms in (2).

We prefer do not make this assumption because in random functions the opposite looks
quite reasonable. We mean that, very often, the oscillation of a process strongly depends
on their values.

Concerning the Gaussian hypothesis, from Theorem 3.6 in [7] follows that if the dis-
tribution of an H-valued random element X is not Gaussian then, almost surely, every
one-dimensional projection will neither be Gaussian.

The only problem without those assumptions is that we will need to apply an one-
dimensional ANOVA test which works under heteroscedastic and/or non-Gaussian con-
ditions.

Anyway, since the procedure that we propose is conditional on the chosen marginal, it
is possible to check which particular hypotheses are satisfied by the obtained projections
and, then, to choose the one-dimensional test more suitable for them.

2.2 The procedure

The procedure that we propose is directly based on the following result.

Theorem 2.1 Let us assume the model and assumptions stated in Subsection 2.1. Let
µ be a Gaussian distribution on H such that each of its one-dimensional projections is
non-degenerate. Then

1. If there exist r1, r2 such that f r1 6= f r2 then

µ
{
v ∈ H : such that 〈v, f 1〉 = . . . = 〈v, fR〉

}
= 0.

2. If there exist s1, s2 such that gs1 6= gs2 then

µ
{
v ∈ H : such that 〈v, g1〉 = . . . = 〈v, gS〉

}
= 0.

3. If there exist (r1, s1), (r2, s2) such that hr1,s1 6= hr2,s2 then

µ
{
v ∈ H : such that 〈v, h1,1〉 = . . . = 〈v, hR,S〉

}
= 0.

4. If Y 6= 0 then µ {v ∈ H : such that 〈v, Y 〉 = 0〉} = 0.

Proof. Given r = 1, ..., R, let P r be the probability distribution on H concentrated on f r

(i.e., P r satisfies that P r[f r] = 1). Obviously, every probability distribution concentrated
on a single point, satisfies Carleman’s condition. Thus, we can apply Theorem 1.1 to
every pair of probability distributions P r1 and P r2 . Since there is a finite number of
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possible selections, the result in item 1 follows. The proofs of the remaining statements
are identical. •

To explain the procedure, let us focus our attention on the testing of hypothesis HA
0 .

Let v ∈ H be a randomly chosen vector employing the distribution µ. Oviously, if HA
0

holds, then for every v ∈ H, the (conditional on v) null hypothesis

HA,v
0 : 〈v, f 1〉 = . . . = 〈v, fR〉 = 0

also holds. And, according to 1 in Theorem 2.1, if HA
0 fails, then for µ-almost every

v ∈ H, HA,v
0 also fails. Thus, a statistical test at level α to test HA,v

0 is a statistical test
at the same level to test HA

0 .
Therefore, if ΦA is an statistical test at level α to test the null hypothesis HA

0 , under
the model (2) in the case that the data are real, it happens that it is possible to test HA

0

in the H-valued case by applying ΦA to test HA,v
0 .

Concerning the hypotheses to apply a one-dimensional ANOVA, notice that for every
r, s, the one-dimensional errors 〈v, εr,s

i 〉, i = 1, ..., nr,s are independent and identically
distributed. The only care to be taken into account is that if the original observations
are not homoscedastic, then, the test ΦA should work under heteroscedastic conditions,
and that if the original observations are not Gaussian, then the test ΦA should be able to
work under non-Gaussian conditions. Some statistical procedures appear in the literature
which fulfills those requirements. Here, we have chosen this one proposed in [5].

The same can be said with respect the null hypotheses HB
0 , HI

0 and HC
0 and the

corresponding (random) counterparts HA,v
0 , HB,v

0 and HC,v
0 .

2.2.1 Stability of the procedure

According to the previous reasoning, the exposed procedure is consistent in the sense that
to reject any null hypothesis H ·,v is almost surely equivalent to reject the corresponding
null hypothesis H ·

0. However, it is obvious that this procedure has two main drawbacks.
On the first side, we are loosing some information because we are replacing a function

by just one real number and this should bring some lose of power. On the other hand, if
we employ a randomly chosen projection, we are accepting some random instability in the
problem because it may happen that if we repeat twice the procedure a null hypothesis
to be rejected once and accepted later.

In order to ease this inconveniences, it has been proposed (for instance in [7] and [8])
to take k > 1 random projections and, then, adjust the obtained p-values by bootstrap.
Bonferroni’s method is the selection in [6]. Alternatively, in descriptive studies where the
goal is to provide an idea about how far from acceptable is the null hypothesis under
consideration, report, for instance, the mean value of the obtained p-values could be
enough.

We have employed Bonferroni’s correction in Sections 3 and 4 and both methods (Bon-
ferroni and bootstrap) in Section 5.
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The only problem with Bonferroni’s correction is that we have to make our selection
between two opposite goals: the larger k, the lower the instability and, also, the harder to
reject the null hypothesis because the Bonferroni adjustment becomes more conservative.
However, if the projections are independent, then the Bonferroni adjustment is more
accurate. Because of this, it seems reasonable to us that the number of random directions
should be of the same order as the number of points in which the random trajectories
have been measured.

We have tried several values of k in the simulations reported in Section 3. At the end
we have found that a too large number is not required being the optimum around 50 when
the number of points of in which the process is measured is sufficiently large. If we denote
this number by N , we propose to choose k between min (N, 50) and 3×min (N, 50), with
k closest to the lower limit if N is large and closest to the upper limit if N is small.

In Sections 3 and 4 the value of N is, respectively, 101 and 31 and we have chosen
k = 50 and k = 31 respectively. In Section 5 the data are in dimension three. Thus,
they can be identified with functional data measured just on N = 3 points and we have
decided to go closer to the upper limit, selecting k = 10.

On the other hand, if the bootstrap is chosen to fix the p-values, there is no theoretical
reason to select a low k. However, we have decided to follow the same rule as for the
previous method and in Section 5, when using bootstrap, we have also selected k = 10.

3 Simulations

A Monte Carlo study has been carried out in order to evaluate the perfomance of the
procedure proposed in Section 2. To this, we have simulated several examples following
the model (2). We have taken R = S = 2 and nr,s = 100, r, s = 1, 2 in all of them. The
underlying distributions depend on two parameters α, β as follows:

• m(t) := 30(1− t)t

• f r(t) := α(−1)r| sin(4πt)|, r ∈ {1, 2}, α ∈ {0.0, 0.05, . . . , 0.45, 0.5}

• gs(t) := β(−1)sI{t>0.5}, s ∈ {1, 2}, β ∈ {0.0, 0.05, . . . , 0.45, 0.5}

• hr,s(t) := −f r(t)gs(t)I{α≥0.25}

• Y (t) := (t− 0.5) and the distribution of the real random variable γ is U [−0.5, 0.5]

• εr,s
i (t) is a Gaussian process with mean equals to zero and covariance function

Cov(ε(t1), ε(t2)) := σ2 exp(−|t1 − t2|/0.3), σ2 = 0.4.

where t ∈ [0, 1] was discretized in N = 101 points, i.e. we assume that the processes have
been observed at the points tl = l/100, l = 0, . . . , 100.

The parameter α (resp. β) controls the strenght of the factor f r(t) (resp. gs(t)).
Indeed depending on α the interaction is present or not.
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Every cell in the following tables is the result of K = 500 replications each with k = 50
random projections showing the proportion of rejections at level 0.05 after correcting the
p-values with Bonferroni’s method. i.e., since we have k = 50 one-dimensional tests, we
only declare as rejected a null hypothesis if the minimum obtained p-value is less or equal
than 0.001 (=0.05/50).

β
α 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 0.030 0.038 0.036 0.022 0.032 0.040 0.032 0.040 0.026 0.040 0.036
0.05 0.358 0.362 0.362 0.322 0.396 0.372 0.350 0.330 0.378 0.362 0.342
0.10 0.964 0.970 0.974 0.976 0.978 0.980 0.980 0.972 0.968 0.964 0.972
0.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Proportion of rejections for HA
0

β
α 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 0.040 0.280 0.936 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.05 0.038 0.250 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 0.046 0.292 0.930 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.15 0.034 0.276 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.014 0.300 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 0.040 0.300 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.026 0.352 0.954 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.35 0.032 0.354 0.948 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.40 0.042 0.366 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.45 0.036 0.350 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.024 0.354 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Proportion of rejections for HB
0

Concerning the one-dimensional test that we have employed in this section, we have
used the usual ANOVA test based on the gaussianity and homoscedasticity assumptions
(which we know, by construction, that are satisfied). Anyway, we have checked the
assumption of gaussianity of the projections and, as expected under the normality hy-
pothesis, this assumption was rejected around 5% of the cases. This test was done using
the package nortest from R ([20]).

The results are quite satisfactory. The first row in Table 1 corresponds to the situation
of no effect of the factor A and the behaviour is nice although is a quite conservative
(probably by the use of Bonferroni’s approximation). The same can be told about the
first column in Table 2. As α is growing in Table 1 (resp. β in Table 2) the proportion
of rejections quickly increases. Table 3 correspond to effect of the covariate and not
surprisingly all the proportions are near one.
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β
α 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 0.998 0.998 0.998 0.998 0.996 1.000 1.000 0.996 0.992 0.996 0.996
0.05 0.996 0.992 1.000 0.998 0.996 0.996 1.000 1.000 1.000 1.000 0.996
0.10 0.996 0.994 0.998 0.996 0.996 0.996 1.000 0.994 0.998 1.000 1.000
0.15 0.994 0.992 0.998 0.996 1.000 0.996 0.988 0.998 0.996 0.994 1.000
0.20 0.998 1.000 0.998 0.996 0.992 0.996 0.996 0.998 0.998 0.994 0.998
0.25 0.998 1.000 0.996 0.996 0.996 0.994 0.996 0.998 0.998 0.984 1.000
0.30 0.990 0.996 0.992 0.996 0.988 0.996 1.000 0.998 0.998 0.994 1.000
0.35 0.998 0.998 0.998 0.996 1.000 0.992 0.998 0.992 0.998 1.000 0.996
0.40 0.998 0.992 0.998 0.994 0.998 1.000 0.996 1.000 1.000 0.998 0.998
0.45 0.994 0.994 0.992 0.994 0.992 1.000 0.998 0.998 0.992 1.000 0.998
0.50 0.998 0.996 0.996 0.994 0.992 0.994 0.994 1.000 0.998 1.000 0.998

Table 3: Proportion of rejections for HC
0

β
α 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 0.022 0.040 0.028 0.016 0.038 0.040 0.042 0.038 0.042 0.034 0.028
0.05 0.032 0.024 0.032 0.038 0.020 0.026 0.022 0.020 0.022 0.030 0.026
0.10 0.040 0.036 0.018 0.038 0.022 0.022 0.042 0.022 0.028 0.030 0.048
0.15 0.030 0.048 0.040 0.020 0.020 0.034 0.034 0.020 0.032 0.032 0.030
0.20 0.036 0.032 0.040 0.038 0.036 0.032 0.042 0.018 0.040 0.024 0.040
0.25 0.024 0.044 0.052 0.084 0.122 0.158 0.244 0.370 0.460 0.644 0.694
0.30 0.030 0.024 0.058 0.088 0.162 0.258 0.356 0.570 0.678 0.826 0.898
0.35 0.024 0.024 0.058 0.124 0.222 0.354 0.514 0.722 0.854 0.922 0.966
0.40 0.034 0.044 0.062 0.172 0.296 0.484 0.714 0.836 0.952 0.978 0.992
0.45 0.038 0.042 0.088 0.234 0.380 0.626 0.802 0.936 0.982 0.998 1.000
0.50 0.030 0.048 0.126 0.226 0.514 0.718 0.912 0.972 0.994 1.000 1.000

Table 4: Proportion of rejections for HI
0

Table 4 have the information about interaction which is only present for α ≥ 0.25. As
the amount of interaction depends on the product α×β, the proportion of rejections goes
near one only when both α and β are large.

4 A real data set

We illustrate the proposed procedure by using a real dataset. The data we have at
hand were obtained from the web page http://clima.meteored.com on September, 2007.
This site contains a lot of climatological data from a large amount of meteorological
stations. We consider the daily mean temperature as the functional datum for certain
locations in Spain and certain months in the last annual cycle. More precisally, we have
downloaded the daily mean temperature in A Coruña, Avilés, Bilbao, San Sebastián,
Santander, Vigo, Burgos, León, Madrid, Salamanca, Segovia, Soria, Valladolid, Vitoria
and Zamora. The last nine locations are in the interior of Spain and have Continental
climatological characteristics (colder winters and hotter summers) whereas the first six
locations are situated at the North Coast of Spain (Atlantic Ocean) and have temperatures
less extreme. Also, in order to take into account the variability of seasons, we have selected
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Figure 1: Mean Temperatures

the most representative available months in last twelve months: October-2006, January-
2007, May-2007 and July-2007.

Indeed, we have also take into account the Monthly Total Amount of Rainfall as a
covariate that can have influence in temperature. Thus, this is the real known random
variable γ in (2) which multiplies the unknown and non random function Y measuring
the influence of this quantity each day in the month. On the other hand, it seems us that
in this particular example, Y should be constant, but this is not important in our model.

In Figure 1 we have represented the curves of the mean temperatures in each month
and zone. It becomes obvious from those graphs the influence of the season factor. But,
in our opinion, the differences between the corresponding curves are not so big as to make
so obvious the influence of the location factor. The same happens with the existence of
the interaction, in spite of the graphs suggest its existence since the mean temperature in
the interior is lower than in the coastal area in winter and greater in summer.

The first row of Table 5 contains the p-values obtained for each null hypothesis with
the proposed test using 31 random projections each time. However, taking into account
the random nature of the test, we have repeated it 1000 times. The second row in Table 5
shows the proportions of rejections of the null hypothesis using also 31 random projections
each time.

Notice that the p-values were corrected using the Bonferroni method. This means
the following. For instance, in the first factor, the minimum of the obtained p-values was
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Location Month Interaction Monthly Rainfall Gaussian
p-value 1.29 · 10−05 3.33 · 10−37 0.00157 3.53 · 10−10 0.387
Proportion

1.000 1.000 1.000 0.804 0.114
of rejection

Table 5: p-values obtained with the random ANOVA and Bonferroni’s correction and proportions of null
hypothesis rejected for climatological data

4.169491 ·10−07. Since, we are employing k = 31 random projections, the reported p-value
in Table 5 was 1.292542 · 10−05 = 31× 4.169491 · 10−07

Thus, all times, the proposed procedure detects the existence of influence of both
factors and, also, the existence of interaction between them. The influence of the monthly
rainfall is not so strong but its influence is declared statistically significant more than
eighty percent of times. The Gaussian hypothesis is rejected just about 11.4% thus,
making doubtful when a procedure requiring gaussianity is appropriate. However, in
this section we have also employed the test proposed in [5] which does not rely on this
assumption and admits heteroscedasticity obtaining similar results.

5 A comparison with MANOVA

In this section we compare our procedure with some usual MANOVA tests. We make
the comparison analyzing the two examples proposed in R as illustration of the manova

procedure. First one is taken from [17, pag. 81]. Second one was proposed in [22].
As stated, those examples were selected to illustrate the manova procedure which is

based on gaussianity assumptions. Thus, we have decided to assume also this hypothesis
and employ the usual one-dimensional ANOVA test to analyze the projections.

In this section we will assume the model (2) with γr,s
i = 0, with t restricted to belong

to the finite set {1, ..., d} and, thus, H being the d-dimensional euclidean space IRd with
the usual norm and scalar product. Those assumptions allow us to apply Theorem 2.1 in
this setting since this result holds in every separable Hilbert space.

There are some practical points worth to be considered. First one is related to the dis-
tribution to be employed to select the random directions. Stationarity is often a reasonable
assumption in random processes and, in consequence there is no need to distinguish be-
tween values of t. However, in this setting there is no reason to assume that the marginals
of the underlying distribution are the same. Thus, it may be not too wise to select, for
instance, µ in Theorem 2.1 as the standard Gaussian distribution.

Second problem is related to the fact that if d is low as compared with k the depen-
dences between marginals may translate in a useless Bonferroni’s correction.

Concerning the first question, our proposal is, first, to apply an affine transformation
to the data in order to make them centered in mean and its covariance matrix to be the
identity. Then, we choose as µ the standard d-dimensional Gaussian distribution.

Since the affine transformations do not affect the usual MANOVA tests, this transfor-
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mation has no influence on them. Thus, the proposed affine transformation can be seen
as an easy way to choose easily the random projections taking into account the depen-
dences of the marginal distributions. In other words, this transformation plus µ equal to
the standard Gaussian distribution is equivalent to no transformation on the data and
µ being a Gaussian distribution with a covariance matrix depending on the dependences
between marginals.

With respect to the dependences between marginals, as stated in Section 2.2.1, if
Bonferroni’s correction is going to be chosen, a not too high value for k may be needed.
This fact is shown in Table 7 where we show how the proportion of rejections of the null
hypothesis “the additive has no effect” (a more detailed description of the data appears
in Example 5.1), decreases smoothly when k goes from k = 5 to k = 15 and decrease
abruptly if we take k = 30.

However, this fact does not happens with the factor rate. We think that the difference
between those factors is that the effect of the first factor is so intense that it is noticeable
in every direction and the bigger number of directions, the better the chance to find a
very small p-value. However, the effect of the second factor is not so big and, then, the
p-values are not so small and, from some point on (around k = 15) the better chance to
find a small p-value by increasing k is overridden by the Bonferroni correction.

This is the reason that made us to propose to choose k not too big when compared
with d.

However, a way to overcome this difficulty is to employ bootstrap as follows. Let us
assume that we have a d-dimensional sample and that we are interested in testing the
null hypothesis H0 (related to main factors, interactions, covariables,...).

After standardizing the sample as described, take k directions at random v0
1, ..., v

0
k

(which remain fixed along the process). Compute the projections of the data on those
directions, and apply to each set of projections a 1-dimensional ANOVA test. Thus, we
have the p-values pi, i = 1, ..., k and take p = mini pi.

In order to evaluate the significance of those values, let us, first, to center in mean by
cells, the data in the sample. Then, let us take B bootstrap samples from the centered in
mean data. For each bootstrap sample, compute the k projections of their points along
the same directions, v0

1, ..., v
0
k, that we employed before. Apply to each set of projections

the same 1-dimensional ANOVA test as before and take the minimum of the obtained
p-values.

Thus, we have the p-values p1, ..., pB. Since the bootstrap samples verify the null
hypothesis for every factor (remember that the bootstrap samples were obtained from a
sample centered in mean by cells), with this procedure we obtain a sample of the values
to be expected under the null hypothesis in the previous process, which can be employed
as reference to evaluate the significance of the value p obtained in the first step.

It can be checked in Table 7 that this procedure does not suffer from the previous effect
and that increasing the number of random directions increases the power of the test. We
have chosen B = 500 when applying bootstrap.

In Tables 7 and 9 the rows labeled “p-value” contain the p-values obtained in the first
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application of the random ANOVA under the corresponding conditions. The rows labeled
“Proportions of rejections” show the proportion of times in which the corresponding null
hypothesis was rejected along 500 repetitions of the the random ANOVA test under the
corresponding conditions. Thus, if the correction method is Bonferroni, the obtained p-
values were modified as described in Section 4. If the correction method is Bootstrap, the
correction method is the onedescribed in this section.

On the other hand, in Table 9 we only show the results obtained with k = 15 randomly
chosen directions. This is due to that in Example 5.2 there is no so big variation of the
results. However, more complete tables are available from the authors upon request.

Example 5.1 In this example we analyze some data on the production of plastic film
which appear in [17, pag. 81]. This is the example used for the documentation of the
function summary.manova in R [20] . These data are three-dimensional. On them it is
analyzed how some characteristics of the plastic film (“tear”, “gloss” and “opacity”) vary
depending on two factors (“rate” and “additive”’) with two levels each (“Low”,“High”).
Five measurements were taken under each set of production conditions.

Thus, we are in a 3-dimensional, 2-ways MANOVA problem with 2 levels in each factor
and 5 observations in each cell.

First, in Table 6, we present the result to apply the MANOVA procedure with the
Pillai test. Here we see that both factors (specially the rate) are found to be significative
and also that there is no statistical evidence on the existence of interaction between them.

Df Pillai approx F num Df den Df Pr(>F)
rate 1 0.6181 7.5543 3 14 0.003034 **
additive 1 0.4770 4.2556 3 14 0.024745 *
rate:additive 1 0.2229 1.3385 3 14 0.301782

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 6: Usual MANOVA for Krzanowski’s data

Table 7 contains the results to apply our procedure under several conditions in order
to show the differences of behavior between Bonferroni’s and bootstrap corrections of the
significance level. The explanation of the observed differences was already made. Here
we only want to add that the p-values obtained by bootstrap procedure are closer to
those in Table 6 independently on the number of projections and providing always good
results, whereas with the Bonferroni correction the choice of the number of projections
could be critical if the dimension of data is short and the factors are not so strong. Taking
into account that bootstrap procedures are high time consuming, our recomendation is
to use bootstrap procedures when d is short (d ≤ 30) or a fine precision is needed. In
functional data, where d is usually large (d ≥ 50), Bonferroni’s correction is fast and
accurate enough.

Example 5.2 The second example corresponds with Example 9.6 in [22, pag. 461] as an
example on testing interactions. The response variable is a vector of three components
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Correction Number of
Rate Additive Interaction

method projections
Bonferroni p-value k = 5 0.002 0.037 0.339

k = 15 0.003 0.043 0.770
k = 30 0.009 0.069 0.837

Bootstrap p-value k = 5 0.012 0.006 0.242
k = 15 0.000 0.022 0.380
k = 30 0.006 0.024 0.294

Bonferroni Proportions k = 5 0.956 0.790 0.000
of rejections k = 15 0.998 0.604 0.000

k = 30 1.000 0.194 0.000
Bootstrap Proportions k = 5 1.000 0.968 0.000

of rejections k = 15 1.000 0.968 0.000
k = 30 1.000 0.992 0.000

Table 7: p-values obtained with the random ANOVA and proportions of null hypothesis rejected for
Krzanowski’s data

related with growth of paspalum grass (the fresh weight of roots (gm), the maximum
root length (mm) and the fresh weight of tops (gm)) under two factors: Temperature
and Treatment. Temperature has four levels (14, 18, 22, 26 oC) and Treatment has two
levels (“Control” and “Inoculated”). The goal is to investigate the effect on growth of
inoculating these plants with a fungal infection.

As in Example 5.1 we begin with the results obtained when applying an usual MANOVA
procedure which finds evidence of significance of both factors (very strong in the case of
the factor Temp). It neither finds evidence of interaction.

Df Pillai approx F num Df den Df Pr(>F)
Treat 1 0.2053 3.2722 3 38 0.03145 *
Temp 3 1.5009 13.3489 9 120 1.286 · 10−14 ***
Treat:Temp 3 0.3206 1.5953 9 120 0.12410

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 8: Usual MANOVA for Seber’s data

The results obtained by the proposed method are similar to those shown in Table
8. Again, k = 15 projections seems too much for a three dimensional data using the
Bonferroni correction. Although the p-values in both tables give more or less the same
information, the proportion of rejections for the factor Treatment with the Bonferroni
correction is quite low. This does not occur with the Bootstrap method that provides a
result closer to those in Table 8 but with a high computational cost. In this case, the
computational cost of a single run (CCsr) with k = 15 projections was about 0.13 sec
whereas to obtain the p-value by Bootstrap (B = 500) the computational cost (CCBoot)
was 96.46 seconds (CCBoot ≈ B × (CCsr + CCgen), where CCgen is the time needed to
select a bootstrap sample).
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Correction Number of
Treat Temp Interaction

method projections
Bonferroni k = 15 p-value 0.042 6.67 · 10−12 1

Proportions
0.776 1.000 0.000

of rejections
Bootstrap k = 15 p-value 0.008 0.000 0.220

Proportions
0.998 1.000 0.000

of rejections

Table 9: p-values obtained with the random ANOVA and proportions of null hypothesis rejected for
Seber’s data

6 Discussion

In this paper a procedure to test complicated linear designs in the functional setting is
proposed. The procedure is random since it is based on the replacement of the given
functional data by randomly chosen one-dimensional projections.

The consideration of a number of projections is proposed as a way to stabilize the
results, using Bonferroni’s method to correct the obtained p-values.

The results obtained in the simulations carried out in Section 3 as well as the analysis
of the real data set in Section 4 make us to be optimistic about its capability to discover
the existence of influence of factors, interactions, covariables,...

It is also noticeable that the method proposed produces similar results to those obtained
with usual MANOVA tests. However, we want to stress the fact that the flexibility of
the procedure, makes easy to deal with those situations in which the assumptions are not
fulfilled because, through the projections, it is possible to apply a 1-dimensional ANOVA
test (like the proposed in [5]) in which the assumptions are less stringent.

Moreover, the proposed method can be applied to every random process in which we
have a Hilbert space to which the trajectories belong to. Thus, it is not required that the
random functions are defined on an interval or even on a one-dimensional subset.

On the other hand, in [11] the authors generalize Theorem 1.1 to general functional
spaces without a Hilbert space structure. Thus, providing the way to also eliminate this
assumption in our results.

References

[1] Abramovich, F., Antoniadis, A., Sapatinas, T. and Vidakovic, B. (2004).
Optimal Testing in a Fixed-effects Functional Analysis of Variance Model. Inter. J.
Wavelets, Multiresolution Informat. Processing 2, 323–349.

[2] Abramovich, F. and Angelini, C. (2005). Testing in Mixed-Effects FANOVA
Models. J. Statist. Planning Infer. 136, 4326–4348.

15



[3] Angelini, C. and Vidakovic, B. (2002). Some Novel Methods in Wavelet Data
Analysis: Wavelet ANOVA, F-test Shrinkage and Γ-Minimax Wavelet Shrinkage.
Istituto per le Applicazioni del Calcolo “Mauro Picone”. Rapporti Tecnici RT 256/02.

[4] Antoniadis, A. and Sapatinas, T. (2007). Estimation and Inference in Functional
Mixed-effects Models. Computat. Statist. and Data Anal. 51, 4793–4813.

[5] Brunner, E., Dette, H. and Munk, A. (1997). Box-Type Approximations in
Nonparametric Factorial Designs. J. Amer. Statist. Assoc. 92, 1494–1502.

[6] Cuesta-Albertos, J., Cuevas, A. and Fraiman, R. (2008) On projection-based
tests for spherical and compositional data. Preprint.

[7] Cuesta-Albertos, J., del Barrio, T., Fraiman, R. and Matrán, C. (2007).
The Random Projection Method in Goodness of Fit for Functional Data. Computat.
Statist. and Data Anal. 51, 4814–4831.

[8] Cuesta-Albertos, J., Fraiman, R., Galves, A., Garćıa, J. and Svarc,
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