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1 Introduction

Firstly we congratulate the authors on a wonderful paper full of new nice
ideas, which can be considered as a major breakthrough in the functional
outlier detection using visual procedures. These ideas include a taxonomy of
outliers, the definition of bag distance and the centrality-stability plots. Indeed,
each of the last two ideas is fundamental in the development of each of the two
corresponding procedures to detect multivariate functional outliers introduced
in the paper. The first procedure consists in constructing a heat map using
the functional bag distance based on the Tukey depth while the second in a
scatter-plot based on the skew-adjusted projection depth, SPD, named the
centrality-stability plot, CSP.

Moreover, both procedures complement themselves because the heat maps
are good in detecting all kind of outliers excepting the shape outliers, but
those are clearly identified with the CSP’s

Our discussion focus, firstly, on shedding light on the behaviour of the
proposed procedures when applied to multivariate functional data whose di-
mension is entitled to be extremely high. Secondly, a simplification of the CSP
is proposed. Furthermore, we encourage the authors to comment on the ad-
vantages/disadvantages of applying, what they call, the MFSPD versus, what
they call, the 1/(1 + FAO), as the difference between them just lies in the
reverse order of the integral and inverse functionals.
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2 High dimensional functional data

The ideas used in the procedures proposed in [4] apply, in principle, to mul-
tivariate functional data of any dimension. However, those procedures rely in
techniques that make them being only applicable to multivariate functional
data of low dimension. The reason for this is that, as commented in the intro-
duction, the first procedure is based on the multivariate Tukey depth and the
second on the SPD; and exact computations of these depths are only possible
in multivariate spaces of low dimension [6,5]. Note that these methodologies
are applied in [4] to multivariate functional datasets of only dimension 1 to 3.

The random Tukey depth [1] is a statistical depth that approximates the
Tukey depth. According to [1,3] it needs of a very low number of projections
to obtain equivalent results to those of the Tukey depth. Due to this fact, the
random Tukey depth is very fast to compute, making it the depth to go for, not
only when the dimension of the space is moderate or high, but also when it is
low due to its computationally effectiveness. Additionally, the random Tukey
depth inherits from the Tukey depth the nice properties that made it well-
known [1,2]. Consequently, we propose a modification of the first procedure in
[4] consisting in basing it on the random Tukey depth.

Concerning the second procedure, the authors acknowledge the difficulty
in the computation of the SPD and they propose to compute it in dimension p,
by taking 250p sets of p+ 1 randomly chosen points and using the orthogonal
directions to the affine hyperplanes those sets determine. We believe that the
same idea we employed for the random Tukey depth should also work in this
setting, but we do not develop it here as the theory underneath the random
projection depth has to yet be studied, and this is well beyond the scope of
this discussion.

Through the rest of the section we show how the first procedure based
on the random Tukey depth works as the one proposed in [4], but with the
advantage of being effective in any dimension. Indeed, we apply it here to
data in dimension 200 in contrast to just in dimension 1, as it is done in [4].
This type of data appear, for instance, in the analysis of some brain disorders,
where 200 (or even more) sensors measure simultaneously the activity of 200
points in the brain; and the resulting data in each of those points is a curve.
Precisely, a goal of these studies is to discover sensors showing an anomalous
behavior; i.e. to discover outliers.

A comparison with the results obtained in [4] is not possible because there
the authors only use the Tukey depth with one-dimensional curves, in this case,
the Tukey and the random Tukey depths, obviously, coincide. However, taking
into account that the dataset used in in [4] consists of 39 curves measured at
226 time points, we have also simulated 39 curves measured at 226 time points
but in dimension 200 instead of in dimension 1.

To simulate the data we use for each of the dimensions the methodology
proposed for Gaussian processes in [7, Section 2.2]. The first 12 dimensions,
out of 200, of the simulated data are plotted in Figure 1. Thus, we obtain
independent dimensions; of course, it is of great interest to study this problem
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Fig. 1 First 12 dimensions, from left to right and top to bottom, of the simulated data
before including outliers.

under simulated data with a more complex covariance structure across the
dimensions; however, we do not consider it here to ease the explanation on the
construction of the outliers and not extend the length of this discussion.

Seven outliers, containing the whole variety provided in the taxonomy of
[4], are included in the simulated data. For this aim, the curves are labelled
from 1 to 39; being the outliers the curves 1 to 7. Particularly, curves 1 to 4
are shift outliers, curve 5 an isolated outlier, curve 6 an amplitude outlier and
curve 7 a shape outlier. In detail:

1. Curve 1 is a shift outlier only in dimension 1 over the whole time range.
2. Curve 2 is a shift outlier in every dimension and over the whole time range.
3. Curve 3 is a shift outlier in dimension 3 and over the first half of the time

range.
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Fig. 2 Dimensions 1, 3, 5, 6, 7 and 10 (left to right and top to bottom) of the simulated
data after including outliers. The colours are explained in the text.

4. Curve 4 is a shift outlier in every dimension and over the second half of
the time range.

5. Curve 5 is an isolated outlier in dimension 5 at the three points in the
middle of the time range.

6. Curve 6 is an amplitude outlier in dimension 6 over the whole time range.
7. In dimension 7, Curve 7 is a shape outlier over the whole time range and

a shift outlier over part of the time range. However, in dimension 7, this
curve is less distant to the curves cloud than the rest of, shift, outliers in
this dimension: Curve 2 and Curve 4. It is constructed by substituting the
original Curve 7 in dimension 7 by the Curve 7 in dimension 10.

To appreciate the outliers, we have plotted in Figure 2 the data in dimensions
1, 3, 5, 6, 7 and 10 from left to right and top to bottom. Curve 2 is in blue
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Fig. 3 Heat map of the simulated data after including the outliers (left) and before including
the outliers (right).

color and Curve 4 in red in all plots. From left to right and top to bottom, the
green curve represents the Curve 1 (respectively, 3, 5, 6, 7 and 7) in dimension
1 (resp. 3, 5, 6, 7, and 10). Notice that Curve 7 in dimension 10 is not an
outlier because this curve is the same in dimensions 7 and 10, because Curve
7 in dimension 10 has been copied to dimension 7 to have a shape outlier in
the former dimension.

The first procedure proposed in [4] is applied using the random Tukey depth
and it is obtained the heat map shown in the left plot of Figure 3. The random
Tukey depth is applied here using only 20 random projections. These random
projections are drawn with the uniform distribution on the sphere, as suggested
in [1]. This makes the procedure computationally effective while providing
the desirable results, i.e. spotting the outliers. However, the procedure is still
computationally effective if we take 10 times more projections, or even more.
Nevertheless, it suffices with a low number of projections to get the appropriate
results.

In the left plot of Figure 3 we can appreciate that the first six outliers are
easily spotted. Particularly, it can be clearly appreciated that Curve 5 is an
isolated outlier in the middle of the time range or that Curve 4 is an outlier
only over the second half of the time range.

Concerning outlier number 7, as stated, heat maps are not intended to
detect shape outliers and, then, this curves is unnoticed excepting for a very
slightly dark color in the upper part of the wavelengths.

It is worth commenting that the white vertical areas in the heat map in
the left plot of Figure 3 are a particularity of the data we have simulated. To
make this clear we have plotted in the right plot of Figure 3 the heat map of
the simulated data before including the outliers.
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3 A simplification of the centrality-stability plots

Among the contents of the paper, we have specially enjoyed the part devoted
to the centrality-stability plots. The basic idea behind the CSP’s is that given
a family of curves Yj , j = 1, . . . , n which, in order to simplify the exposition,
we assume measured at the same time points tj ∈ [a, b], j = 1, . . . , T , the
CSP’s analyse the behaviour of the values di,j = (1 + AOi,j)

−1. AOi,j =
AO(Yi(tj), Pn(tj)), as defined in (11). Thus, if the set {di0,j : j = 1, . . . T}
contains mostly low values, the curve Yi0 is a potential shift outlier; however,
if it contains strong variations Yi0 is a potential shape outlier.

To implement this idea, the authors of [4] measure the variations of the
values in {di0,j : j = 1, . . . T} by comparing the MFSPD with the arithmetic
means of the (1+AO)’s, and so taking advantage of the fact that the MFSPD
is the inverse of the harmonic means of the (1 + AO)’s. While the basic idea
is very attractive to us, this implementation seems a bit too unnecessarily in-
volved. Therefore, we propose to employ a simpler, and more usual, measure
of variation: we compare the arithmetical means of the AO’s with a modi-
fication of the standard deviations of those quantities. We denote by CSPa

(respectively CSPDd) to a CSP computed with the methodology proposed by
the authors (resp. in this discussion).

The use of the standard deviation comes from it being a non robust disper-
sion measure, as the aim is to highlight variations in the values AOi0,j ’s when
i0 is fixed. The modification introduced here consists in considering the posi-
tive part of the distances between those quantities and their median, instead
of considering the standard deviations directly. This is due to the fact that we
are only interested in the largest values of the standard deviations and this
modification highlights those values in the CSPd. Being a bit more precise, a
CSPd is constructed as follows

1. For every i = 1, . . . , n compute the values

AOi,j = AO(Yi(tj), Pn(tj)), j = 1, . . . , T,

AOi =
1

T

∑
j

AOi,j

s2i =
1

T

∑
j

AO2
i,j −AO

2

i

2. Compute the median of the quantities s1, . . . , sn, m, and the values

s+i = max(si −m, 0), i = 1, . . . , n.

3. Plot the pairs (AOi, s
+
i ), i = 1, . . . , n.

This procedure has the additional advantage of not involving depth func-
tions. While (as rightly pointed out in the paper) a low depth does not guar-
antee an outlier, a high value of AOi is a strong hint of outlierness, because
this quantity is the mean of the outlierness of the values of Yi0(tj) in the
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Fig. 4 CSPa (left) and CSPd (right) of the octane data
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Fig. 5 CSPa (left) and CSPd (right) of the tablets data

sets {Yi(tj), i = 1, . . . , n}, j = 1, . . . T . Obviously the dimension of the curves
affects the computation of the CSPd in the same way as it does to the CSPa.

The obtained results are encouraging as, in the examples considered, the
CSPd’s give slightly better results than those produced by the CSPa’s. Next
we present the result of applying the previous procedure to the octane and
tablets datasets; there the curves are, respectively, one and three dimensional.
Since the CSPa of the octane data is not included in the paper, in Figure 4
we present the CSPa (left) and the CSPd (right) of this data set. Both two
CSP’s are similar, but the separation between the outlying points and the rest
is proportionally greater in the CSPd.

Concerning the tablets, the set the authors handle is composed by all the
90mg tablets plus a random sample taken from the 250mg tablets, thus, we
have decided to randomly construct a similar set (which, of course, is going to
be different to the one handled by the authors) and, consequently, in Figure
5 we show the CSPa and the CSPd of the data we have obtained. Again,
although both CSP’s are similar, the position of the point 21 in the 90mg
tablets is quite different, being declared as outlier with the CSPa but not with
the CSPd.
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In conclusion, we can say that both methodologies produce similar graphs,
with no too big differences between them; but the one based on the mean and
standard deviation seems more natural to us and, in the analysed examples,
produces slightly better results.
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