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Abstract

Using the DD -plot (depth-versus-depth plot), we introduce a new nonparametric

classification algorithm and call it a DD -classifier. The algorithm is completely non-

parametric, and requires no prior knowledge of the underlying distributions or of the

form of the separating curve. Thus it can be applied to a wide range of classification

problems. The algorithm is completely data driven and its classification outcome can

be easily visualized on a two-dimensional plot regardless of the dimension of the data.

Moreover, it is easy to implement since it bypasses the task of estimating underlying

parameters such as means and scales, which is often required by the existing classifi-

cation procedures. We study the asymptotic properties of the proposed DD -classifier

and its misclassification rate. Specifically, we show that it is asymptotically equiva-

lent to the Bayes rule under suitable conditions. The performance of the classifier is

also examined by using simulated and real data sets. Overall, the proposed classifier

performs well across a broad range of settings, and compares favorably with existing

classifiers. Finally, it can also be robust against outliers or contamination.

Key words: Classification, data depth, DD-plot, DD-classifier, maximum depth classi-

fier, misclassification rates, nonparametric, robustness.

1 Introduction

Classification is one of the most practical subjects in statistics. It has many important

applications in different fields, such as disease diagnosis in medical sciences, flaw detection
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in engineering, and risk identification in finance, to name a few. Many existing classification

algorithms assume either certain parametric distributions for the data or certain forms of

separating curves or surfaces. These parametric classifiers are suboptimal and of limited

use in practical applications where little information about the underlying distributions

is available a priori. In comparison, nonparametric classifiers are usually more flexible in

accommodating different data structures, and are hence more desirable. In this paper, we

propose and study a new nonparametric classifier using the DD-plot (depth vs depth plot)

introduced in Liu et al. (1999). We shall refer to this classifier as a DD-classifier. Roughly

speaking, for two given multivariate samples, its DD-plot represents the depth values of

those sample points with respect to the two underlying distributions, and thus transforms

the samples in any dimension to a simple two-dimensional scatter plot. The idea of our

DD-classifier is to look for a curve that best separates the two samples in their DD-plot, in

the sense that the separation yields the smallest classification error in the DD-plot. Clearly,

the best separating curve in the DD-plot leads to a classification rule in the original sample

space of the two samples. Some obvious advantages of this approach are: 1) The best

separating curve in the DD-plot is determined automatically by the underlying probabilistic

geometry of the data and is completely data driven. Therefore, the DD-classifier approach

is fully nonparametric. 2) Since the depth transformation has the standardization effect on

the data, the DD-classifier bypasses the task of estimating parameters such as means and

scales, which is often required by the existing classification procedures. 3) The classification

outcome can be easily visualized in the two-dimensional DD-plot. This is a much simpler

task than tracking the classification outcome in the original sample space, which can be

forbiddingly difficult if the samples are of high dimensions.

In the last two decades, data depth has emerged as a powerful analysis tool in various ar-

eas of multivariate statistics, since it can characterize the centrality of a distribution as well as

motivate nonparametric robust statistical methodologies. In fact, it has already offered sev-

eral promising solutions to classification problems. For instance, Christmann and Rousseeuw

(2001) and Christmann, et al. (2002) applied the idea of regression depth (see Rousseeuw

and Huber, 1999) to classification. Ghosh and Chaudhuri (2005a) used half-space depth and

regression depth to construct linear and nonlinear separating curves or surfaces. In those

depth based methods, a finite dimensional parametric form (usually linear or quadratic) for

the separating surface is often assumed. Thus, these classifiers are not fully nonparametric.

The possibility of using the maximum depth for nonparametric classification was raised in

Liu (1990). This was carried out fully by Ghosh and Chaudhuri (2005b), who developed

the notion of maximum depth classifier into a full-fledged nonparametric classification rule.
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This classification rule assigns the observation to the group for which it attains the highest

depth value, since higher depth values should correspond to more central positions within

the group. This classification rule is intuitively appealing and fully nonparametric, but it

performs well only when the populations differ in location only and the prior probabilities

of the populations are equal. Ghosh and Chaudhuri (2005b) recognized this limitation and

proposed a modified classification rule. However, the modified approach is valid only for

elliptical distributions when the half-space depth is used. This approach requires estimat-

ing several unknown parameters, some of which involve complicated estimation techniques.

Therefore, the modified approach is complicated and no longer fully nonparametric, which

diminishes its appeal to practitioners. Recently, Cui et al. (2008) considered a maximum

depth classifier based on a modified projection depth. However, this classifier appears to

work well only under normal settings.

In this paper, we show that our proposed DD-classifier is asymptotically equivalent to

Bayes rule under elliptical distributions. Furthermore, we show that it performs well in

a broad range of settings, including non-elliptical distributions or distributions differing in

scale. The latter is a case where the maximum depth classifier is known to fail. Our com-

parison studies show that the DD-classifier often outperforms the maximum depth classifier,

and is comparable or better than the k-nearest neighbor method. Besides the advantages

that we had stressed earlier of being nonparametric, completely data-driven, and simple to

visualize, the proposed DD-classifier is also easy to implement and robust against outliers

and extreme values.

The rest of this paper is organized as follows. In Section 2, we provide a brief review

of data depth, DD-plot and notations. In Section 3, we describe in detail the proposed

DD-classifier, and argue heuristically why it should yield the best separating curve for two

competing classes. In Section 4, we study the asymptotic properties of the DD-classifier

and its misclassification rate. In particular, we show that the DD-classifier is asymptoti-

cally equivalent to the Bayes rule under suitable conditions. In Section 5, we address some

practical issues regarding the implementation of DD-classifiers. In Section 6, we conduct

several simulation studies to evaluate the performance of the DD-classifier. In Section 7, we

demonstrate some applications of our classifier to real data sets. Concluding remarks are in

Section 8. All the proofs are deferred to the Appendix.
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2 Background Material on Data Depth and DD-plot

A data depth is a measure of “depth” or “centrality” of a given point with respect to a mul-

tivariate data cloud or its underlying distribution. For example, considering {X1, · · · , Xm},

a random sample from the distribution F (·) in R
d (d ≥ 1), the simplicial depth (Liu (1990))

of x w.r.t. F is defined as SDF (x) = PF{x ∈ s[X1, · · · , Xd+1]}, where s[X1, · · · , Xd+1] is

a closed simplex formed by (d + 1) random observations from F , and its sample version,

DFm
(x), is given by,

SDFm
(x) =

(

m

d + 1

)−1
∑

(∗)

I(x ∈ s[Xi1 , · · · , Xid+1
]),

where (*) runs over all possible subsets of {X1, · · · , Xm} of size (d + 1). A larger value of

DFm
(x) indicates that x is contained in more simplices generated from the sample, and thus

it lies deeper within the data cloud. Hence, the simplicial depth is a measure of centrality

of a given point with respect to a multivariate data cloud or its underlying distribution.

There are many other notions of data depth (see, e.g., Liu et al. (1999), Zuo and Serfling

(2000)). In this paper, we use Mahalanobis depth to cover the well studied Gaussian case,

and half-space depth, simplicial depth, and projection depth to explore the robustness aspect

of our approach. The last three depths are geometric and thus completely nonparametric.

We review the definitions of Mahalanobis depth, half-space depth and projection depth.

Definition 2.1. The Mahalanobis depth (Mahalanobis (1936)) at x w.r.t. F is defined as

MhDF (x) = [1 + (x − µF )′Σ−1
F (x − µF )]−1,

where µF and ΣF are the mean vector and covariance matrix of F respectively. The sample

Mahalanobis depth is obtained by replacing µF and ΣF with their sample estimates.

Definition 2.2. The half-space depth (Hodges (1955), Tukey (1975)) at x w.r.t. F is defined

as HDF (x) = infH{PF (H) : H is a closed half-space in R
d and x ∈ H}. Its sample version

is HDFm
(x), obtained by replacing F in HDF (x) by the empirical distribution Fm.

Definition 2.3. The projection depth (Stahel (1981), Donoho (1982), Donoho and Gasko

(1992), Zuo (2003)) at x w.r.t. F is defined as

PDF (x) =

[

1 + sup
‖u‖=1

|u′x − Med(Fu)| /MAD(Fu)

]−1

,

where Fu is the distribution of u′x, Med(Fu) is the median of Fu, and MAD(Fu) is the median

absolute deviation of Fu. The sample version of PDF (x) is PDFm
(x), obtained by replacing

the median and MAD with their sample estimates.
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For convenience, we use the notation D(·) to express any valid notion of depth, unless a

particular notion is to be singled out.

Next we briefly review the so-called DD-plot (depth vs depth plot). Let {X1, ..., Xm}(≡

X) and {Y1, ..., Yn}(≡ Y) be two random samples respectively from distributions F and G

which are defined on R
d. The DD-plot is defined as

DD(F, G) = {(DF (x), DG(x)), x ∈ X ∪ Y} .

If both F and G are unknown, the DD-plot is then defined as

DD(Fm, Gn) = {(DFm
(x), DGn

(x)), x ∈ X ∪ Y} (2.1)

The DD-plot was first introduced by Liu et al. (1999) for graphical comparisons of two

multivariate distributions or samples based on data depth. It is always a two dimensional

graph regardless of the dimensions of the samples. It was shown in Liu et at. (1999) that

different distributional differences, such as location, scale, skewness or kurtosis differences,

are associated with different graphic patterns in the DD-plot. Therefore, DD-plots can

provide simple diagnostic tools for visual comparisons of two samples of any dimension.

For example, Li and Liu (2004) derives several rigorous nonparametric tests of multivariate

locations and scales by detecting possible departures from the expected patterns of graphs

in DD-plots. In this paper, we shall show that DD-plots can also detect other differences

between two populations, based on which a novel classifier can be constructed.

3 DD-classifier

For simplicity, we consider only two-class classification problem in this paper, although the

proposed classification approach can easily extend to multi-class problems by incorporating

the method of majority voting (see, e.g., Friedman (1996)). Again let {X1, ..., Xm}(≡ X) and

{Y1, ..., Yn}(≡ Y) be two random samples from respectively F and G, which are distributions

defined on R
d. From the definition of DD-plot in (2.1). We see that if F = G, the DD-plot

should be concentrated along the 45 degree line. If the two distributions F and G differ,

the DD-plot would exhibit a noticeable departure from the 45 degree line. This is shown in

Figure 1(a), where the DD-plot is constructed for two bivariate normal samples: one is from

the standard bivariate normal distribution while the other is with a mean shift to (2, 0)′.

Both sample sizes are 200. The plot is constructed using the Mahalanobis depth.

To facilitate the identification of sample points from one sample versus the other, we use

different symbols to indicate the membership of the sample points. For example, in Figure

1(a), the “o”s represent the observations from X, and the “+”s represent those from Y.
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The DD-plot in Figure 1(a) shows quite clearly that the observations from the two

different samples are now displayed around the 45 degree line in an almost symmetric manner.

If we are to separate the two samples in the DD-plot using a line, the 45 degree line appears to

be the best choice. In fact, if we use the 45 degree line as the separating line, its corresponding

classification rule would assign x to F if DFm
(x) > DGn

(x) and assign x to G otherwise.

Note that this is actually the same as the maximum depth classifier studied in Ghosh and

Chaudhuri (2005b). It was shown in Ghosh and Chaudhuri (2005b) that the maximum depth

classifier is asymptotically equivalent to the Bayes rule if the two distributions have the same

prior probabilities and are elliptical with only a location difference. Therefore, in this case,

the best separating line between the two samples in the DD-plot should yield something

very close to the best separating line between two samples in the original sample space R
2.

We can see this in Figure 1(b), which shows our samples in their original sample space R
2.

Again the “o”s represent the observations from X, and the “+”s represent those from Y.

The thick curve is obtained by mapping the 45 degree line in the DD-plot back to the R
2

space. The thin line is generated from the Bayes rule. Both curves are indeed very close.
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(b) scatter plot

Figure 1: Two bivariate normal samples with only a location difference

To consider scale differences, we multiply all the observations in X by 3, and view the new

sample X as drawn from a bivariate normal distribution with mean (0, 0)′ and covariance

matrix 9I2, where I2 is the two dimensional identity matrix. Figure 2(a) shows the DD-plot

of Y and the new sample X. Compared with Figure 1(a), the two samples are no longer

displayed symmetrically. The observations from X now seem to move towards the x-axis

and the observations from Y towards the vertical line x = 1. For these two samples, if we
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still use the maximum depth classifier, which is equivalent to drawing the 45 degree line and

assigning the observations above the line to G and the ones below to F , it is obvious that this

classification rule would assign most of the observations from Y to F , and thus yield a large

misclassification rate. Therefore, this DD-plot clearly illustrates why the maximum depth

classifier does not perform well when the distributions have different dispersion structures.
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(b) scatter plot

Figure 2: Two bivariate normal samples with location and scale differences with line sepa-

ration in DD-plot

Although the two samples in the DD-plot in Figure 2(a) no longer scatter in a symmetric

pattern, it is still visible that there exists a line which can well separate the two samples,

such as the one drawn in Figure 2(a). Thus the DD-plot remains a useful tool to visualize

the separation of two samples. Further investigation shows that classification error can be

reduced if the separating line in Figure 2(a) is replaced with a suitable polynomial, as seen

in Figure 3(a). The thick solid circles in Figures 2(b) and 3(b) are the separating curves in

the original sample space corresponding respectively to the line in 2(a) and the polynomial

in 3(a). The largest circle in Figure 2(b) is the separating curve derived from the Bayes rule.

The observations from Figures 1 to 3 seem to suggest the general phenomenon that

the curve (or line) best separating the two samples in the DD-plot will also yield the best

separating curve between two samples in the original sample space. This phenomenon is

confirmed in the following proposition for uni-modal and elliptical distributions.

Proposition 1 Let f1(·) and f2(·) be the density functions of F and G respectively. Assume

that they are both from the elliptical family and have the following form,
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Figure 3: Two bivariate normal samples with location and scale differences with polynomial

separation in DD-plot

fi(x) = ci|Σi|
−1/2hi

(

(x − µi)
′Σ−1

i (x − µi)
)

i = 1, 2, (3.1)

where the hi(·)’s are strictly decreasing functions. If DF and DG are strictly increasing

functions of f1 and f2 respectively, then the Bayes rule is equivalent to






DG(x) > r(DF (x)) =⇒ assign x to G

DG(x) < r(DF (x)) =⇒ assign x to F

where r(·) is some real increasing function.

We note that the Mahalanobis depth, the half-space depth, the simplicial depth, and the

projection depth all satisfy the condition required of depths above. (See, Liu (1990), Arcones

et al. (1994), Zuo and Serfling (2000), Zuo (2003).)

Proposition 1 implies that for elliptical distributions, the best separating curve between

two samples in the R
d space is equivalent to a curve best separating the two samples in

the DD-plot. For non-elliptical distributions, we expect that the best separating function in

the DD-plot would also lead to a reasonably good classifier since data depth characterizes

the underlying distributions by centrality. Note that this separating function in the DD-plot

may not be increasing for non-elliptical settings. In this case, we may consider obtaining also

the best separating function from the DD-plot with the axes for DG and DF interchanged,

namely DD(G, F ). This best separating function will give a classifier which is different from
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the one derived from DD(F, G). In principle, we can choose the one that yields the smaller

misclassification rate as the recommended classifier. This would simply repeat the same

procedure with the roles of DF and DG interchanged. Thus, for the rest of the paper, we

illustrate our approach using only the DD(F, G)-plot. Note that the classification results

can only improve if we do consider both DD-plots.

To find the function r(·) which separates best the two samples in the DD-plot, we may

restrict ourselves to polynomials, since in principle any smooth function can be well approx-

imated by a polynomial with suitable degree.

Note that the separating polynomial corresponding to a reasonable classification rule

should pass through the origin in the DD-plot. To see this, consider the observations corre-

sponding to (0, 0) in the DD-plot. Since they have zero depth values with respect to both

samples, their memberships are not clear. Hence, a reasonable classification rule would place

those observations on the separating curve, indicating that they can be from either sample.

This point is also borne out in the setting of Proposition 1, whose proof clearly shows that r(·)

satisfies r(0) = 0. Thus, to search for the polynomial which separates best the two samples

in the DD-plot, we consider polynomials of the form ra(x) =
∑k0

i=1 aix
i. Here k0 is the degree

of the polynomial and is a predetermined known integer, and a = (a1, . . . , ak0
) ∈ R

k0 is the

coefficient vector of the polynomial. Now we consider the following classification algorithm







DGn
(x) > ra(DFm

(x)) =⇒ assign x to G

DGn
(x) < ra(DFm

(x)) =⇒ assign x to F ,

and our goal is, for a prefixed k0, to find the optimal a which minimizes the overall mis-

classification rate. We denote this optimal a, if exists, by a0 and refer to the corresponding

classifier as the DD-classifier from now on.

For any given a ∈ R
k0, we can draw a polynomial corresponding to DGn

(x) = ra(DFm
(x))

in the DD-plot, assign the observations above the curve to G and those below it to F , and

then calculate the empirical misclassification rate, namely

∆̂N(a) =
π1

m

m
∑

i=1

I{DGn (Xi)>ra(DFm(Xi))} +
π2

n

n
∑

i=1

I{DGn (Yi)<ra(DFm (Yi))}. (3.2)

Here the πi are the prior probabilities of the two classes, N = (m, n), I{A} is the indicator

function which takes 1 if A is true and 0 otherwise. Therefore, we propose to estimate the

optimal a0 by âN , which minimizes the empirical misclassification rate ∆̂N(a) in (3.2). More
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specifically, if âN = argmin{∆̂N(a)}, our DD-classifier is







DGn
(x) > râN

(DFm
(x)) =⇒ assign x to G

DGn
(x) < râN

(DFm
(x)) =⇒ assign x to F .

(3.3)

Applying this to the dataset in Figure 2 by following the steps described in Secion 5, we

obtain a separating polynomial of degree 2 which minimizes the overall empirical misclas-

sification rate. This polynomial is plotted in Figure 3(a) and its corresponding separating

curve in the original sample space R
2 is drawn as the thickest solid circle in Figure 3(b).

The thinly dotted circle in Figure 3(b) is the separating curve obtained from the Bayes rule.

Figures 1(b) to 3(b) also show that, although we always focus on the separating polyno-

mial in the DD-plot, when the polynomial is mapped back to the original sample space, the

separating curve can be of any shape, depending on the structure of the data. Therefore,

unlike many existing classification methods which require the pre-specification of certain

parametric forms of the separating curves in the sample space, the form of the separating

curves in the sample space obtained by our DD-classifier is automatically determined by the

geometric structure of the data that underlie the DD-plot.

4 Properties of DD-classifier

In this section, we show the consistency of DD-classifier, and, also, we show that, under

proper conditions, the proposed classification rule is asymptotically equivalent to the Bayes

rule. Before stating the main results, we first introduce some definitions and notation. Since

the depths we consider in this paper are bounded, without loss of generality, we assume that

they are bounded by 1. Given a ∈ R
k0, and d1, d2 ∈ [0, 1], we define

Ca(d1, d2) =

{

1 if d2 > ra(d1)

0 if d2 ≤ ra(d1).

Our proposed DD-classifier and its empirical version in (3.3) can be represented respectively

by Ca(DF (x), DG(x)) and CâN
(DFm

(x), DGn
(x)). Their associated misclassification rates are

∆(Ca) = π1PF{z : Ca(DF (z), DG(z)) = 1} + π2PG{z : Ca(DF (z), DG(z)) = 0},

and

∆N(ĈN) = π1PF{z : CâN
(DFm

(z), DGn
(z)) = 1} + π2PG{z : CâN

(DFm
(z), DGn

(z)) = 0}.
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Here ∆N (ĈN) can be viewed as the conditional misclassification probability given the training

sample when the values DGn
(Z) and râN

(DFm
(Z)) are used to classify the future observation

Z. Its expectation E
(

∆N(ĈN)
)

w.r.t. the probability distribution of the training sample is

the unconditional misclassification probability of the proposed DD-classifier.

Note that the family {Ca : a ∈ R
k0} is not closed with respect to pointwise convergence,

since its closure includes indicators of the union of at most k0 disjoint intervals. For the

latter case, we can use s to represent an indicator of a finite union of intervals, and consider

the function

Cs(d1, d2) = s(d1).

When this is applied to (DF (z), DG(z)), it classifies the point z based solely on its depth

with respect to F . The misclassification error associated with this function s is

∆(Cs) = π1PF{z : Cs(DF (z), DG(z)) = 1} + π2PG{z : Cs(DF (z), DG(z)) = 0}.

We denote by Γ the family of classification rules composed of functions Ca, a ∈ R
k0, and

of functions which are indicators of the union of at most k0 disjoint intervals in [0, 1].

Several lemmas are needed for proving the main result. In these lemmas we need to

assume that, for any a ∈ R
k0 and δ ∈ R,

PF {z : DG(z) = ra(DF (z))} = PG {z : DG(z) = ra(DF (z))} = 0 (4.1)

PF {z : DF (z) = δ} = PG {z : DF (z) = δ} = 0. (4.2)

Lemma 2 If F and G satisfy (4.1) and (4.2), then there exists C0 ∈ Γ such that ∆(C0) =

infC∈Γ ∆(C).

Remark 3 From the proof of Lemma 2, we can infer that the optimal classification rule

corresponds to a fixed a ∈ R
k0 or its limit. If the latter occurs in the setting that F and G

belong to the elliptical family, then the optimal classification rule simply corresponds to an

indicator function of one interval regardless the value k0. This holds because r is increasing

in this case.

Lemma 4 Suppose that F and G satisfies (4.1) and (4.2). Furthermore, assume that both

DF (·) and DG(·) are continuous and satisfy, as min(m, n) → ∞,

sup
x

|DFm
(x) − DF (x)|

a.s.
→ 0, sup

x
|DGn

(x) − DG(x)|
a.s.
→ 0. (4.3)

Then we have, for every C ∈ Γ, as min(m, n) → ∞,

∆̂N(C) → ∆(C) a.s.
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The four data depths studied in this paper satisfy the conditions in Lemma 4, see, e.g.

Liu (1990), Dümbgen (1992), Zuo and Serfling (2000) and Zuo (2003).

The following theorem shows that, under suitable conditions, ĈN , which minimizes the

empirical misclassification rate, converges asymptotically to C0, which minimizes the popu-

lation misclassification rate.

Theorem 5 Suppose that the assumptions in Lemma 4 hold. Let ĈN = argminC∈Γ{∆̂N(C)}

and C0 = argminC∈Γ{∆(C)}. If C0 is unique, we have, as min(m, n) → ∞,

ĈN → C0 a.s.

where this a.s. convergence should be understood in the sense that

PF{z : ĈN(DF (z), DG(z)) → C0(DF (z), DG(z))} = 1

PG{z : ĈN(DF (z), DG(z)) → C0(DF (z), DG(z))} = 1.

We are now ready to state our main result.

Theorem 6 Assume that the density functions f1(·) and f2(·) of F and G respectively are

of the form in (3.1), with h1(·) = h2(·) and Σ1 = Σ2. Assume that π1 = π2. If the depth

function used in the classification algorithm is Mahalanobis depth, half-space depth, simplicial

depth, or projection depth, then, as min(m, n) → ∞, if a1 = (1, 0, . . . , 0), we have

E
(

∆N(ĈN)
)

−→ ∆(Ca1
).

Remark 7 Following Proposition 1, it is easy to see that, under the assumptions of Theo-

rem 6, the Bayes rule is equivalent to






DG(x) > DF (x) =⇒ assign x to G

DG(x) < DF (x) =⇒ assign x to F .

Thus, ∆(Ca1
) corresponds to the Bayes risk. Consequently, Theorem 6 implies that the

DD-classifier is equivalent to the Bayes rule under the given assumptions.

5 Implementation of DD-classifier

In this section we discuss several implementation issues of the DD-classifier.

• Minimization of ∆̂N (a)
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As described in Section 3, our DD-classifier requires searching for a polynomial with

degree k0 which minimizes the empirical misclassification rate ∆̂N (a) in (3.2). In principle,

we need to search through all polynomials with degree k0 which pass through the origin.

However, in the linear case, i.e. k0 = 1, we only need to focus on the lines which pass through

the origin and at least one of the m + n sample points, since all the lines running between

two adjacent lines with no sample points in between would yield the same misclassification

rate. Therefore, we need to consider at most m+n lines. In this case, our final recommended

separating line is the one that yields the minimum misclassification rate. If there are multiple

such lines, we may choose the one with the smallest slope.

Similar arguments can be applied to the case of k0 > 1. In other words, we now only need

to consider all the polynomials which pass through the origin and k0 of the m + n sample

points. Our final recommended separating polynomial is the one that yields the minimum

misclassification rate.

Although the above observation simplifies significantly the search for the optimal poly-

nomial, the computation can still be daunting when k0 or m + n are large. We notice that

the difficulty involved in finding the minimum of ∆̂N (a) lies in the fact that the objective

function ∆̂N (a) is the sum of many indicator functions which are not differentiable every-

where. To find a more efficient algorithm for our minimization problem, we adopt the idea in

Ghosh and Chaudhuri (2005a) in using the logistic function 1/(1+ e−tx) to approximate the

indicator function I{x>0} in ∆̂N (a). Then the minimum can be found by using appropriate

derivative-based numerical methods. In this approximation, although larger t provides bet-

ter approximation of I{x>0}, the numerical optimization method for the resulting objective

function can be rather unstable when t is large. Some care is needed in choosing t. Based

on our numerical studies, we found that the optimization results become stable if we choose

t ∈ [50, 200] when the depth is standardized with upper bound 1. In all of our simulation

studies and real data analysis, we chose t = 100.

When using numerical methods to find the minimum of the above approximation to

∆̂N (a), the initial value for a can affect the optimization procedure since the function may

have many local minima. We propose the following procedure for choosing a suitable initial

value. As mentioned earlier, our ideal estimate for the optimal a0 is the coefficient vector

a for the polynomial which minimizes ∆̂N (a) among all the polynomials passing through

the origin and k0 of the sample points in the DD-plot. Instead of going through all these

polynomials, we randomly choose sufficiently large number, say 1000, of polynomials from

that set, and select the one that minimizes ∆̂N(a) from this subset of polynomials, and then

use its coefficient vector a as our initial value for a in the numerical optimization procedure.
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• The choice of k0

In this paper, the degree of polynomial, k0, is assumed to be known. However, in practice,

we usually face the task of choosing the right k0. As in the polynomial regression setting,

there is a trade-off between the prediction bias and the prediction variance in the choice of k0.

The prediction here refers to the prediction of membership for the future observations based

on the DD-classifier. Small k0 would result in small prediction variance but large prediction

bias, while large k0 would result in small prediction bias but large prediction variance. To

find a balance between these two, we recommend using cross-validation to choose k0.

• The choice of depth

As shown in the simulation studies in Section 6, different depths capture different aspects

of the underlying distribution. Then the DD-classifier can perform differently if different

depths are used to construct the DD-plot. If some prior information about the distribution

is available or if the goal is more oriented toward robustness, the suggestions given in Section 8

can offer some guidelines in choosing the appropriate depth. Otherwise, one can use a cross

validation approach to choose the depth that yields the smallest misclassification rate.

6 Simulation Studies

We have conducted some simulation studies to evaluate the performance of the DD-classifier.

6.1 Elliptical distributions

We use simulation settings similar to those in Ghosh and Chaudhuri (2005b). Due to space

limitation, we present the results for the following four settings.

(1) The underlying distributions F and G: two cases are considered. The observations are

generated from bivariate normal distributions or bivariate Cauchy distributions.

(2) The dispersion matrices Σ1 and Σ2 for F and G: two cases are considered. If we denote

Σ0 = (σi,j), where σ1,1 = σ1,2 = σ1,3 = 1 and σ2,2 = 4, then, the first corresponds to

the setting of equal dispersion matrices with Σ1 = Σ2 = Σ0. The second corresponds

to the setting of unequal dispersion matrices with Σ1 = Σ0 and Σ2 = 4Σ0.

In all four settings, the location parameters µ1 and µ2 for F and G are set to be (0, 0)′ and

(1, 1)′, respectively, and the sample sizes, m and n, for the training sets are both set to 200.

For each simulation setting, we generate a training set consisting of m and n observa-

tions from F and G, respectively. Based on this training set, various classifiers are obtained.
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Another 1000 observations (500 from each group) are then generated to compute the misclas-

sification rates for different classifiers. This experiment is repeated 100 times. The boxplots

of the misclassification rates for different classifiers from the 100 experiments is then used

to summarize the simulation results.

The classifiers considered in our simulation comparison studies are the linear classifier

from linear discriminant analysis (denoted by LDA), quadratic classifier from quadratic dis-

criminant analysis (denoted by QDA), k-nearest neighbor classifier (denoted by KNN ), max-

imum depth classifier studied in Ghosh and Chaudhuri (2005b), and our DD-classifier. For

KNN classifier, we use the leave-one-out cross validation to choose the optimal k. Since

the maximum depth classifier and our DD-classifier both depend on the choice of depths,

we consider the depths mentioned in Section 2 in our simulation studies. In the plots, the

maximum depth classifiers with Mahalanobis depth, projection depth, half-space depth and

simplicial depth are denoted by MM, MP, MH and MS, respectively. Similarly, the resulting

DD-classifiers with those four depths are denoted by DM, DP, DH and DS in the plots. For

each of our DD-classifiers paired with these four different depths, 10-fold cross validation is

used to choose the optimal degree of polynomial, k0, among 1, 2 and 3. The choice of depth

in the maximum depth classifier and our DD-classifier can be also made by cross valida-

tions. We denote those classifiers using the depth selected from the 10-fold cross validation

by MCV and DCV, respectively. We also include the optimal Bayes rule (denoted by OPT)

as a benchmark for the performance comparison of different classifiers.

Figure 4 shows the boxplots of the misclassification rates of various classifiers when F

and G are bivariate normal distributions. The left panel is for the case where F and G have

only a location difference. In this case, all the classifiers perform similarly. All the depth-

based classifiers are comparable with the optimal classifier, since both maximum depth

classifier and DD-classifier are asymptotically equivalent to the optimal Bayes rule in this

case. Among all the DD-classifiers, DM, as expected, is slightly better than others, and the

cross validation successfully chooses DM 60 times out of 100.

Figure 4(b) shows the classification results when the dispersion matrices of F and G are

also different. Here, QDA has the best performance, and is asymptotically equivalent to the

optimal Bayes rule. The maximum depth classifiers perform much worse than the optimum,

which can be explained similarly by Figure 2(a). In contrast, our DD-classifiers perform

much better, all are comparable to QDA. Again, in this Gaussian case, DM performs better

than other DD-classifiers and the cross validation chooses DM 45 times out of 100. Finally,

we note that all our DD-classifiers outperform KNN.
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Figure 4: Boxplots of misclassification rates – F and G are bivariate normal distributions

with µ1 = (0, 0)′ and µ2 = (1, 1)′: (a) Σ1 = Σ2 = Σ0; (b) Σ1 = Σ0 and Σ2 = 4Σ0.

Figure 5 shows the boxplots of the misclassification rates when F and G are bivariate

Cauchy distributions. Figure 5(a) is for the case where the two dispersion matrices are

the same. In this case, both LDA and QDA perform very poorly. However, the maximum

depth classifiers and the DD-classifiers when using the depths other than Mahalanobis depth

perform very well. This is not surprising since, asymptotically, they should be equivalent to

the optimal Bayes rule. The poor performance of MM and DM is mainly due to the fact that

the mean and covariance matrix used in Mahalanobis depth are not well defined for Cauchy

distributions. The cross validation chooses this depth only 1 and 7 times, respectively, for

maximum depth classifier and DD-classifier. However, it chooses projection depth, which

is shown to be the best choice in this setting, 69 and 75 times, respectively, for maximum

depth classifier and DD-classifier. All DD-classifiers and KNN perform comparably.

Figure 5(b) shows the results when the two dispersion matrices are different. Again, the

performance of both LDA and QDA is very poor. From the plot, we can also see that, under

this setting, our DD-classifiers clearly outperform the maximum depth classifiers. DP seems

to yield the best performance among all the DD-classifiers. The cross validation chooses DP

79 times out of 100. Also, DP and DCV clearly perform better than KNN.
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Figure 5: Boxplots of misclassification rates – F and G are bivariate Cauchy distributions

with µ1 = (0, 0)′ and µ2 = (1, 1)′: (a) Σ1 = Σ2 = Σ0; (b) Σ1 = Σ0 and Σ2 = 4Σ0.

6.1.1 Robustness aspects

Here we present a simulation study to examine the robustness properties of DD-classifiers.

The simulation settings are similar to those considered in Cui et al. (2008). Specifically, we

use the earlier simulation settings in this section where F and G are both bivariate normal

distributions, and 10% of the observations from F in the training set are contaminated with

observations from N(10µ2, Σ1). Figure 6(a) shows the misclassification rates when F and G

differ only in locations. In this case, among all the depth-based classifiers, MP and DP yield

the best misclassification rates and are almost as good as the optimal Bayes rule, while MM

and DM yield the worst rates. This can be explained by the fact that Mahalanobis depth

is based on the sample mean and sample covariance which are not robust against outliers,

while the projection depth is based on the median and MAD which are more robust statistics.

Over all, DD-classifiers outperform their maximum depth counterparts. Both LDA and QDA

perform poorly in this case. The cross validation for our DD-classifier chooses DP 99 times

out of 100. Here, the performance of DP and DCV is similar to that of KNN.

With the additional dispersion difference in F and G, Figure 6(b) shows even better

performance of the DD-classifiers than those observed in Figure 6(a). Most noticeably, MP

is now much worse than DP. In this setting, DP yields the best misclassification rate among
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Figure 6: Boxplots of misclassification rates – F and G are bivariate normal distributions

with µ1 = (0, 0)′ and µ2 = (1, 1)′, and the training observations from F were contaminated

with observations from N(10µ2, Σ1): (a) Σ1 = Σ2 = Σ0; (b) Σ1 = Σ0 and Σ2 = 4Σ0.

all the classifiers. The cross validation for our DD-classifier chooses DP all the time. Here,

the performance of DP, and thus DCV, is slightly better than that of KNN.

6.2 Non-elliptical distributions

We have also conducted a simulation study on some non-elliptical distributions to show the

broader applicability of DD-classifier. To facilitate the exposition, we denote a bivariate

distribution F which has independent marginal distributions by F = (F1, F2), where F1 and

F2 are the marginal distributions. The first two settings involve exponential distributions.

Denote the exponential distribution with mean λ by Exp(λ). In our first setting, we choose

F as (Exp(1), Exp(1)) and G as the shifted bivariate distribution, (Exp(1) + 1, Exp(1) + 1).

Therefore, F and G differ only in the location in this setting. In the second setting, we choose

F as (Exp(1), Exp(2)) and G as (Exp(2) + 1, Exp(1) + 1). Figure 7 shows the classification

results for these two settings.
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Figure 7: Boxplots of misclassification rates: (a) F = (Exp(1), Exp(1)) and G = (Exp(1) +

1, Exp(1) + 1); (b) F = (Exp(1), Exp(2)) and G = (Exp(2) + 1, Exp(1) + 1).

To introduce the next setting, we first denote the distribution of Z below by MixN(µ; σ1, σ2),

Z =







−σ1|X| + µ with probability 1/2

σ2|X| + µ with probability 1/2,

where X is a standard normal random variable. In our third setting, F has a bivariate

distribution (MixN(0; 1, 2), MixN(0; 1, 4)), and G has (MixN(1; 1, 2), MixN(1; 1, 4)). In our

fourth setting, F is N((0, 0)′, I2) and G is (Exp(1), Exp(1)). Figure 8 shows the results for

the last two settings.

In all four settings, DS or DH outperforms all the other classifiers and they are quite

comparable to the optimal Bayes rule. The cross validation here chooses the winning classifier

of these two most of the time. DM and DP do not perform well in these cases. This may be

explained by the fact that Mahalanobis depth and projection depth usually fail to capture

non-elliptical structures of the underlying distributions. Overall, maximum depth classifiers

perform poorly in all four settings. DH clearly outperforms KNN in all Figures 7 and 8,

and DS outperforms DH in the setting of Figure 8(a). In all, DCV is consistently the best

performer in all cases.
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Figure 8: Boxplots of misclassification rates: (a) F = (MixN(0; 1, 2), MixN(0; 1, 4)) and

G = (MixN(1; 1, 2), MixN(1; 1, 4)); (b) F = N((0, 0)′, I2) and G = (Exp(1), Exp(1)).

7 Applications to Real Data

In this section, we apply the DD-classifier to three real data sets. The brief descriptions of

the data sets are given below.

• Biomedical data

This data set, available at http://lib.stat.cmu.edu/datasets/, was first discussed in Cox

et al. (1982). It consists of 4 different blood measurements for 134 normal people and 75

carriers of a rare genetic disorder. After removing the 15 subjects which have missing values,

127 normal people and 67 carriers remain.

• Blood Transfusion data

This data set contains information of 748 blood donors randomly selected from the donor

database of Blood Transfusion Service Center in Hsin-Chu City in Taiwan. It was first used

by Yeh et al. (2009) and is available at http://archive.ics.uci.edu. These 748 donors were

divided into two groups depending on whether or not the donor donated blood in March

2007. Out of the 748 donors, 178 did and 570 did not. After removing the two linearly

correlated measurements, each donor is associated with three measurements: R (months

since last donation), and F (total number of donation) and T (months since first donation).
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• Image Segmentation data

This data set is accessible from http://archive.ics.uci.edu. It contains the pixel informa-

tion of two types of images: cement or window. After removing the redundant or linearly

correlated measurements, 10 measurements are used to characterize the pixel information.

There are 330 cement images and 330 window images.

Since none of the data set above has well-defined training and test sets, we randomly

divide each data set into two parts. One part serves as a training set and the other as a test

set. More specifically, in the Biomedical data, out of the 194 subjects, we randomly choose

100 and 50 subjects from the normal and carrier groups, respectively, to form the training set

and the remaining then serve as the test set. In the Blood Transfusion data, the training set

consists of 400 and 100 donors randomly selected respectively from the two groups, and the

remaining go to the test set. For the Image Segmentation data, 250 images randomly drawn

from each group form the training set and the rest form the test set. For each data set, we

carry out this random partition 100 times. The average test set misclassification rates and

their standard errors for different classifiers over 100 replications are reported in Table 1.

50-fold cross validation is used to determine the degree of polynomial in our DD-classifiers,

DM, DP and DH as well as the depth used in MCV and DCV. Leave-one-out cross validation

is used to determine the optimal k in KNN .

Data Sets LDA QDA KNN MM MP MH MCV DM DP DH DCV

Biomedical 15.6 12.8 14.1 26.5 31.3 12.8 12.8 12.7 15.1 12.2 12.7

(0.5) (0.4) (0.5) (0.6) (0.6) (0.5) (0.5) (0.5) (0.5) (0.4) (0.4)

Blood 27.7 27.7 29.0 32.5 31.5 29.6 29.6 25.6 25.8 26.3 25.7

Transfusion (0.2) (0.2) (0.2) (0.3) (0.4) (0.3) (0.3) (0.2) (0.2) (0.2) (0.2)

Image 8.3 8.1 6.0 8.3 16.9 7.8 8.0 7.6 11.7 6.2 6.3

Segmentation (0.2) (0.2) (0.2) (0.2) (0.4) (0.2) (0.2) (0.2) (0.3) (0.2) (0.2)

Table 1: Average misclassification rates (in percentage) with standard errors.

As shown in Table 1, in all the settings, our DD-classifiers clearly outperform their

maximum depth counterparts. Furthermore, for Biomedical and Blood Transfusion data,

the DD-classifiers with Mahalanobis depth and half space depth outperform LDA, QDA

or KNN . For the Image Segmentation data, the DD-classifier with half-space depth holds

significant edge over LDA or QDA, and is comparable to KNN .

The three data sets in our applications are all higher than two-dimensional, with the third

being 10 dimensional. It is almost impossible to visualize directly these data sets or their
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classification outcomes. On the other hand, these can be easily presented on the DD-plots

in Figure 9. Here Figures 9(a), (b) and (c) show the DD-plots of the three training sets

and their corresponding separating curves derived from the DD-classifiers. The DD-plots in

(a), (b) and (c) are constructed using the Mahanobis depth, half-space depth and half-space

depth, respectively, which are selected by a 50-fold cross validation. The curves in those

plots are the DD-classifier polynomials, whose degrees are also selected by cross validation.
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Figure 9: The DD-plots with their corresponding DD-classifiers: (a) Biomedical data; (b)

Blood Transfusion data; (c) Image Segmentation data

Remark 8 Note that efficient exact algorithms for computing half-space depth are available

only for dimensions no higher than 3, as seen in Rousseeuw and Struyf (1998). For the

higher dimensional applications in this section, we use the random approximation algorithm

introduced in Cuesta-Albertos and Nieto-Reyes (2008) which is computationally efficient in

any dimension.

8 Concluding Remarks

In this paper, we introduce the DD-classifier. It is a fully nonparametric classification pro-

cedure. The classification results can always be visualized in a two-dimensional DD-plot no

matter how large the dimension of the data is. For some settings, the proposed classifier

is shown to be asymptotically equivalent to the optimal Bayes rule. In addition, our sim-

ulation studies suggest that the DD-classifier performs well in general settings, including
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non-elliptical distributions. In many cases, the DD-classifier clearly outperforms the maxi-

mum depth classifier and it performs at the same or better level than other nonparametric

classifiers such as the KNN . Perhaps equally important, our classifier is easy to implement,

and it bypasses all the hassles of estimating parameters such as means, scales and so on.

Overall, our DD-classifier is an attractive nonparametric classification approach.

Since there are different notions of data depth in the literature, our DD-classifier can

achieve different properties by using different notions of data depth. For instance, if achiev-

ing robustness against possible sample contamination or extreme observations is the main

goal, one should consider using the more robust depth such as projection depth in the DD-

classifier. If the assumption of elliptical structure for the data is in doubt or no particular

distributional information for the data is known, one should use in the DD-classifier a ge-

ometric depth such as simplicial depth or half-space depth to achieve better performance.

This is because geometric depths generally reflect more accurately the true underlying ge-

ometric structure. In fact, sometimes the choice of depths can be made more intelligently

to improve further the performance of DD-classifier. For example, if one sample is from a

Gaussian distribution and the other sample is known to contain outliers, then Mahalanobis

depth should be used for the first sample, while a robust depth such as projection depth,

simplicial depth, or half-space depth should be used for the second sample.

Finally, unless pertinent information about the underlying distribution is available, we

strongly recommend our proposed procedure of using cross-validation to choose the degree

of the separating polynomial. This procedure clearly outperforms the linear separation when

the linear separation fails to achieve the performance of the Bayes classifier, as seen in Figures

2 and 3. Even in situations where the best separating function is supposed to be linear, our

proposed procedure performs just as well, as seen from Figure 4. Moreover, given the fact

that the linearity of r for a given depth does not imply the linearity of r for other depths, our

proposed cross-validation approach to choose the correct degree of the polynomial is more

systematic and desirable. Finally, the cross-validation approach can also be a more objective

approach to choosing the appropriate notion of depth in DD-classifiers, given that helpful

indication from the data is generally unclear in practice.

9 Appendix

Proof of Proposition 1 Since DF and DG are strictly decreasing functions respectively of

f1(·) and f2(·), we can write f1(x) = g1 (DF (x)) and f2(x) = g2 (DG(x)) , where the gi(·)’s

are some strictly increasing functions depending on the depth functions used. Therefore, the
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Bayes rule is






π2f2(x)/π1f1(x) > 1 ⇐⇒ DG(x) > g−1
2

[(

π1

π2

)

g1 (DF (x))
]

π2f2(x)/π1f1(x) < 1 ⇐⇒ DG(x) < g−1
2

[(

π1

π2

)

g1 (DF (x))
]

The proposition follows if we choose r(·) = g−1
2

[(

π1

π2

)

g1(·)
]

.

Proof of Lemma 2 Let us prove first that every sequence {Cn} ⊂ Γ contains a subsequence

{Cnk
} such that there exists C0 ∈ Γ which satisfies

PF{z : Cnk
(DF (z), DG(z)) → C0(DF (z), DG(z))} = 1 (9.1)

PG{z : Cnk
(DF (z), DG(z)) → C0(DF (z), DG(z))} = 1. (9.2)

From (4.2), the result is simple if {Cn} contains a subsequence of classification rules which

are unions of at most k0 intervals. Thus, let us assume that there exists an = (a1
n, . . . , ak0

n ) ∈

R
k0 such that Cn = Can

for every n. Then, {an} contains a subsequence (which we denote

with the same notation as the initial) which satisfies one of the following statements:

a) There exists a0 ∈ R
k0 such that an → a0. From here, assumption (4.1) gives the result.

b) The set A = A+ ∪ A− := {i : ai
n → +∞} ∪ {i : ai

n → −∞} is not empty and there

exist i1, . . . , ih ∈ A, and M1, . . . , Mh ∈ (0,∞) such that

lim
n

|a
ij
n |

|ai1
n |

= Mij , j = 1, . . . , h and lim
n

|ai
n|

|ai1
n |

= 0, if i 6= i1, . . . , ih.

We now have three possibilities:

b.1) A− = ∅. In this case, ran
(x) → ∞ for every x ∈ (0, 1] and then can

→ 0.

b.2) A+ = ∅. Thus, ran
(x) → −∞ for every x ∈ (0, 1] and then can

→ I(0,1].

b.3) A+ 6= ∅ and A− 6= ∅. Let bn = (b1
n, . . . , bk0

n ), where bi
n = ai

n if i ∈ A and bi
n = 0 if

i /∈ A. We obtain

lim
n

ran
(x) = lim

n
|ai1

n |
rbn

(x)

|ai1
n |

, for every x.

W.l.o.g., we can assume that i1 = min(A). Thus, given n ∈ N and x ∈ [0, 1], we have

rbn
(x) = |ai1

n |x
i1

(

∑

i∈A+

ai
n

|ai1
n |

xi−i1 −
∑

i∈A−

|ai
n|

|ai1
n |

xi−i1

)

=: |ai1
n |x

i1hn(x).
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Obviously

lim
n

hn(x) = h(x) =
∑

i∈A+

Mix
i−i1 −

∑

j∈A−

Mix
j−i1,

and, consequently,

lim
n

ran
(x) =











+∞, if h(x) > 0

−∞, if h(x) < 0

= 0, if h(x) = 0.

However, h is a polynomial with degree (max A − i1) ≤ k0, and, therefore, there exist

J1, . . . , Jh∗ disjoint intervals, with h∗ ≤ k0, such that

lim
n

can
(x) = I∪Ji

(x) ∈ Γ.

From here, (4.2) yields C0 = I∪Ji
which is the classification rule we look for.

To end the proof of the lemma, let {Cn} ⊂ Γ be a sequence such that

∆(Cn) → inf
C∈Γ

∆(C). (9.3)

Following the reasoning above, there exist a classification rule C0 ∈ Γ and a subsequence

which satisfy (9.1) and (9.2). Clearly, this subsequence also satisfies (9.3). From here and the

assumptions (4.1) and (4.2), taking into account that the classification rules are bounded, it

is not too difficult to prove that C0 is the desired optimum.

Proof of Lemma 4 This proof is inspired by the proof of the consistency of the k-means

presented in Cuesta-Albertos and Matrán (1988). We begin with the construction of an

adequate representation of the empirical distributions. This representation is based on the

Skorohod representation theorem for the convergence in distribution in terms of almost sure

convergent sequences.

First, we can assume that the random samples {Xm} and {Yn} are defined on the prob-

ability space (Ω, σ, µ). To highlight the randomness of the quantities we have introduced

previously, we also assume that this randomness depends on the chosen ω ∈ Ω. Thus, we

can write {Xm(ω)} and {Yn(ω)} for the sequences, and, F ω
m and Gω

n for the empirical dis-

tributions based on {X1(ω), . . . , Xm(ω)} and {Y1(ω), . . . , Yn(ω)} respectively. We will also

write ∆̂ω
N and Ĉω

N .

Now, since min(m, n) → ∞, the d-dimensional Glivenko-Cantelli theorem allows us to

conclude that there exists a set Ω0 ∈ σ such that, µ(Ω0) = 1 and for every ω ∈ Ω0 the

sequences of distributions functions {F ω
m} and {Gω

n} converge, respectively, to F and G. If
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we apply Skorohod’s representation theorem to those sequences, then there exists a second

probability space (X , σχ, µχ), such that, if ω ∈ Ω0, then there exist sequences of random

variables {Zω,F
m }m≥0 and {Zω,G

n }n≥0 such that

(i) For every m, n = 1, . . ., the distribution of Zω,F
m is F ω

m, and the distribution of Zω,G
n is

Gω
n. Moreover, the distribution of Zω,F

0 is F , and the distribution of Zω,G
0 is G.

(ii) The sequences {Zω,F
m }m≥1 and {Zω,G

n }n≥1 converge almost surely to the random vari-

ables Zω,F
0 and Zω,G

0 , respectively.

Let Ω1 be the probability one set in which the convergences (4.3) are satisfied. Thus, the

set Ω∗ = Ω0 ∩Ω1 has probability one. Using the above construction, if ω ∈ Ω∗, we have that

∆̂ω
N (C) = π1PF ω

m

{

x : C
(

DF ω
m
(x), DGω

n
(x)
)

= 1
}

+ π2PGω
n

{

x : C
(

DF ω
m
(x), DGω

n
(x)
)

= 0
}

= π1µχ

{

C
(

DF ω
m
(Zω,F

m ), DGω
n
(Zω,F

m )
)

= 1
}

+ π2µχ

{

C
(

DF ω
m
(Zω,G

n ), DGω
n
(Zω,G

n )
)

= 0
}

= Sω
m + T ω

n .

Let us focus on the term Sω
m, since T ω

n can be analyzed similarly. Obviously

∣

∣

∣
DF ω

m
(Zω,F

m ) − DF (Zω,F
0 )

∣

∣

∣
=
∣

∣DF ω
m
(Zω,F

m ) − DF (Zω,F
m )

∣

∣+
∣

∣

∣
DF (Zω,F

m ) − DF (Zω,F
0 )

∣

∣

∣
= Sω

m,1+Sω
m,2.

The sequence
{

Sω
m,1

}

m
converges to zero because the point ω being considered belongs

to Ω1. On the other hand, Zω,F
m are random variables defined on X and µχ-a.s. converge

to Zω,F
0 because ω ∈ Ω0. Since DF is continuos, we have that Sω

m,2 µχ-a.s. converges to 0.

Employing the similar argument for DGω
n
(Zω,F

m ), we would obtain that

(

DF ω
m
(Zω,F

m ), DGω
n
(Zω,F

m )
) a.s.
→
(

DF (Zω,F
0 ), DG(Zω,F

0 )
)

,

where this a.s.-convergence is with respect to the probability µχ.

Notice that the boundary of the set {(u, v) : C(u, v) = 0} is {(u, v) : u = r(v)} in the case

in which of C = Cr with r being a polynomial and a set like {{δi}× [0, 1] : i = 1, . . . , h + 1},

when C is the indicator of a union of h intervals. Thus, since the distribution of Zω,F
0 is F ,

the assumption (4.1) (or (4.2), depending on the kind of C we have) and the Portmanteau

Theorem, imply that

Sω
m → π1µχ

{

C
(

DF (Zω,F
0 ), DG(Zω,F

0 )
)

= 1
}

= π1PF {x : C(DF (x), DG(x)) = 1} . (9.4)

The proof ends because (9.4) holds for every ω ∈ Ω∗ which is a probability one set.
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Proof of Theorem 5 From Lemma 4, there exists a probability one set Ω∗ such that,

∆̂ω
N (C0) → ∆(C0), a.s., (9.5)

for every ω ∈ Ω∗. Moreover, according to the proof of this lemma, Ω∗ contains the set Ω0 in

which the Skorohod’s construction in the proof of Lemma 4 and the convergence (4.3) hold.

Now, let ω ∈ Ω∗ be a fixed point and let us consider the sequence {Ĉω
N}N . If we can

prove that every subsequence of {Ĉω
N}N contains a further subsequence which converges to

C0, then the whole sequence must converge to C0 and the proof will be complete.

To prove this, let us consider a subsequence of {Ĉω
N}N . As shown in the proof of Lemma

2, this subsequence contains a further a.s. convergent subsequence. From now on, we will

only refer to this convergent subsequence of a subsequence of {Ĉω
N}N , and for simplicity, we

still use {Ĉω
N}N to denote it. We will denote its limit by Cω.

Let us consider the sequence
{

∆̂ω
N(Ĉω

N)
}

N
. As in the proof of Lemma 4, we have

∆̂ω
N (Ĉω

N) = π1µχ

{

Ĉω
N

(

DF ω
m
(Zω,F

m ), DGω
n
(Zω,F

m )
)

= 1
}

+π2µχ

{

Ĉω
N

(

DF ω
m
(Zω,G

n ), DGω
n
(Zω,G

n )
)

= 0
}

. (9.6)

Similarly, we also obtain
(

DF ω
m
(Zω,F

m ), DGω
n
(Zω,F

m )
) a.s.
→
(

DF (Zω,F
0 ), DG(Zω,F

0 )
)

.

On the other hand, the fact that Ĉω
N → Cω implies that if x satisfies that Cω(DF (x), DG(x)) =

1 (resp. Cω(DF (x), DG(x)) = 1) and (DF (x), DG(x)) does not belong to the boundary of

the set {Cω = 1}, then, from an index on, Ĉω
N(DF (x), DG(x)) = 1. Since the probability

that Zω,F
0 belongs to the boundary of {Cω = 1} is zero, we obtain that

I{Ĉω
N(DF ω

m
(Zω,F

m ),DGω
n

(Zω,F
m ))=1}

a.s.
→ I{Ĉω(DF (Zω,F

0
),DG(Zω,F

0
))=1},

I{Ĉω
N(DF ω

m
(Zω,F

m ),DGω
n

(Zω,F
m ))=0}

a.s.
→ I{Ĉω(DF (Zω,F

0
),DG(Zω,F

0
))=0},

where the a.s.-convergence is with respect to the probability µχ. Since all the random

variables involved here are positive and bounded by 1, the dominated convergence theorem

and (9.6) imply that, for the point ω under consideration,

∆̂ω
N (Ĉω

N) → ∆(Cω).

Finally, the convergence (9.5) holds in this ω since ω ∈ Ω∗. Therefore, by definitions of

C0 and Ĉω
N we have

∆(C0) = lim ∆̂ω
N(C0) ≥ lim ∆̂ω

N (Ĉω
N) = ∆(Cω) ≥ ∆(C0).

Thus ∆(Cω) = ∆(C0). The fact that C0 is unique implies that Cω = C0, and the proof ends.
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Proof of Theorem 6 Proposition 1 implies that C0 = Ca1
, and Theorem 5 implies that

ĈN
a.s.
−→ Ca1

, as min(m, n) → ∞. On the other hand, observe that

∣

∣

∣
∆N(ĈN) − ∆(Ca1

)
∣

∣

∣
≤π1

∫

∣

∣

∣
I{ĈN (DFm(z),DGn (z))=1} − I{Ca1

(DF (z),DG(z))=1}

∣

∣

∣
f1(z) dz

+ π2

∫

∣

∣

∣
I{ĈN (DFm (z),DGn (z))=0} − I{Ca1

(DF (z),DG(z))=0}

∣

∣

∣
f2(z) dz.

Combining with the almost sure pointwise convergence of empirical depth functions to

population depth functions, it follows from the dominated convergence theorem that
∣

∣

∣
∆N (ĈN) − ∆(Ca1

)
∣

∣

∣

a.s.
−→ 0, as min(m, n) → ∞.

Applying the dominated convergence theorem again, the theorem follows.
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