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Abstract. The Cramér–Wold theorem states that a Borel probability measure P on Rd is uniquely

determined by its one-dimensional projections. We prove a sharp form of this result, addressing

the problem of how large a subset of these projections is really needed to determine P . We also

consider extensions of our results to measures on a separable Hilbert space. As an application of

these ideas, we derive a simple, universally consistent goodness-of fit-test for data taking values in

a Hilbert space.

1. Introduction

Let P be a Borel probability measure on Rd, where d ≥ 2. The Cramér–Wold theorem [2, p.291]
states that P is uniquely determined by its one-dimensional projections. This paper addresses the
problem of how large a subset of these projections is really needed to determine P .

In the case d = 2, Rényi [10, Theorem 1] proved that, provided that P is supported on a bounded
subset of R2, it is determined by any infinite set of its one-dimensional projections. Gilbert [3,
Theorem 1] subsequently extended this result by showing that the same conclusion holds if we
merely assume that P has finite moments satisfying the Carleman condition.

When d ≥ 3, this is no longer true: not every infinite set of one-dimensional projections suffices
to determine P , even when P is compactly supported. For example, if d = 3, then all probability
measures supported on the z-axis have the same image (a point mass at the origin) under projection
onto any line in the xy plane.

So how large a set of one-dimensional projections is needed to determine P in general? We
give a rather precise answer this question in §3, by formulating and proving a sharp form of the
Cramér–Wold theorem, valid for all d ≥ 2. When d = 2, it reduces to the theorem of Gilbert,
mentioned above.

In §4, we extend our results to the case of a separable, infinite-dimensional Hilbert space.
Finally, in §5, we present an application of these ideas to derive a universally consistent Kolmo-

gorov–Smirnov goodness-of-fit test for data taking values in a Hilbert space. We emphasize that
our aim in this section is just to give a idea about how the results in the previous sections can be
applied to obtain sound statistical procedures; we do not try here to optimize them.

2. Preliminaries

We begin by establishing some notation, as well as a few basic elementary results.
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Let H be a real, separable Hilbert space (finite- or infinite-dimensional). We write 〈·, ·〉 for the
inner product on H, and ‖ · ‖ for the corresponding norm. Given a closed subspace L of H, we
denote by πL : H → L the orthogonal projection of H onto L. Also, given any subset S of H, we
write S⊥ for set of vectors orthogonal to S.

Let P be a Borel probability measure on H. Its characteristic function φP : H → C is given by

φP (x) :=
∫

ei〈x,y〉 dP (y) (x ∈ H).

It is well known that P is uniquely determined by its characteristic function [6, Proposition 7.4.1].
Given a closed subspace L ofH, we denote by PL the projection of P onto L, namely the probability
measure on L given by

PL(B) := P
(
π−1

L (B)
)

(Borel B ⊂ L).

A simple calculation shows that φPL
(x) = φP (x) for all x ∈ L.

Given two Borel probability measures P,Q on H, we define

E(P,Q) := {x ∈ H : P〈x〉 = Q〈x〉},

where 〈x〉 denotes the one-dimensional subspace spanned by x. The set E(P,Q) will play a central
role in what follows. It is obvious that E(P,Q) is a cone, i.e. a union of one-dimensional subspaces
of H. The following proposition gives a simple characterization of E(P,Q) in terms of characteristic
functions.

Proposition 2.1. With the above notation,

(1) E(P,Q) = {x ∈ H : φP (tx) = φQ(tx) for all t ∈ R}.

Proof. If x ∈ H, then φP〈x〉(tx) = φP (tx) (t ∈ R). The result thus follows from the uniqueness
theorem for characteristic functions. �

Corollary 2.2. E(P,Q) is closed in H.

Proof. This follows easily from (1), using the dominated convergence theorem. �

Another consequence is the Cramér–Wold theorem for H.

Corollary 2.3. If E(P,Q) = H, then P = Q.

Proof. If E(P,Q) = H, then from (1) we get φP = φQ, and hence P = Q. �

Remarks. (i) Combining the two corollaries, we see that if E(P,Q) is dense in H, then P = Q.
(ii) The Cramér–Wold theorem can viewed as a simple form of uniqueness theorem for the Radon

transform, applied to measures rather than functions.

3. A sharp Cramér–Wold theorem in Rd

As mentioned in the introduction, a compactly supported Borel probability measure on R2 is
determined by its projections onto any infinite set of lines, but the same is no longer true in Rd

when d ≥ 3. We begin this section by formulating the ‘correct’ condition.
A polynomial p on Rd is called homogeneous of degree m if p(tx) = tmp(x) for all t ∈ R and

all x ∈ Rd. A subset S of Rd is called a projective hypersurface if there exists a homogeneous
polynomial p on Rd, not identically zero, such that S = {x ∈ Rd : p(x) = 0}.

The following result is a sharp form the Cramér–Wold theorem for Rd.
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Theorem 3.1. Let P,Q be Borel probability measures on Rd, where d ≥ 2. Assume that:

• the absolute moments mn :=
∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞;

• the set E(P,Q) is not contained in any projective hypersurface in Rd.

Then P = Q.

Remarks. (i) The condition
∑

n≥1 m
−1/n
n = ∞ is known as the Carleman condition. A probability

measure satisfying this condition is uniquely determined by its moments [11, p.19]. If P has a
finite moment generating function in a neighbourhood of the origin, then it automatically satisfies
the Carleman condition (but not conversely).

(ii) The Carleman condition is imposed only on P , not on Q. Thus, in the language of [1, §4.1],
the theorem is a ‘strong determination’ result. This will be important for the statistical application
in §5.

(iii) The condition that E(P,Q) not be contained in any projective hypersurface is equivalent
to asking that E(P,Q) be dense in Rd with respect to the projective Zariski topology (see [9, p.50
and p.81]) (compare this with the remark at the end of §2).

(iv) When d = 2, the condition on E(P,Q) is equivalent to demanding that it contain an infinite
number of lines, and thus, in this case, Theorem 3.1 reduces to Gilbert’s theorem mentioned in
the Introduction.

(v) Both conditions in Theorem 3.1 are sharp, in a sense to be made precise at the end of the
section.

Proof of Theorem 3.1. By hypothesis, the absolute moments of P are finite. We begin by showing
that the same is true of Q. Fix n ≥ 0, and set

F :=
{

x ∈ Rd :
∫
|〈x, y〉|n dQ(y) < ∞

}
.

Since |〈x, y〉|n is a convex function of x, it is easy to see that F is a subspace of Rd. Further, if
x ∈ E(P,Q), then

(2)
∫
|〈x, y〉|n dQ(y) =

∫
|t|n dQ〈x〉(t) =

∫
|t|n dP〈x〉(t) =

∫
|〈x, y〉|n dP (y) < ∞.

It follows that E(P,Q) ⊂ F . If F were a proper subspace of Rd, then we could find a non-zero
z ∈ F⊥, and so E(P,Q) would be in the zero set of the linear polynomial p(x) := 〈x, z〉, contrary
to hypothesis. Therefore F = Rd. Hence, writing e1, . . . , ed for the standard unit vector basis of
Rd, we have∫

‖y‖n dQ(y) =
∫ ( d∑

j=1

|〈ej , y〉|2
)n/2

dQ(y) ≤ dn/2
d∑

j=1

∫
|〈ej , y〉|n dQ(y) < ∞,

as claimed.
Now fix n ≥ 0 once again, and consider

p(x) :=
∫
〈x, y〉n dP (y)−

∫
〈x, y〉n dQ(y) (x ∈ Rd).

Clearly p is a homogeneous polynomial, and a similar calculation to (2) shows that p(x) = 0 for
all x ∈ E(P,Q). By our assumption about E(P,Q), this is possible only if p(x) = 0 for all x ∈ Rd.
Moreover this holds for every n ≥ 0. Thus P and Q have exactly the same moments. As P satisfies
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the Carleman condition, it is uniquely determined by its moments, and so we conclude that P = Q,
as desired. �

Corollary 3.2. Let P,Q be Borel probability measures on Rd, where d ≥ 2. Assume that:

• the absolute moments mn :=
∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞;

• the set E(P,Q) is of positive Lebesgue measure in Rd.

Then P = Q.

Proof. This is an immediate consequence of Theorem 3.1, because every projective hypersurface
is of Lebesgue measure zero in Rd. �

Several authors have also considered determination of probability measures on Rd by their
projections onto hyperplanes (see [1] and the references cited therein). Of course, when d = 2, the
hyperplane projections are just the one-dimensional projections. However, if d ≥ 3, then the one-
dimensional projections are in some sense ‘finer’. Indeed, by the original Cramér–Wold theorem,
PL = QL ⇐⇒ L ⊂ E(P,Q). Using this remark, we can give a simple proof of the following result,
which was already known (see e.g. [1, Theorem 4.11]).

Corollary 3.3. Let P,Q be Borel probability measures on Rd, where d ≥ 2. Assume that:

• the absolute moments mn :=
∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞;

• PL = QL for infinitely many hyperplanes L in Rd.

Then P = Q.

Proof. Again, this is an immediate consequence of Theorem 3.1, because a projective hypersurface
in Rd can contain at most finitely many hyperplanes. �

In view of this result, it is tempting to conjecture that the hypersurface condition in Theorem 3.1
can be replaced by the weaker assumption that E(P,Q) is not contained in any finite union of
hyperplanes. The following very simple example shows that this conjecture is false.

Example 3.4. There exist probability measures P,Q on R3 such that:

• the moment generating functions of P and Q are finite everywhere,
• the set E(P,Q) is not contained in any finite union of hyperplanes,

but P 6= Q.

Proof. Let X, Y be independent standard normal random variables. Let P and Q be the distri-
butions of three-dimensional random vectors (X, Y, 0) and (X,−X, Y ) respectively. Evidently, the
moment generating functions of P,Q are finite everywhere.

Let x = (x1, x2, x3) be a unit vector in R3. Then P〈x〉 and Q〈x〉 are centered gaussian distributions
with variances x2

1 + x2
2 and (x1 − x2)2 + x2

3 respectively. Thus

(x1, x2, x3) ∈ E(P,Q) ⇐⇒ x2
1 + x2

2 = (x1 − x2)2 + x2
3 ⇐⇒ 2x1x2 = x2

3.

As E(P,Q) is a cone, it follows that

E(P,Q) = {(x1, x2, x3) ∈ R3 : 2x1x2 = x2
3}.

It is an elementary exercise to check that this set is not contained in any finite union of hyperplanes.
Finally, P 6= Q because E(P,Q) 6= R3. �
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Remark. The degeneracy in the preceding example is not important. Indeed, if we consider four
independent standard one-dimensional normal random variables X, Y, Z,W , and take P,Q to be
the distributions of the vectors (X, W + Y, Z) and (X, W −X, Y + Z), then we are in exactly the
same situation as in the example, and P and Q are both non-degenerate gaussian distributions.

By employing some harmonic analysis, we can go rather further and show that the hypersurface
condition in Theorem 3.1 is sharp, in a sense made precise by the following theorem.

Theorem 3.5. Let S be a projective hypersurface in Rd. Then there exist Borel probability mea-
sures P,Q on Rd such that

• both P and Q are supported on bounded subsets of Rd,
• E(P,Q) = S,

but P and Q are mutually singular.

Proof. The proof depends on an auxiliary function, f : Cd → C, defined by

f(z) :=
d∏

j=1

(sin zj − zj

z3
j

)
(z := (z1, . . . , zd) ∈ Cd).

It is elementary to check that f has the following properties:

(i) f is an even entire function which is real-valued on Rd;
(ii) |f(z)| ≤ const. exp(

∑d
1 |zj |) on Cd;

(iii) |f(x)| ≤ const./(1 + ‖x‖2) on Rd;
(iv) f(0) 6= 0.

By definition of projective hypersurface, S = {x ∈ Rd : p(x) = 0}, where p is a homogeneous
polynomial, not identically zero. Define g : Rd → R by g(x) := p(x)2f(x)N , where N is a positive
integer, chosen large enough so that g ∈ L2(Rd) (this is possible, by (iii) above). Let h = ĝ, the
Fourier transform of g. By Plancherel’s theorem h ∈ L2(Rd), and h is real-valued since g is even
and real-valued. Moreover, since g is the restriction to Rd of an entire function of exponential type
(namely p(z)2f(z)N ), the Paley–Wiener theorem [14, Theorem 4.9] tells us that h is supported on
a compact subset of Rd.

Define finite positive Borel measures on Rd by

P (B) :=
∫

B
h+(x) dx and Q(B) :=

∫
B

h−(x) dx (Borel B ⊂ Rd).

Clearly P and Q are compactly supported and mutually singular. Also, using the Fourier inversion
theorem, their characteristic functions satisfy

(3) φP (x)− φQ(x) = cg(x) = cp(x)2f(x)N (x ∈ Rd),

where c is a non-zero constant. In particular,

P (Rd)−Q(Rd) = φP (0)− φQ(0) = cp(0)2f(0)N = 0,

so, multiplying by a constant if necessary, we can arrange that P,Q are both probability measures.
Also, it follows from (1) and (3) that

E(P,Q) = {x ∈ Rd : p(tx)2f(tx)N = 0 for all t ∈ R}.

As p is homogeneous and f(0) 6= 0, we deduce that E(P,Q) = {x ∈ Rd : p(x) = 0} = S. �



6 J. CUESTA-ALBERTOS, R. FRAIMAN, AND T. RANSFORD

Finally, for the record, we state a theorem showing that the first condition in Theorem 3.1 (the
Carleman condition) is also sharp.

Theorem 3.6. Let C be a proper closed cone in Rd, and let (Mn)n≥0 be a positive sequence
satisfying

M0 = 1, M2
n ≤ Mn−1Mn+1 (n ≥ 1) and

∑
n≥1

M−1/n
n < ∞.

Then there exist Borel probability measures P and Q on Rd such that
• both

∫
‖x‖n dP (x) ≤ Mn and

∫
‖x‖n dQ(x) ≤ Mn, for all n ≥ 0,

• the set E(P,Q) contains C,
but P and Q are mutually singular.

Proof. This is just a slight restatement of [1, Theorem 5.4]. �

4. Extensions to infinite dimensions

In this section, we shall show that both the Corollaries 3.2 and 3.3 have rather natural extensions
to infinite dimensions. In the case of Corollary 3.2, since Lebesgue measure no longer makes sense
in infinite dimensions, we shall use gaussian measures instead.

Let H be a separable Hilbert space. A Borel probability measure µ on H is called gaussian if
each of its one-dimensional projections is gaussian. It is non-degenerate if, in addition, each of
its one-dimensional projections is non-degenerate. If µ is gaussian, then its characteristic function
has the form

(4) φµ(x) = exp
(
i〈a, x〉 − 1

2〈Sx, x〉
)

(x ∈ H),

where a ∈ H (the mean of µ) and S is a positive, trace-class operator on H (the covariance operator
of µ). For more details, see e.g. [6, §7.5 and §7.6].

The following result is the infinite-dimensional generalization of Corollary 3.2.

Theorem 4.1. Let H be a separable Hilbert space, and let µ be a non-degenerate gaussian measure
on H. Let P,Q be Borel probability measures on H. Assume that:

• the absolute moments mn :=
∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞;

• the set E(P,Q) is of positive µ-measure.
Then P = Q.

Proof. Let S be the covariance operator of µ. By the spectral theorem, S has an orthonormal basis
of eigenvectors (en)n≥1. For each n ≥ 1, let Fn be the linear span of {e1, . . . , en}, and let µn and
νn be the projections of µ onto Fn and F⊥n respectively. Then µn, νn are non-degenerate gaussian
measures on Fn and F⊥n respectively, and µ = µn ⊗ νn, their product measure (this is simply a
restatement of the familiar fact that uncorrelated gaussian random variables are independent).

Fix n ≥ 1. By Fubini’s theorem,

µ
(
E(P,Q)

)
=

∫
F⊥

n

µn

(
E(P,Q)x

)
dνn(x),

where E(P,Q)x denotes the x-section of E(P,Q), i.e. the set of y ∈ Fn such that x + y ∈ E(P,Q).
Since µ(E(P,Q)) > 0, there exists x ∈ F⊥n such that µn(E(P,Q)x) > 0. As νn is non-degenerate,
we can suppose that x 6= 0. As µn is non-degenerate, it is absolutely continuous with respect to
Lebesgue measure on Fn, and so E(P,Q)x is a set of positive n-dimensional Lebesgue measure.
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As E(P,Q) is a cone, it follows that E(P,Q)tx is also of positive n-dimensional Lebesgue measure,
for each t ∈ R \ {0}. Therefore E(P,Q) ∩G is of positive (n + 1)-dimensional Lebesgue measure,
where G is the linear span of {e1, . . . , en, x}. By Corollary 3.2, we deduce that PG = QG. In
particular, since Fn ⊂ G, we obtain PFn = QFn . This implies that φP = φQ on Fn. Finally, since
∪n≥1Fn is dense in H and φP , φQ are continuous, it follows that φP = φQ on H, and thus P = Q,
as desired. �

We now present the infinite-dimensional generalization of Corollary 3.3. In this context, hyper-
plane should be taken to mean closed subspace of codimension one.

Theorem 4.2. Let P,Q be Borel probability measures on a separable Hilbert space H. Assume
that:

• the absolute moments mn :=
∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞;

• PL = QL for infinitely many hyperplanes L in H.

Then P = Q.

For the proof, we need a simple lemma. Recall that, given a closed subspace F of a Hilbert
space H, we write πF : H → F for the orthogonal projection of H onto F .

Lemma 4.3. Let H be a Hilbert space, and let (Lk)k≥1 be distinct hyperplanes in H. Then there
exists a two-dimensional subspace F of H such that (F ∩ Lk)k≥1 are distinct hyperplanes in F .

Proof. For each k, there exists xk ∈ H \ {0} such that Lk = x⊥k . Given a closed subspace F of H,
the sets F ∩ Lk and F ∩ Ll are distinct hyperplanes in F if and only if the pair {πF (xk), πF (xl)}
is linearly independent. In particular, if F is two-dimensional, say F = the linear span of {y, z},
then

F ∩ Lk 6= F ∩ Ll ⇐⇒
∣∣∣∣〈xk, y〉 〈xk, z〉
〈xl, y〉 〈xl, z〉

∣∣∣∣ 6= 0.

Given k, l with k 6= l, let Ukl denote the set of pairs (y, z) ∈ H ×H for which the determinant on
the right-hand side is non-zero. Then Ukl is a dense open subset of H×H. By the Baire category
theorem, it follows that ∩k,lUkl is non-empty. Pick a pair (y, z) in this intersection, and let F be
the linear span of {y, z}. Then F has the property stated in the lemma. �

Proof of Theorem 4.2. Let (Lk)k≥1 be a sequence of distinct hyperplanes such that PLk
= QLk

for all k ≥ 1. Let F be a two-dimensional subspace as in the statement of the lemma. Pick an
orthonormal basis (en)n≥1 of H such that F is spanned by {e1, e2}. For each n ≥ 2, let Fn be
the linear span of {e1, . . . , en}. Then (Fn ∩ Lk)k≥1 is a family of distinct hyperplanes in Fn, and
PFn∩Lk

= QFn∩Lk
for all k. By Corollary 3.3, it follows that PFn = QFn . Finally, just as in the

proof of Theorem 4.1, we conclude that P = Q. �

5. Application: Goodness-of-fit tests

Goodness-of-fit tests of Kolmogorov–Smirnov type are the most widely used tests to decide
whether it is reasonable to assume that some one-dimensional data come from a given distribution.
The problem is the following: Given i.i.d. real random variables X1, . . . , Xn on a probability space
(Ω,A, ν), can we accept that their underlying common distribution is a given P0? Thus, in terms
of a statistical test-of-hypothesis problem, the null hypothesis H0 is that the true underlying
distribution P is equal to P0, while the alternative hypothesis HA is that P 6= P0.
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To carry out this test, Kolmogorov [4] suggested using the statistic

(5) Dn := sup
t∈R

|Fn(t)− F0(t)|,

where F0 is the distribution function of P0, and Fn is the empirical distribution function, defined
by

Fn(t) :=
1
n

n∑
i=1

I(−∞,t](Xi) (t ∈ R),

rejecting the null hypothesis when Dn is large.
If F0 is continuous, and the null hypothesis holds, then the statistic Dn has the important

property of being distribution-free, i.e. its distribution does not depend on the true underlying
distribution P0, but only on n. This distribution was tabulated by Smirnov [13] and Massey [7, 8],
and is available in most statistical packages. Kolmogorov [4] also found the asymptotic distribution
of
√

nDn when H0 holds. This distribution coincides with that of the maximum of a Brownian
bridge. Its explicit expression is

lim
n→∞

ν(
√

nDn ≤ t) = 1− 2
∞∑

k=1

(−1)k+1e−2k2t2 (t > 0).

Later on, Smirnov [12] and Kolmogorov [5] treated the two-sample problem with similar tech-
niques. Here, we have two independent random samples X1, . . . , Xn and Y1, . . . , Ym, taken from
the distributions P and Q respectively, and the problem is to decide whether it is reasonable to
assume that P = Q. Thus, the null hypothesis H0 is now P = Q, while the alternative hypothesis
HA is P 6= Q. Denoting by Fn and Gm the respective empirical distributions obtained from each
sample, the proposed statistic for this problem was

Dn,m := sup
t∈R

|Fn(t)−Gm(t)|.

The properties of Dn,m are very similar to those of Dn. In particular, under the null hypothesis,
if P (and hence Q) is continuous, then Dn,m is distribution-free. Moreover,

lim
min(n,m)→∞

ν

(√
mn

m + n
Dn,m ≤ t

)
= 1− 2

∞∑
k=1

(−1)k+1e−2k2t2 (t > 0).

Turning now to higher dimensions, to the best of our knowledge there are still no satisfactory
extensions of the Kolmogorov–Smirnov tests, even for two-dimensional data. All proposals fail on
at least one of the following two counts: (i) being independent of a reference basis on the space, i.e.
equivariant with respect to orthogonal transformations, and/or (ii) being distribution-free. One
of the main problems in constructing a distribution-free test in higher dimensions is to define
appropriate correlates of the rank statistics in order to obtain the analogue of Fn, the empirical
distribution function. (Recall that, given distinct real numbers x1, . . . , xn, the rank Ri of xi is the
place that xi occupies in the ordered vector x(1) < . . . < x(n) obtained by ordering the original
vector, i.e. xi = x(Ri).)

To help understand why extensions to higher dimensions are of interest, we remark that recent
advances in modern technology allow significantly more data to be recorded over a period of time,
leading to samples composed of trajectories which are measured on each of a number of individuals.
Such data are common in different fields, including health sciences, engineering, physical sciences,
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chemometrics, finance and social sciences. They are often referred to as functional data or longitu-
dinal data (this last term being preferred in health and social sciences). In this context, the data
can be considered as independent, identically distributed realizations of a stochastic process taking
values in a Hilbert space. For instance, we might have a random sample {X1(t), . . . , Xn(t) : t ∈ T}
of trajectories with values in the Hilbert space L2(T ), where T is an interval in R.

The results in this section will provide goodness-of-fit tests for random elements taking values
in a separable Hilbert space H. In particular, this will provide goodness-of-fit tests for stochastic
processes. As far as we know, this is the first such proposal in this setting. The problem that we
shall analyze is the following: Let PX denote the common probability law of the random elements
X1, . . . , Xn in H. Given a probability measure P0 on H, provide a procedure to decide when the
data call into question the null hypothesis H0 : PX = P0 in favor of the alternative HA : PX 6= P0.

The procedure we propose consists of (i) to choose a random direction h in H, according to a
non-degenerate gaussian law µ on H, and then (ii) to apply the standard Kolmogorov–Smirnov
test to the projections of the data onto the one-dimensional subspace 〈h〉. Thus, according to (5),
we compute the statistic

(6) Dn(h) := sup
t∈R

|F h
n (t)− F h

0 (t)|,

where now

F h
0 (t) := P0{x ∈ H : 〈x, h〉 ≤ t} and F h

n (t) :=
1
n

n∑
i=1

I(−∞,t](〈Xi, h〉) (t ∈ R),

and reject the null hypothesis when Dn(h) is large enough.
The properties of the proposed procedure are summarized in the following theorem. Recall that

a probability measure P on a separable Hilbert space H is said to satisfy the Carleman condition if
the absolute moments mn :=

∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞. Also, we shall

say that P is continuous if each of its one-dimensional projections is continuous. This is equivalent
to demanding that every closed affine hyperplane in H be of P -measure zero.

Theorem 5.1. Let (Xn)n≥1 be a sequence of independent, identically distributed random elements,
defined on the probability space (Ω,A, ν), and taking values in a separable Hilbert space H. Let P0

be a probability measure on H. Given h ∈ H and n ≥ 1, define Dn(h) as in (6).

(a) Suppose that the common distribution of (Xn)n≥1 is P0. Suppose also that P0 is continuous.
Then, for all h ∈ H \ {0} and all n ≥ 1, the statistic Dn(h) has the same distribution as
Dn. In particular, this distribution is independent of h, and

lim
n→∞

ν
(√

nDn(h) ≤ t
)

= 1− 2
∞∑

k=1

(−1)k+1e−2k2t2 (t > 0).

(b) Suppose that the common distribution of (Xn)n≥1 is Q 6= P0. Suppose also that P0 satisfies
the Carleman condition. Then, given any non-degenerate gaussian measure µ on H, for
µ-almost all h ∈ H we have

ν
(
lim inf
n→∞

Dn(h) > 0
)

= 1.

Part (a) of the theorem tells us how, given a level α, we can find cα,n (independent of h) such
that, under the null hypothesis,

ν(Dn(h) > cα,n) = α,
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thereby providing an α-level conditional test. Part (b) of the theorem says that the test is consistent
against every possible alternative.

Proof of Theorem 5.1. (a) If the common distribution of (Xn)n≥1 is P0, then the common distri-
bution function of the real random variables (〈Xn, h〉)n≥1 is just F h

0 , which is continuous. Also, the
empirical distribution function of 〈X1, h〉, . . . , 〈Xn, h〉 is exactly F h

n . Therefore this part follows by
the standard properties of the one-dimensional Kolmogorov–Smirnov test.

(b) By Theorem 4.1, if Q 6= P0, then, for µ-almost all h ∈ H, there exists th ∈ R such that

P0{x ∈ H : 〈x, h〉 ≤ th} 6= Q{x ∈ H : 〈x, h〉 ≤ th}.

Let δh be the absolute value of the difference. Then, using the triangle inequality,

Dn(h) ≥ |F h
n (th)− F h

0 (th)| ≥ δh − |F h
n (th)−Gh(th)|,

where Gh(t) := Q{x ∈ H : 〈x, h〉 ≤ t}. By the strong law of large numbers, F h
n (th) → Gh(th)

ν-almost surely. The result follows. �

We remark that our aim is to provide a so-called ‘universal’ test, namely a test valid in any
context, rather than trying to be optimal in a particular setting. In fact, in the simulations that
we shall present later, we shall restrict the alternative to a particular parametric family, and it is
well known that, against this restricted alternative, there are more powerful tests. The problem
is that these tests are not, in general, consistent against every possible alternative, whereas our
proposed procedure is. This point will be taken up again later.

In practice, for a given problem, instead of taking just one random direction, we can choose a
finite set of directions h1, . . . , hk at random, and then consider as statistic Dk

n := max1≤i≤k Dn(hi),
the maximum of the projected one-dimensional Kolmogorov–Smirnov statistics over the k direc-
tions. The asymptotic distribution of this statistic is easy to derive. A drawback of this approach
is that we lose the distribution-free property, since the distribution of Dk

n will depend on the
covariance function of the underlying distribution PX .

On the other hand, if the sample size is large, then we can still obtain a distribution-free
statistic as follows. Split the sample into k subsamples, {Xm1 , . . . , Xmni

}, i = 1, . . . , k, select
k independent directions {h1, ..., hk} at random, then, for each i = 1, . . . , k, compute the one-
dimensional Kolmogorov–Smirnov statistic of the projection of the subsample {Xm1 , . . . , Xmni

} on
the direction given by hi, and, finally, compute the maximum of these quantities. The distribution
of the statistic thereby obtained is just that of the maximum of k independent one-dimensional
Kolmogorov–Smirnov random variables, and is therefore still distribution-free. However, it should
be remarked that in general this procedure entails a loss of power, which is not good statistical
behavior.

The two-sample problem can be treated in a very similar way. Let us assume that our data
are independent, identically distributed realizations {X1, . . . , Xn}, {Y1, . . . , Ym} of two random
processes taking values in the separable Hilbert space H. Let PX and PY stand for the common
probability laws of the random elements Xi and Yj , respectively. A goodness-of-fit test for the
two-sample problem in this context will be a procedure to decide between the null hypothesis
H0 : PX = PY and the alternative HA : PX 6= PY , based on {X1, . . . , Xn} and {Y1, . . . , Ym}.
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As in the one-sample case, we propose the following procedure: first choose a random direction
h ∈ H, according to the gaussian measure µ, and then calculate the following statistic:

Dn,m(h) := sup
t∈R

|F h
n (t)−Gh

m(t)|,

where

F h
n (t) :=

1
n

n∑
i=1

I(−∞,t](〈Xi, h〉) and Gh
m(t) :=

1
m

m∑
j=1

I(−∞,t](〈Yj , h〉),

rejecting the null hypothesis if Dn,m(h) is large enough. Under the null hypothesis, the asymptotic
distribution of (mn)1/2(m + n)−1/2Dn,m(h) as min(n, m) → ∞ is the same as for the one-sample
problem.

The possibility of handling the maximum deviation on a finite set of directions can be treated
similarly in this case to that of the one-sample problem.

We conclude with an example to show how the test works in practice. We confine ourselves to
the one-sample problem, the other one being similar.

In our example, we take H = L2[0, 1], and the distribution P0 in the null hypothesis is that of
the standard Brownian motion W on [0, 1]. According to our procedure, we have to choose the
random vector h ∈ H using a non-degenerate gaussian law µ on H. To ease the computations, we
also take µ to be the standard Brownian motion.

Now, we should generate a random sample W1, . . . ,Wn from the Brownian motion we are con-
sidering. However, according to the previous results, we only need to consider the scalar products
〈Wi, h〉, and it happens that the distribution of these real random variables is N(0, σ2(h)), where

σ2(h) :=
∫ 1

0

∫ 1

0
min(s, t)h(s)h(t) ds dt.

Therefore, under the null hypothesis, our procedure is equivalent to the Kolmogorov–Smirnov
goodness-of-fit test applied to determine if a one-dimensional sample comes from the N(0, σ2(h))
distribution.

For the sake of analyzing the behavior of our test under the alternative, we shall consider the
shifted Brownian processes S(t) := W (t) + δt, where δ 6= 0. In this case, the distribution of 〈S, h〉
is also normal, with the same variance as before, but with mean given by

µ(h) := δ

∫ 1

0
th(t) dt.

Therefore, in some sense, the quality of the proposed procedure depends on the difference between
µ(h) and zero, and on the capacity of the Kolmogorov–Smirnov test to detect shifts in mean.

Notice that, if we were to fix this family of alternatives, then the problem could also be han-
dled by testing the null hypothesis H0: ‘the distribution of W (1) is N(0, 1)’, against HA: ‘the
distribution of W (1) is N(δ, 1) for some δ 6= 0’. We would just have to perform a well-known
test based on the normal distribution. However, it should be recalled that the alternative we
are actually considering is that the distribution of the empirical process is different from that of
standard Brownian motion, and this includes many processes X(t) such that the distribution of
X(1) is N(0, 1), for which the normal-test is useless. Similar remarks apply if we consider under
the alternative a mean curve that takes value 0 at 1.

We summarize the results we have obtained in Table 5.1, in which we have applied our procedure
to 1500 random samples with sizes 30, 50 and 200 from standard Brownian motion, which we
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Table 5.1. Application of proposed procedure to the Brownian process W (t) + δt.
The null hypothesis is the standard Brownian motion (i.e. δ = 0). As alternative
hypotheses we take δ = 0.25, 0.5 and 1. Samples sizes are 30, 50 and 200.

Slope δ

Sample size 0 0.25 0.5 1
n = 30 Rate of correct decisions .96 .06 .26 .72

Average p-value .59 .51 .30 .08
n = 50 Rate of correct decisions .94 .15 .42 .90

Average p-value .47 .40 .19 .034
n = 200 Rate of correct decisions .94 .47 .93 .99

Average p-value .50 .15 .02 .004

assume to be observed on the equally spaced points 0 = t0 < . . . < t50 = 1. For the alternative
hypothesis, we consider the shifted Brownian motion with slopes δ = 0.25, 0.5 and 1. The discrete
version of the Brownian motion is generated using the independent increments property, i.e. we
start at 0 at time zero, and define iteratively the value at the next time by adding an independent
N(0, 1/50) variable.

The first slope column corresponds to the behavior under the null hypothesis of a test at the
level α = 0.05. The remaining three columns correspond to the behavior under the alternative for
different values of the slope parameter δ of the shifted Brownian processes. We have chosen two
parameters to measure this behavior: ‘rate of correct decisions’ and ‘average p-value’, which we
now explain.

Recall that, for each random sample, the procedure consists of selecting a random h ∈ H, and
then computing the probability that Dn takes a value greater than the observed value of Dn(h).
We call this probability the p-value, and reject the null hypothesis if the p-value is less than 0.05.
Otherwise we accept the null hypothesis. The ‘average p-value’ is simply the mean of the observed
p-values. An optimal procedure should provide averages close to 0.5 if the null hypothesis holds,
and close to 0 under the alternative.

The ‘rate of correct decisions’ is the proportion of times for which the procedure correctly
identifies the situation, i.e. the proportion of times in where it accepts H0 when δ = 0 and the
proportion of times in where it rejects H0 when δ 6= 0. Thus, this parameter should be close to
0.95 under the null hypothesis. Under the alternative, the bigger this parameter is, the better.

We can summarize Table 5.1 as follows. The test performs well under the null hypothesis, δ = 0.
For the other values of δ, the performance of the test is good near the bottom right-hand corner
of the table, poor near the top left-hand corner, and intermediate in between.

As mentioned in the Introduction, our aim in this section has been to give an idea about how
the results in the previous sections can be applied to obtain sound statistical procedures. We have
not tried here to optimize them. Research into practical implementations of these ideas is still in
progress.
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Current address: Centro de Matemática, Universidad de la República, Uruguay

E-mail address: rfraiman@cmat.edu.uy
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