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Amparo Báıllo∗, Juan Antonio Cuesta-Albertos†and Antonio Cuevas∗

∗Universidad Autónoma de Madrid and †Universidad de Cantabria

Abstract

In the framework of supervised classification (discrimination) for functional

data, it is shown that the optimal classification rule can be explicitly obtained for

a class of Gaussian processes with “triangular” covariance functions. This explicit

knowledge has two practical consequences. First, the consistency of the well-

known nearest neighbors classifier (which is not guaranteed in the problems with

functional data) is established for the indicated class of processes. Second, and

more important, parametric and nonparametric plug-in classifiers can be obtained

by estimating the unknown elements in the optimal rule.

The performance of these new plug-in classifiers is checked, with positive re-

sults, through a simulation study and a real data example.

1 Introduction

Statement of the problem. Notation

Discrimination, also called “supervised classification” in modern terminology, is one

of the oldest statistical problems in experimental science: the aim is to decide whether

a random observation X (taking values in a “feature space” F endowed with a dis-

tance D) either belongs to the population P0 or to P1. For example, in a medical

problem P0 and P1 could correspond to the group of “healthy” and “ill” individuals,

respectively. The decision must be taken from the information provided by a “training

sample” Xn = {(Xi, Yi), 1 ≤ i ≤ n}. Here Xi, i = 1, . . . , n, are independent replications

of X, measured on n randomly chosen individuals, and Yi are the corresponding values

of an indicator variable which takes values 0 or 1 according to the membership of the
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i-th individual to P0 or P1. The term “supervised” refers to the fact that the individuals

in the training sample are supposed to be correctly classified, typically using “external”

non statistical procedures, so that they provide a reliable basis for the assignation of

the new observation. It is possible to consider the case where K > 2 populations,

P0, . . . , PK−1 are involved but, in what follows, we will restrict ourselves to the binary

case K = 2.

The mathematical problem is to find a “classifier” (or “classification rule”) gn(x) =

gn(x;Xn), with gn : F → {0, 1}, that minimizes the classification error P{gn(X) 6= Y }.
It is not difficult to prove (e.g., Devroye et al., 1996, p. 11) that the optimal classification

rule (often called “Bayes rule”) is

g∗(x) = I{η(x)>1/2}(x), (1)

where η(x) = E(Y |X = x) and IA stands for the indicator function of a set A ⊂ F .

Of course, since η is unknown the exact expression of this rule is usually unknown, and

thus different procedures have been proposed to approximate g∗ using the training data.

From now on we will use the following notation. Let µi be the distribution of X

conditional on Y = i, that is, µi(B) = P{X ∈ B|Y = i} for B ∈ BF (the Borel σ-algebra

on F) and i = 0, 1. We denote by Si ⊂ F the support of µi, for i = 0, 1, S = S0 ∩ S1

and p = P{Y = 0} (we assume 0 < p < 1). Given two measures µ and ν, the expression

µ << ν denotes that µ is absolutely continuous with respect to ν (i.e., ν(B) = 0 implies

µ(B) = 0).

The notation C[0, 1] stands for the space of real continuous functions on the interval

[0, 1] endowed with the usual supremum norm, denoted by ‖·‖. The subspace of functions

of class 2 (i.e. with two continuous derivatives) is denoted by C2[0, 1].

Finite dimensional spaces. Three classical discrimination procedures

The origin of the discrimination problem goes back to the classical work by Fisher

(1936) where, in the d-variate framework F = R
d, a simple “linear classifier” of type

gn(x) = I{w′x+w0>0} was introduced for the case that both populations P0 and P1 are

homoscedastic, that is, have a common covariance matrix Σ. Intuitively, w′x + w0 = 0

is chosen as the affine hyperplane which provides the “maximum separation” between

both populations. It is well-known (see, e.g., Duda et al. 2000 for details) that the

the expression of Fisher’s rule turns out to depend on the inverse Σ−1 of the covariance

matrix. It is also known that Fisher’s linear rule is in fact the optimal one (1) when

the conditional distributions of X|Y = 0 and X|Y = 1 are homoscedastic normals and

all the means and covariances are known. These conditions look quite restrictive but,

as argued by Hand (2006) in a provocative paper, Fisher’s rule (or rather its sampling

approximation obtained by estimating the unknown parameters) is hard to beat in
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practical examples. That is, while it is not difficult to construct examples where this

rule outrageously fails, its performance is quite good in most cases found in real-life

examples. For this reason, Fisher’s linear rule is still the most popular classification tool

among practitioners, in spite of the posterior intensive research on this topic. Thus, in

a way, Fisher’s rule represents a sort of “golden standard” in the multivariate statistical

discrimination problem.

The books by Devroye et al. (1996), Duda et al. (2000) and Hastie et al. (2001)

offer different interesting perspectives of the work done in discrimination theory since

Fisher’s pioneering paper. All of them focus on the standard multivariate case F = R
d.

Many classifiers have been proposed as an alternative to Fisher’s linear rule in this

finite-dimensional setup. One of the simplest and easiest to motivate is the so-called

k-nearest neighbors method. Fixed a positive integer value (or smoothing parameter)

k = kn this rule simply classifies an incoming observation x in the population P1 if the

majority among the k training observations closest to x (with respect to the considered

distance D) belong to P1. More concretely the k-NN rule can be defined by

gn(x) = I{ηn(x)>1/2}, (2)

where

ηn(x) =
1

k

n
∑

i=1

I{Xi∈k(x)}Yi (3)

and “Xi ∈ k(x)” means that Xi is one of the k nearest neighbors of x.

In fact, the definition of the k-NN rule is extremely simple and can be introduced

(in terms of “majority vote among the neighbors”) with no explicit reference to any

regression estimator. However, the idea of replacing the unknown regression function

η(x) in the optimal classifier (1) with a regression estimator (given by (3) in the case of

the k-NN rule) is very natural. It suggests a general methodology to construct a wide

class of classifiers by just plugging in different regression estimators ηn in (1) instead

of the true regression function η(x). In the finite dimensional case F = R
d this is

a particularly fruitful idea, as a wealth of different (parametric and nonparametric)

estimators of η(x) is available; see Audibert and Tsybakov (2007) for some reasons in

favor of the plug-in methodology in classification. The main purpose of this work is

to show that the plug-in methodology can be also successfully used for classification in

some functional data models.

Discrimination of functional data. Differences with the finite-dimensional case

We are concerned here with the problem of (binary) supervised classification with

functional data. That is, we assume throughout that the space (F , D) where the data
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Xi live is a separable metric space (typically a space of functions). For some theoretical

results, considered below, we will impose more specific assumptions on F .

The study of discrimination techniques with functional data is not as developed as the

corresponding finite-dimensional theory but, clearly, is one of the most active research

topics in the booming field of functional data analysis (FDA). Two well-known books

including broad overviews of FDA with interesting examples are Ferraty and Vieu (2006)

and Ramsay and Silverman (2005). A recent survey on supervised and unsupervised

classification with functional data can be found in Báıllo et al. (2009).

While the formal statement of the functional classification problem is very much

the same as that indicated at the beginning of this section, there are some important

differences with the classical finite-dimensional case.

(a) Lack of a simple functional version of Fisher’s linear rule: As mentioned above, the

idea behind Fisher’s rule requires to invert the covariance operator. When F = R
d

this is increasingly difficult as the dimension d increases, but it becomes impossible

in the functional framework where the operator is typically not invertible. Thus

the applicability of Fisher’s linear methodology to functional data is a non-trivial

issue of current interest for research. See, for instance, James and Hastie (2001)

and Shin (2008) for interesting adaptations of linear discrimination ideas to a

functional setting.

(b) Difficulty to implement the plug-in idea: Unlike the finite-dimensional case, the

plug-in methodology is not generally considered as a standard procedure to con-

struct functional classifiers. When x is infinite-dimensional, there are yet few

simple parametric models giving a good fit to the regression function and the

structure of nonparametric estimators of η is relatively complicated.

(c) The k-NN functional classifier is not universally consistent: In the discrimination

problem a sequence of classifiers {gn}, based on samples of size n, is said to be

“consistent” when the corresponding sequence of classification errors converges, as

n tends to infinity, to the “lowest possible error” attained by the Bayes classifier

(1); see Section 3 below for more details. It turns out (see Stone, 1977) that, in

the case of finite-dimensional data Xi ∈ R
d, any sequence of k-NN classifiers is

consistent provided that kn → ∞ and kn/n→ 0. Since such consistency holds irre-

spectively of the distribution of the data (X,Y ), this property is called “universal

consistency”.

The definition of the k-NN classifier can be easily translated to the functional

setup (by replacing the usual Euclidean distance in R
d with an appropriate func-

tional metric D). However, the universal consistency is lost. Cérou and Guyader
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(2006, Th. 2) have obtained sufficient conditions for consistency of the k-NN

classifier when X takes values in a separable metric space. Nevertheless, the re-

quired assumptions are not always trivial to check. As the k-NN rule is a natural

“default choice” in infinite-dimensional setups, an important issue is to ensure its

consistency, at least for some functional models of practical interest.

The purpose and structure of this paper

This work aims to partially fill the gaps pointed out in the points (b) and (c) of

the above paragraph. To this end, in Subsection 2.1 a simple expression is obtained

for the Bayes (optimal) rule g∗ in the case that both distributions, µ0 and µ1, are

equivalent. However, g∗ turns out to depend on the Radon-Nikodym derivative dµ0/dµ1

which is usually unknown, or has an extremely involved expression, even when µ0 and

µ1 are completely known. An interesting exception is given by Gaussian processes

with a specific type of covariance functions, called “triangular”. For these processes

the Radon-Nikodym derivative has been explicitly calculated by Varberg (1961) and

Jørsboe (1968) whose results are collected and briefly commented in Subsection 2.2.

In Subsection 2.3 parametric plug-in estimators for g∗ are obtained by assuming that

µ0 and µ1 are either (parametric) Brownian motions or Ornstein-Uhlenbeck processes.

Non-parametric plug-in estimators for g∗ are proposed and analyzed in Subsection 2.4,

under the sole assumption that the covariance functions are triangular. Since the proofs

of the results in this subsection are rather technical, they are deferred to a final appendix.

This concludes our contributions regarding issue (b). Section 3 is devoted to the k-NN

consistency problem introduced in (c): we use the above-mentioned result by Cérou

and Guyader (2006) to show that the k-NN rule is consistent in functional classification

problems where the data are generated by certain Gaussian triangular processes specified

in Subsection 2.2.

Finally, in Section 4 the practical performance of the plug-in rules proposed in Section

2 is checked, and compared with the k-NN rule, through a simulation study and the

analysis of a real data example.

2 The optimal classifier for a Gaussian family

2.1 A general expression based on Radon-Nikodym derivatives

When the distributions µ0 and µ1 of P0 and P1 are both absolutely continuous with

respect to some common σ-finite measure µ, it is easy to see, as a consequence of Bayes

formula, that the optimal rule is

g∗(x) = I{(1−p)f1(x)>pf0(x)}, (4)
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where p = P{Y = 0} and f0, f1 are the µ-densities of P0 and P1, respectively.

The expression (4) is particularly important in the finite dimensional problems with

F = R
d, where the Lebesgue measure µ arises as the natural reference measure and

the corresponding Lebesgue densities can be estimated in many ways. In the infinite-

dimensional spaces there is no such obvious dominant measure. However if we assume

that µ0 and µ1, with supports S0 and S1, are absolutely continuous with respect to each

other on S0 ∩ S1, the optimal rule can be also expressed in a simple way with respect

to the Radon-Nikodym derivative dµ0/dµ1 as shown in the following result.

Theorem 1 Assume that µ0 << µ1 and µ1 << µ0 on S = S0 ∩ S1. Then

η(x) =



















0 if x ∈ S0 ∩ Sc

1 if x ∈ S1 ∩ Sc

1 − p

pdµ0

dµ1

(x) + 1 − p
if x ∈ S.

(5)

provides the expression for the optimal rule g∗(x) = I{η(x)>1/2}.

Proof: Define µ = µ0 + µ1. Then µi << µ, for i = 0, 1, and we can define the Radon-

Nikodym derivatives fi = dµi/dµ, for i = 0, 1. From the definition of the conditional

expectation we know that η(x) = E(Y |X = x) = P (Y = 1|X = x) can be expressed by

η(x) =
f1(x)(1 − p)

f0(x)p+ f1(x)(1 − p)
. (6)

Observe that µ|Sc∩Si
= µi|Sc∩Si

and thus fi|Sc∩Si
= ISc∩Si

, for i = 0, 1. Since µ0 << µ1

and µ1 << µ0 on S then, on this set, there exists the Radon-Nikodym derivatives

dµ0/dµ1 and dµ1/dµ0. In this case, it also holds that µ|S<< µi|S, for both i = 0, 1 and

dµ

dµi

(x) = 1 +
dµ1−i

dµi

(x), for any x ∈ S.

Then (see, e.g., Folland 1999), for i = 0, 1 and for PX-a.e. x ∈ S,

fi(x) =
dµi

dµ
(x) =

(

dµ

dµi

(x)

)−1

=
1

1 + dµ1−i

dµi
(x)

(7)

Substituting (7) into expression (6) we get (5). 2

The mutual absolute continuity is not a very restrictive assumption if we deal with

Gaussian measures. According to a well-known result by Feldman and Hájek (see Feld-

man, 1958) for any given pair of Gaussian processes, there is a dichotomy in such a way

that they are either equivalent or mutually singular. In the first case both measures µ0

and µ1 have a common support S. As for the identification of the support, Vakhania
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(1975) has proved that if a Gaussian process, with trajectories in a separable Banach

space F , is not degenerate (i.e., the distribution of any non-trivial linear continuous

functional is not degenerate) then the support of such process is the whole space F .

In any case, expression (5) would be of no practical use unless some expressions,

reasonably easy to estimate, can be found for the Radon-Nikodym derivative dµ0/dµ1.

This issue is considered in the next subsection.

2.2 Explicit expression for a family of Gaussian distributions

The best known Gaussian process is perhaps the standard Brownian motion {W (t), t ≥
0}, for which E(W (t)) = 0 and the covariance function is Cov(W (s),W (t)) := Γ(s, t) =

min(s, t). A wide class of Brownian-type processes can be obtained by location and

scale changes of type m(t) + σW (t), where m(t) is a given mean function and σ > 0.

In fact, the covariance structure Γ(s, t) = min(s, t) can be generalized to define a

much broader class of processes with Γ(s, t) = u(min(s, t)) v(max(s, t)), where u and v

denote suitable real functions. Covariance functions of this type are called triangular.

They have received considerable attention in the literature. For example, Sacks and

Ylvisaker (1966) use this condition in the study of optimal designs for regression prob-

lems where the errors are generated by a zero mean process with covariance function

Γ(s, t). It turns out that the Hilbert space with reproducing kernelK plays an important

role in the results and, as these authors point out, the norm of this space is particularly

easy to handle when Γ is triangular. On the other hand, Varberg (1964) has given an

interesting representation of the processes X(t), 0 ≤ t < b, with zero mean and trian-

gular covariance function. This author proved that they can be expressed in the form

X(t) =
∫ b

0
W (u) duR(t, u), where W is the standard Wiener process and R = R(t, u) is

a function, of bounded variation with respect to u, defined in terms of Γ.

The so-called Ornstein-Uhlenbeck model, for which Γ(s, t) = σ2 exp(−β|s − t|)
(β, σ > 0), provides another important class of processes with triangular covariance

functions. They are widely used in physics and finance.

The following theorem is due to Varberg (1961, Th. 1) and Jørsboe (1968, p.

61). It shows that the Radon-Nikodym derivative can be expressed in a closed, rel-

atively simple way for these special classes of Gaussian processes. For more informa-

tion concerning explicit expressions of Radon-Nikodym derivatives for Gaussian pro-

cesses see Segall and Kailath (1975) and references therein. From now on let us denote

mi(t) = E (X(t)|Y = i).

Theorem 2 Let (F , D) = (C[0, 1], ‖ · ‖). Assume that X|Y = i, for i = 0, 1, are Gaus-

sian processes on [0, 1], with covariance functions Γi(s, t) = ui(min(s, t)) vi(max(s, t)),

for s, t ∈ [0, 1], where ui, vi, for i = 0, 1, are positive functions in C2[0, 1]. Assume
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also that vi, for i = 0, 1, and v1u
′
1 − u1v

′
1 are bounded away from zero on [0, 1], that

u1v
′
1 − u′1v1 = u0v

′
0 − u′0v0 and that u1(0) = 0 if and only if u0(0) = 0.

a) Assume that mi ≡ 0, for i = 0, 1. Then there exist some constants C1, C2, C3 and a

function F , whose expressions are given in the proof, such that

dµ0

dµ1

(x) = C1 exp

[

1

2

(

C3x
2(0) + C2x

2(1) −
∫ 1

0

x2(t)

v0(t)v1(t)
dF (t)

)]

. (8)

b) Assume now that the covariance functions are identical, i.e. ui = u and vi = v

for i = 0, 1, that m1 ≡ 0, m0 is a function m ∈ C2[0, 1], such that m(0) = 0

whenever u(0) = 0. Then there exist some constants D1, D2 and a function G,

whose expressions are given in the proof, such that

dµ0

dµ1

(x) = exp

{

D1 +

(

D2 − 2
G(0)

v(0)

)

x(0) + 2
G(1)

v(1)
x(1) − 2

∫ 1

0

x(t)

v(t)
dG(t)

}

. (9)

Proof:

a) Varberg (1961, Th. 1) shows that, under the assumptions of (a), µ0 and µ1 are

equivalent measures. The Radon-Nikodym derivative of µ0 with respect to µ1 is

dµ0

dµ1

(x) = C1 exp

{

1

2

[

C4x
2(0) +

∫ 1

0

F (t)d

(

x2(t)

v0(t)v1(t)

)]}

, (10)

where

C1 =











(

v0(0)v1(1)
v0(1)v1(0)

)1/2

if u0(0) = 0
(

u1(0)v1(1)
v0(1)u0(0)

)1/2

if u0(0) 6= 0
C4 =







0 if u0(0) = 0
(

v0(0)u0(0)−u1(0)v1(0)
v1(0)v0(0)u0(0)u1(0)

)1/2

if u0(0) 6= 0

and F = (v1v
′
0 − v0v

′
1)/(v1u

′
1 − u1v

′
1).

Observe that, by the assumptions of the theorem, F is differentiable with bounded

derivative. Thus F is of bounded variation and it may be expressed as the dif-

ference of two bounded positive increasing functions. Therefore the stochastic

integral (10) is well defined and it can be evaluated integrating by parts, leading

to conclusion (8), with C3 = C4 − F (0)/v0(0)v1(0) and C2 = F (1)/v0(1)v1(1).

b) In Jørsboe (1968), p. 61, it is proved that, under the indicated assumptions, µ0

and µ1 are equivalent measures with Radon-Nikodym derivative

dµ0

dµ1

(x) = exp

{

D3 +D2 x(0) +
1

2

∫ 1

0

G(t)d

(

2x(t) −m(t)

v(t)

)}

,
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with

D3 = − m2(0)

2u(0) v(0)
I{u(0)>0}, D2 =

m(0)

u(0) v(0)
I{u(0)>0}

and G = (vm′−mv′)/(vu′−uv′). Again, the integration by parts gives (9), where

D1 = D3 −
∫ 1

0
Gd(m/v). 2

In the general case where m0 6= m1 and Γ0 6= Γ1, let us denote by Pm,Γ the distribu-

tion of the Gaussian process with mean m and covariance function Γ. Then, applying

the chain rule for Radon-Nikodym derivatives (see, e.g., Folland, 1999) we get

dµ0

dµ1

(x) =
dPm0,Γ0

dPm1,Γ1

(x) =
dPm0,Γ0

dP0,Γ0

(x)
dP0,Γ0

dP0,Γ1

(x)
dP0,Γ1

dPm1,Γ1

(x). (11)

Under the appropriate assumptions the expressions of the Radon-Nikodym derivatives

in the right-hand side of (11) are given in (8) and (9).

2.3 Parametric plug-in rules

The aim of this subsection is twofold. First and foremost, we show how the theoretical

results of Subsections 2.1 and 2.2 become useful in practice. To this end, we consider

examples of well-known Gaussian processes that fulfill the requirements of Theorems

1 and 2, namely Brownian motions with drift and Ornstein-Uhlenbeck processes. We

derive the expressions of the Radon-Nikodym derivatives dµ0/dµ1 for these examples.

Then, it is straightforward to compute the Bayes rule g∗ for classification between two

elements of one of these families. In these particular examples the mean and variance

of the Gaussian process X|Y = i have known parametric expressions (up to a finite

number of parameters). Thus g∗ is completely specified as long as the parameters have

known values. When this is not the case, we can substitute each unknown parameter

in g∗ by some estimate. The resulting discrimination procedure is called the parametric

plug-in rule. In particular, for the Bayes rules given in (12), (13), (14) and (15) below

the explicit expression of the parameter estimates is given in the appendix.

The second objective of Subsection 2.3 is to obtain the expressions of the Bayes

rules for the models used in Section 4 and to derive the corresponding parametric plug-

in versions.

Two Brownian motions

Let us denote X(t; i) = (X(t)|Y = i). In the Brownian case, using the standard

notation in stochastic differential equations, X(t; i) is just the solution of dX(t; i) =

mi(t) dt+σiWi(t) dt, for i = 0, 1 and t ∈ [0, 1]. Here m1 ≡ 0, m0(t) = ct, 0 < c <∞ is a

constant, W0 and W1 are two uncorrelated Brownian motions and (X(0; i) ∼ N(0, θ2
i ).
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Then, if σ0 = σ1 = σ, the conditions of Theorem 2 are satisfied with ui(t) = θ2
i + σ2t

and vi ≡ 1, for i = 0, 1.

When θ0 = θ1 = 0, we have X(0; i) ≡ 0 and, for any x ∈ S,

dµ0

dµ1

(x) = exp
{ c

σ2
(2x(1) − c)

}

.

Thus the Bayes rule is

g∗(x) = I{x(1)<c/2}. (12)

If θi 6= 0 for i = 0, 1, then X(0; i) is random and a similar calculation yields that the

Bayes rule classifies x in population P1 whenever

c

σ2
[2(x(1) − x(0)) − c] +

1

2

(

1

θ2
1

− 1

θ2
0

)

x2(0) < log

(

θ0

θ1

)

. (13)

Replacing the unknown parameters, c, σ and θi in (12) and (13) by estimates, we obtain

the corresponding parametric plug-in rules.

When σ0 6= σ1, then ui(t) = θ2
i + σ2

i t, vi ≡ 1, for i = 0, 1, and the hypothesis

u1v
′
1 − u′1v1 = u0v

′
0 − u′0v0 in Theorem 2 is not satisfied. In fact, if this last equality

does not hold, by Theorem 1 in Varberg (1961) we know that µ0 and µ1 are mutually

singular.

Two Ornstein-Uhlenbeck processes

Let X|Y = i, for i = 0, 1, be Ornstein-Uhlenbeck processes given by

dX(t; i) = − βi (X(t; i) − ηi) dt+
√

2βi σi dWi(t),

where W0 and W1 are two independent Brownian motions and βi > 0, σi > 0, ηi are

constants.

If X(0; i) is equal to a constant ci, we have that mi(t) = ηi + (ci − ηi)e
−βit and

Γi(s, t) = σ2
i

(

e−βi|s−t| − e−βi|s+t|
)

. Fixing vi(1) = 1, we get ui(t) = σ2
i e

−βi(eβit − e−βit)

and vi(t) = eβi(1−t) for i = 0, 1. The condition u1v
′
1 − u′1v1 = u0v

′
0 − u′0v0 in Theorem 2

is fulfilled if and only if β0σ
2
0 = β1σ

2
1. Also, since ui(0) = 0, then mi(0) = ci has to be

0 for i = 0, 1. Then it is straightforward to check that the Bayes rule g∗ classifies x in

population P1 if

0 > 2
(

β2
0(σ

2
0 − η2

0) − β2
1(σ

2
1 − η2

1)
)

+ 4x(1)(η0β0 − η1β1) + (β1 − β0)x
2(1)

+ 4 (η0β
2
0 − η1β

2
1)

∫ 1

0

x(t) dt+ (β2
1 − β2

0)

∫ 1

0

x2(t) dt. (14)

When X(0; i) is random, it follows a normal distribution with mean ηi and variance

σ2
i . Then mi(t) = ηi, for all t ∈ [0, 1], and Γi(s, t) = σ2

i e
−βi|s−t|, ui(t) = σ2

i e
−βi(1−t) and
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vi(t) = eβi(1−t). Consequently, the Bayes rule assigns x to population P1 if

2β1σ
2
1(log(β1) − log(β0)) > 2

[

β2
0σ

2
0 − β2

1σ
2
1 + β1η

2
1(1 + β1) − β0η

2
0(1 + β0)

]

+4x(1)(η0β0 − η1β1) + 4 (η0β
2
0 − η1β

2
1)

∫ 1

0

x(t) dt

+(β1 − β0)

[

x2(0) + x2(1) + (β1 + β0)

∫ 1

0

x2(t) dt

]

. (15)

The parametric plug-in classification rule is derived by substituting the unknown

parameters βi, ηi and σi, i = 0, 1, in (14) and (15) with their corresponding estimators.

2.4 Nonparametric plug-in rules

In this section we analyze the situation in which the processes ultimately belong to

the Gaussian family fulfilling the conditions of Theorem 2, but we do not place any

parametric assumption on the mean and the covariance functions. However, let us note

that, until we get to the estimation of the Radon-Nikodym derivatives, the Gaussianiaty

assumption is not needed. Specifically, we only assume that the covariance functions of

the involved processes are of type Γ(s, t) = u(min(s, t))v(max(s, t)), for some (unknown)

real functions u, v where v is bounded away from 0 on the interval [0, 1].

Observe that, in order to use a plug-in version of the optimal classification rule

along the lines of Theorems 1 and 2, we need to estimate the functions m, u and

v as well as their first and second derivatives. Since these estimation problems have

some independent interest, in this subsection we consider them in a general setup, not

necessarily linked to the classification problem. Thus we use the ordinary iid sampling

model with a fixed sample size denoted, for simplicity, by n in all cases.

Regarding u and v, let us note that the condition Γ(s, t) = u(min(s, t))v(max(s, t)),

for s, t ∈ [0, 1], entails u(s) = Γ(s, 1)/v(1) and v(t) = Γ(0, t)/u(0) if u(0) > 0. However,

it is clear that these conditions only determine u and v up to multiplicative constants

so that one can impose (without loss of generality) the additional assumption v(1) = 1.

Thus, it turns out that u and v can be uniquely determined in terms of Γ(0, t) and

Γ(s, 1). Our study will require three steps: first, the estimation of the mean function m

and its derivatives, then the analogous study for Γ(0, t), Γ(s, 1) and σ2(t) := Γ(t, t) and,

finally, the analysis of more involved functions defined in terms of these.

In Propositions 1 to 3 below we assume that the sample data are X1, . . . , Xn, iid

trajectories of a process X in the space C[0, 1], endowed with the supremum norm, ‖ · ‖.

Estimation of the mean and covariance functions and their derivatives

To estimate the mean function m(t) = E [X(t)] and its derivatives, we will only need

to assume that {Xn} satisfies that E‖X1‖2 <∞, which (see p. 172 in Araujo and Giné,

11



1980) implies that the distribution of X1 satisfies the Central Limit Theorem (CLT) in

(C[0, 1], ‖ · ‖).
The natural estimator of m is the sample mean, denoted by m̂n(t) =

∑n
i=1Xi(t)/n.

Since the derivatives of m are also involved in the expressions of the Radon-Nikodym

derivatives obtained in Theorem 2, we will also need to consider the estimation of m′ and

m′′. Our estimators will depend on a given sequence hn ↓ 0 of smoothing parameters.

Given t ∈ [hn, 1 − hn], define

m̂′
n(t) :=

m̂n(t+ hn) − m̂n(t− hn)

2hn

, m̂′′
n(t) :=

m̂n(t+ hn) + m̂n(t− hn) − 2mn(t)

h2
n

.

For t ∈ [0, hn), we define

m̂′
n(t) :=

m̂n(t+ hn) − m̂n(0)

hn + t
, m̂′′

n(t) :=
m̂n(t+ hn) + m̂n(0) − 2m̂n(γn)

γ2
n

.

where γn = (t + hn)/2. The definition of m̂′
n and m̂′′

n on (1 − hn, 1] is similar. These

definitions allow us to handle analogously the extreme points and the inner ones. Thus

we will not pay special attention to the extreme points in the proofs.

There is a slight notational abuse in these definitions as, for example, m̂′
n(t) is not

the derivative of m̂n(t) but an estimator of m′(t). We keep this notation throughout the

manuscript for simplicity.

As mentioned at the beginning of this section, due to the triangular structure of Γ,

in principle we should only concentrate on the estimation of the functions s 7→ Γ(s, 1)

and t 7→ Γ(0, t) and their derivatives. However, due to technical reasons we will also

need to consider the function σ2(t) = Γ(t, t) and its derivatives. Natural nonparametric

estimators of these functions can be given in terms of the empirical covariance

Γ̂n(s, t) :=
1

n

∑

i

(Xi(s) − m̂n(s)) (Xi(t) − m̂n(t)) , s, t ∈ [0, 1].

The estimation of the required derivatives is carried out in an analogous way as we

did with the mean function. Observe finally that, since v(1) = 1, we can estimate

u(t) = Γ(t, 1) by ûn(t) := Γ̂n(t, 1) for any t ∈ [0, 1] and similarly for its first two

derivatives. Regarding the function σ2, we estimate σ2(t) by σ̂2
n(t) := Γ̂n(t, t).

Proposition 1 Let {Xn} be iid trajectories in C[0, 1] of a process such that E‖X1‖2 <

∞ and whose mean function m : [0, 1] → R has a Lipschitz second derivative.

a) For the mean estimation problem we have,

‖m− m̂n‖ = OP (n−1/2) (16)

‖m′ − m̂′
n‖ = OP

(

(n1/2hn)−1
)

+O(h2
n) (17)

‖m′′ − m̂′′
n‖ = OP

(

(n1/2h2
n)−1

)

+O(hn) (18)

12



b) Assume that E‖X1‖4 < ∞ and that the functions t → Γ(t, 1), t → Γ(0, t) and σ2

admit Lipschitz second order derivatives. Then, we have

‖Γ̂n(·, 1) − Γ(·, 1)‖ = ‖ûn − u‖ = OP (n−1/2), (19)

‖Γ̂′
n(·, 1) − Γ′(·, 1)‖ = ‖û′n − u′‖ = OP

(

(

n1/2hn

)−1
)

+O(h2
n), (20)

‖Γ̂′′
n(·, 1) − Γ′′(·, 1)‖ = ‖û′′n − u′′‖ = OP

(

(

n1/2h2
n

)−1
)

+O(hn), (21)

Similar results also hold for Γ̂n(0, ·) and σ̂2
n.

From the proof of this proposition (see the Appendix) it can be checked that the

assumption E‖X1‖4 < ∞ can be replaced with E‖X1‖2+δ < ∞, for some δ > 0, and

E(Xr(1)) <∞ for any r > 0.

Estimation of v

The estimation of v is harder than that of u. It will be useful to distinguish two

cases, where the estimators must be defined in different ways. In the case u(0) > 0

(corresponding to the case σ2(0) > 0) we have v(t) = Γ(0, t)/u(0) which is estimated by

v̂n(t) :=
1

ûn(0)
Γ̂n(0, t), t ∈ [0, 1]. (22)

When u(0) = 0 (which implies that σ2(0) = 0), the estimator proposed in (22)

is, at best, highly unstable. This case is not unusual: see, for instance, the examples

introduced in Subsection 2.3 when X(0)/Y = i is constant. For the sake of simplicity

from now on assume that σ2(t) > 0 for t ∈ (0, 1).

The first step is to define v̂n(t) = σ̂2
n(t)/ûn(t) for t ∈ [δn, 1], where δn is a sequence

of positive numbers converging to zero (whose rate will be determined later). Then we

define estimates for the first and the second derivatives of v on the same interval. The

structure of vn as a quotient suggests defining, on [δn, 1],

v̂′n :=
1

û2
n

(

(σ̂2
n)′ûn − û′nσ̂

2
n

)

,

v̂′′n :=
1

û3
n

(

ûn

(

(σ̂2
n)′′ûn − û′′nσ̂

2
n

)

− 2û′n((σ̂2
n)′ûn − û′nσ̂

2
n)

)

,

where (σ̂2
n)′(t) = Γ̂′

n(t, t), (σ̂2
n)′′(t) = Γ̂′′

n(t, t)

Now we complete the definition of our estimator of v on the whole interval by using

a Taylor-kind expansion on [0, δn),

v̂n(t) = v̂n(δn) + (t− δn)v̂′n(δn) +
1

2
(t− δn)2v̂′′n(δn), if t ∈ [0, δn). (23)

Finally, take

v̂′n(t) := v̂′n(δn) + (t− δn)v̂′′n(δn), if t ∈ [0, δn).

v̂′′n(t) := v̂′′n(δn), if t ∈ [0, δn).

13



Proposition 2 Let the assumptions of Proposition 1 (b) hold.

a) If u(0) > 0 then the rate of convergence of ‖v̂n − v‖, ‖v̂′n − v′‖ and ‖v̂′′n − v′′‖ are the

same as those of (19), (20) and (21), respectively.

b) If u(0) = 0 assume that inft u
′(t) > 0 and inft∈[δ,1] σ

2(t) > 0 for every δ > 0. Let

{δn} ↓ 0 be such that sup(n−1/2, hn) = o(δn). Then

‖v̂n − v‖ = OP

(

δn
h2

n

√
n

)

+O(hn) +O(δ3
n)

‖v̂′n − v′‖ = OP

(

1

h2
n

√
n

)

+O

(

hn

δn

)

+O(δ2
n)

‖v̂′′n − v′′‖ = OP

(

1

δnh2
n

√
n

)

+O

(

hn

δ2
n

)

+O(δn).

Estimation of the Radon-Nikodym derivatives

Here we plug-in the estimates of m, u, v and their derivatives obtained above in the

Radon-Nikodym derivatives f = dµ0/dµ1 obtained above in Theorem 2. Denote by f̂n

the resulting estimate. Then, we compute the convergence rate to the Bayes risk of the

error attained by the corresponding nonparametric plug-in classification procedure.

According to Theorem 2 the Radon-Nikodym densities of interest are the exponential

of some integrals, ratios, products or square roots of functions estimated with orders

of convergence appearing in Propositions 1 and 2. The final rate will be that of the

worst estimate handled, which corresponds to the second order derivatives. As with the

estimation of v, there is some difference in the orders depending on whether σ2(0) is

strictly positive or not.

The main conclusions are summarized in the following result.

Theorem 3 Let us assume that conditions in Proposition 1 (b) and Theorem 2 hold.

a) If ui(0) > 0 for i = 0, 1, then for hn = O(n−1/6) we get

log f̂n(x) − log
dµ0

dµ1

(x) = OP

(

n−1/6
)

, x ∈ C[0, 1].

b) If ui(0) = 0 for i = 0, 1 and inft u
′(t) > 0 and inft∈[δ,1] σ

2(t) > 0 for every δ > 0,

then, for hn = O(n−9/50) we have

E

(

log f̂n(X) − log
dµ0

dµ1

(X)

∣

∣

∣

∣

X1, . . . , Xn

)

= OP

(

n−1/10
)

.
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Let us note that, in any case, our nonparametric estimator f̂n(x) = dPm̂0Γ̂0
/dPm̂1Γ̂1

is constructed, using (11), under the sole assumption that the covariance function has

a triangular structure. So, the estimator is formally the same in both cases a) and b)

of Theorem 2. If we knew that mi = 0 for i = 0, 1 then we could employ f̂n(x) =

dPm̂0Γ̂0
/dPm̂0Γ̂1

and the rates of Theorem 3 would improve, under the assumptions of

Theorem 3 b), to OP (n−3/28).

Using higher order derivatives

The proof of Theorem 3 was based on the use of Taylor expansions of order two.

Next we show how the existence of higher order derivatives improves the estimation

process.

Proposition 3 Under the assumptions of Theorem 3 suppose further that the mean

function m : [0, 1] → R as well as the functions t → Γ(t, 1), t → Γ(0, t) and σ2 admit

Lipschitz third order derivatives. Then the rates in Theorem 3 a) and b) are improved

to OP (n−1/4) and OP (n−5/32), respectively.

A remark similar to that made after Theorem 3 applies here. If we incorporate the

information mi = 0 to the estimator, the convergence rate in Proposition 3 b) slightly

improves to OP (n−1/6).

The convergence orders may be further improved by assuming additional smoothness

orders and taking advantage of numerical differentiation techniques (see, for instance, p.

146 in Gautschi, 1997). We will not develop this idea in the present work. However, let

us observe that in the estimation of functions with infinite derivatives it is possible to

obtain orders as close to OP (n−1/2) as desired by choosing k large enough in the k-point

rule (see, for instance, Herzeg and Cvetkovic, 1986).

Estimation of the probability of misclassification

We denote by L̂n := L(ĝn) = P{ĝn(X) 6= Y |Xn} the classification error associ-

ated with the nonparametric plug-in rule ĝn(x) = I{η̂n(x)>1/2}. Here η̂n is obtained by

substituting the Radon-Nikodym derivative f = dµ0/dµ1 in (5) with the estimator f̂n

obtained by replacing m, u, v and their derivatives with the corresponding nonparamet-

ric estimators obtained along this subsection. The following result is an example of how

the convergence rates for the difference between the logarithms of the Radon-Nikodym

derivatives f̂n(x) and f(x) can be translated into convergence rates of L̂n to the Bayes

error L∗.

Theorem 4 Let the assumptions of Proposition 1 (b) and Theorem 2 hold. If ui(0) > 0

for i = 0, 1, then taking hn = O(n−1/6) we get L̂n − L∗ = OP

(

n−1/6
)

.
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In the case when ui(0) = 0, for i = 0, 1, we can prove that L̂n − L∗ is OP (n−1/10)

under the assumptions that inft u
′(t) > 0 and inft∈[δ,1] σ

2(t) > 0 for every δ > 0. The

idea is to follow the same steps as in the proof of Theorem 4, but bounding the integrals

in (38) and (42) as we did along the proof of Theorem 3.

3 Consistency of the k-NN functional rules

As stated in the introduction, the k-NN classifier is not universally consistent in the

functional setting. However, Cérou and Guyader (2006) provide sufficient conditions

for the consistency Ln → L∗ in probability (or, equivalently, E(Ln) → L∗), where Ln

is the conditional classification error of the k-NN rule. In this section we show that

these conditions are fulfilled by the Gaussian processes introduced in Section 2.2 and,

in consequence, that the k-NN is consistent in probability for them.

Throughout this section the feature space where the variable X takes values is a

separable metric space (F , D). As usual, we will denote by PX the distribution of X

defined by PX(B) = P{X ∈ B} for B ∈ BF , where BF are the Borel sets of F .

The key assumption is a regularity condition on the regression function η(x) =

E(Y |X = x) which is called Besicovich condition (BC). The function η is said to fulfill

(BC) if

lim
δ→0

1

PX(BX,δ)

∫

BX,δ

η(z) dPX(z) = η(X) in probability,

where Bx,δ := {z ∈ F : D(x, z) ≤ δ} is the closed ball with center x and radius δ.

Besicovich condition plays, for instance, an important role in the consistency of kernel

rules (see Abraham et al. 2006).

Cérou and Guyader (2006, Th. 2) have proved that, if (F , D) is separable and

condition (BC) is fulfilled, then the k-NN classifier defined by (2) and (3) is consistent

in probability provided that kn → ∞ and kn/n→ 0. In order to apply this result in our

case, it will be sufficient to observe that the continuity (PX-a.e.) of η(x) implies also

(BC). Consequently we can establish the following result, whose proof is immediate

from Theorems 1 and 2.

Proposition 4 Under the assumptions of Theorem 1 suppose that PX(∂S) = 0. Then

for PX-a.e. x, z in the topological interior of S,

|η(z) − η(x)| =

∣

∣

∣

∣

∣

1 − p

pdµ0

dµ1

(z) + 1 − p
− 1 − p

pdµ0

dµ1

(x) + 1 − p

∣

∣

∣

∣

∣

≤ p

1 − p

∣

∣

∣

∣

dµ0

dµ1

(x) − dµ0

dµ1

(z)

∣

∣

∣

∣

. (24)

As a consequence, for both cases a) and b) considered in Theorem 2 the k-NN functional

classifier is consistent in probability, provided that kn → ∞ and kn/n→ 0.
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Of course, the point is that the Radon-Nikodym derivatives given in Theorem 2 are

continuous on C[0, 1]. So (24) would imply also the continuity of η(x) which in turn

entails the Besicovich condition (BC) and the consistency.

4 Empirical results

In this section we compare the performance of the k-NN classification procedure with

the plug-in one for infinite-dimensional data. First (Subsection 4.1) we describe the

results of a simulation study carried out with processes from the two Gaussian families

specified in Subsection 2.3. Afterwards (Subsection 4.2) we focus on a real-data set.

4.1 Monte Carlo study

The observations will be realizations of two Ornstein-Uhlenbeck processes and two Brow-

nian motions as described in Subsection 2.3. The parameters chosen for the pairs of

processes are specified in Table 1 (in Figure 1 we have depicted some trajectories of the

processes used in the simulations).
Figure 1

here.
We assume that p = P{Y = 0}, the proportion of observations coming from P0,

is 1/2 and is known in advance. For each i = 0, 1 we take a training sample with

size ni = 100 and a test sample with size 50 from Pi. The processes are observed at

equidistant times of the interval [0, 1], t0 = 0, t1, . . . , tN = 1, with N = 50. We denote

by ∆ = tj − tj−1 the internodal distance. The number of Monte Carlo runs is 1000.

In each run we use the training sample to construct four classifiers: k-NN with the

supremum norm and with a PLS-based semimetric (see e.g. Ferraty and Vieu, 2006,

p. 30), parametric and nonparametric plug-in as introduced in Subsections 2.3 and

2.4 respectively. The performance of these classifiers is assessed by the proportion of

correctly classified observations in the test samples. We also compute this proportion for

the Bayes rule associated to each model. The number k of neighbours and the number

of PLS directions for projection are chosen via cross-validation from a maximum of 10

neighbours and 5 PLS directions respectively.

When applying the nonparametric plug-in method to the data functions evaluated

on the whole interval [0, 1] we observed a noticeable boundary effect near 0, especially

in the estimation of v and its derivatives. This made the nonparametric plug-in method

perform poorly. In order to avoid this, the Radon-Nikodym derivative for the nonpara-

metric plug-in rule has been evaluated on the trajectories restricted to the interval [hn, 1],

where hn is the same (and unique) smoothing parameter used in the estimation of the

derivatives of ui and vi. The value of hn has been chosen among {2∆, 4∆, . . . , 20∆} via

cross-validation: for each hn = k∆ we compute the corresponding estimated classifica-
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tion error with the usual leave-one-out device (every training observation is classified, as

if it were a new incoming observation, using the remaining data as a training sample).

In Table 1 we display the mean and the standard deviation (between parentheses)

of the proportion of correct classifications over the 1000 Monte Carlo samples. We see

that the parametric plug-in procedure is the one performing best: it is very near the

optimum.

As it could be expected, the nonparametric plug-in behaves worse than the para-

metric one. Its best performance corresponds to the random start cases ui(0) > 0 for

i = 0, 1. In these situations, it is the second better classifier. When ui(0) = 0, the

parametric plug-in is still the winner, the k-NN with PLS is the second and the k-NN

with the supremum metric and the nonparametric plug-in perform similarly.

It is interesting to note that the k-NN classification method is always reliable (even

with the supremum metric, although PLS semimetric yields better results). Thus one

of the conclusions of the study is that, when classifying functional data, the k-NN

procedure is generally a safe choice, free of model assumptions.
Table 1

here.

4.2 A real data set

We compare the performance of the k-NN classification procedure with the nonpara-

metric plug-in one in the analysis of data from research in experimental cardiology.

The experiment was conducted at the Vall d’Hebron Hospital (Barcelona, Spain). See

Ruiz-Meana et al. (2003) for biochemical and medical details on the data and Cuevas,

Febrero and Fraiman (2004, 2006) for previous analysis of these observations.

The variable under study is the mitochondrial calcium overload (MCO), which mea-

sures the level of the mitochondrial calcium ion (Ca2+). This variable was observed

every 10 seconds during an hour in isolated mouse cardiac cells. The aim of the study

was to assess whether a drug called Cariporide increased the MCO level. The data we

analyze here consist of two samples of functions with sizes n0 = 45 (control group) and

n1 = 44 (treatment group with Cariporide). In Figure 2 we display (a) all the data and

(b) the group means.
Figure 2

here.
In many cases the first three minutes each curve shows oscillations which correspond

to normal contractions of the cells. This first part of the curves has been eliminated (as

in the original experiments with these data) because it has high variability and depends

on uncontrolled factors.

To obtain a better approach of the distributions to normality, we have considered a

transformation of the data, X = log(MCO − 85). The performance of any of the clas-

sification procedures considered is described by the probability of correctly classifying

one of the transformed observations, approximated via cross-validation.
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Obviously, in this case, we do not have enough information to consider using the

parametric plug-in classifier. Consequently we only employ the k-NN (with uniform

metric and PLS-based semimetric) and the nonparametric plug-in discrimination rules.

The results appear in Table 2. It is interesting to notice that the results in this case, in

some sense, are the opposite to those obtained with the simulations. The nonparametric

plug-in clearly outperforms the other two and the k-NN with the supremum metric does

better than the k-NN with PLS.
Table 2

here.
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5 Appendix

A.1 Parameter estimation for the models of Subsection 2.3

Two Brownian motions

In the simulations of Section 4 the estimator of c is ĉ = arg minc

∑N
j=1(m̂0(tj)−c tj)2,

where mi is the sample mean of the observations coming from Pi. The parameters

θi and σ2 are respectively estimated by θ̂i =
∑ni

j=1 (Xj(0; i) − m̂i(0))2 /(ni − 1) and

σ̂2 =
∑

i=0,1

∑ni

j=1 (Xj(1; i) − m̂i(1) −Xi(0; i) + m̂i(0))2 /(n0 + n1 − 1).

Two Ornstein-Uhlenbeck processes

The estimation of the unknown parameters (βi, ηi and σi, i = 0, 1) is carried out

via linear least-squares regression between the realizations of the process at consecutive

time points. The main idea is that, for i = 0, 1 and for any 0 ≤ s < t ≤ 1, we have

X(t; i) = X(s; i) e−βi(t−s) + ηi (1 − e−βi(t−s)) + σi

√

1 − e−2βi(t−s) Z, (25)

where Z is N(0, 1). The updating formula (25) is valid when X(0; i) is either determin-

istic or random. In particular, for i = 0, 1, k = 1, . . . , ni and j = 0, . . . , N − 1,

Xk(tj+1; i) = aiXk(tj; i) + bi + σi

√

1 − e−2βi∆ Zkj, (26)

where ai := e−βi∆, bi := ηi (1 − e−βi∆) and Zkj are i.i.d. variables N(0, 1).

Observe that, by estimating the parameters of the simple linear regression equation

(26), we can construct estimators of βi, ηi and σi. When X(0; i) is deterministic, we

compute the least-squares estimators of ai and bi, that is, the values âi and b̂i minimizing
∑ni

k=1

∑N−1
j=0 u2

kj, where ukj := Xk(tj+1; i) − (âiXk(tj; i) + b̂i) are the residuals. Then

β̂i = − log(âi)

∆
, η̂i =

b̂i
1 − âi

, σ̂2
i =

1

(1 − â2
i )(niN − 2)

ni
∑

k=1

N−1
∑

j=0

u2
kj. (27)
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When X(0; i) is random, we can compute β̂i and σ̂2
i as in (27), but ηi is better

estimated by η̂i =
∑ni

j=1

∑N
k=0Xij(tk)/(ni (N + 1)).

A.2 Proofs of the results in 2.4

Proof of Proposition 1

(a) By the functional CLT in (C[0, 1], ‖ · ‖) (see p. 172 in Araujo and Giné, 1980) the

sequence
√
n(m̂n −m) converges weakly. This entails that the sequence ‖√n(m̂n −m)‖

is bounded in probability which in turn implies (16). Concerning (17) and (18), let us

denote X∗
i (t) = Xi(t) −m(t), t ∈ [0, 1], i = 1, 2, . . .. Note that, for t ∈ [hn, 1 − hn],

|m′(t) − m̂′
n(t)| ≤

∣

∣

∣

∣

m′(t) − m(t+ hn) −m(t− hn)

2hn

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

2hnn

n
∑

i=1

X∗
i (t+ hn)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

2hnn

n
∑

i=1

X∗
i (t− hn)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

m′(t) − m(t+ hn) −m(t− hn)

2hn

∣

∣

∣

∣

+

∥

∥

∥

∥

∥

1

hnn

n
∑

i=1

X∗
i

∥

∥

∥

∥

∥

. (28)

The CLT applied to the sequence {X∗
n} allows us to conclude that the second term in

the right-hand side of (28) is OP

(

(n1/2hn)−1
)

. A second order Taylor expansion of the

first term implies that there exist ψ
(1)
n ∈ (t− hnt) and ψ

(2)
n ∈ (t, t+ hn) such that

∣

∣

∣

∣

m′(t) − m(t+ hn) −m(t− hn)

2hn

∣

∣

∣

∣

=
hn

4

∣

∣m′′(ψ(1)
n ) −m′′(ψ(2)

n )
∣

∣ ≤ Lh2
n

4
= O(h2

n),

where L is the Lipschitz constant associated with m′′.

Applying a similar reasoning to (18), we obtain that, if t ∈ [hn, 1 − hn], then,

|m′′(t) − m̂′′
n(t)| ≤

∣

∣

∣

∣

m′′(t) − m(t+ hn) +m(t− hn) − 2m(t)

h2
n

∣

∣

∣

∣

+ 4

∥

∥

∥

∥

∥

1

h2
nn

n
∑

i=1

Yi

∥

∥

∥

∥

∥

. (29)

The CLT implies that the order of the second term in (29) is OP

(

(n1/2h2
n)−1

)

. A

second order Taylor’s expansion on t again gives that
∣

∣

∣

∣

m′′(t) − m(t+ hn) +m(t− hn) − 2m(t)

h2
n

∣

∣

∣

∣

=

∣

∣

∣

∣

m′′(t) − 1

2

(

m′′(ψ(1)
n ) +m′′(ψ(2)

n )
)

∣

∣

∣

∣

≤ Lhn.

(b) Since

Γ̂(t, 1) − Γ(t, 1) =
1

n

∑

i

(

(X∗
i (t) +m(t) − m̂n(t))(X∗

i (1) +m(1) − m̂n(1))

)

− Γ(t, 1)

=
1

n

∑

i

(

X∗
i (t)X∗

i (1) − Γ(t, 1)

)

+ (m(t) − m̂n(t))
1

n

∑

i

X∗
i (1)

+(m(1) − m̂n(1))
1

n

∑

i

X∗
i (t) + (m(t) − m̂n(t))(m(1) − m̂n(1)),
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then

‖Γ̂(·, 1) − Γ(·, 1)‖ ≤
∥

∥

∥

∥

∥

1

n

∑

i

(X∗
i X

∗
i (1) − Γ(·, 1))

∥

∥

∥

∥

∥

+ ‖m− m̂n‖
∣

∣

∣

∣

∣

1

n

∑

i

X∗
i (1)

∣

∣

∣

∣

∣

+|m(1) − m̂n(1)|
∥

∥

∥

∥

∥

1

n

∑

i

X∗
i

∥

∥

∥

∥

∥

+ ‖m− m̂n‖ |m(1) − m̂n(1)|

=: T (1)
n + T (2)

n + T (3)
n + T (4)

n .

The assumption E‖X1‖4 < ∞ implies E‖X∗
i X

∗
i (1)‖2 < ∞ and thus the sequence

{X∗
i X

∗
i (1)} satisfies the CLT in the supremum norm. Then, since E[X∗

i X
∗
i (1)] = Γ(·, 1),

we have that T
(1)
n = OP (n−1/2). Also T

(2)
n = OP (n−1) because the CLT (real case) im-

plies that
∑

iX
∗
i (1)/n = OP (n−1/2) and, according to Proposition 1 (a), ‖m − m̂n‖ =

OP (n−1/2).

The CLT applied to {X∗
i } and Proposition 1 (a) yield that T

(3)
n and T

(4)
n are OP (n−1).

This allows us to conclude (19). The derivatives of Γ(·, 1) are handled as those of m.

The estimators of Γ(0, ·) and σ(·) behave analogously to Γ(·, 1). 2

Proof of Proposition 2

a) According to expression (22) for v̂n(t), this estimator is a quotient of two convergent

sequences. As that in the denominator, ûn(0), converges to u(0) > 0, an upper bound

for the overall rate of the quotient is the slowest rate between Γ̂n(0, t) and ûn(0). Similar

arguments apply for the first and second derivatives.

b) Let t ∈ [δn, 1]. The hypothesis on u′ implies that inft≥δn
u(t) ≥ O(δn). Since

n−1/2 = o(δn), from (19) we obtain that inft≥δn
ûn(t) ≥ OP (δn). Therefore, a direct

calculation based on the expression of v̂n together with Proposition 1 b) leads to

sup
t∈[δn,1]

|v̂n(t) − v(t)| = OP

(

1

δn
√
n

)

. (30)

The same reasoning, taking into account the relative orders between δn and hn leads to

sup
t∈[δn,1]

|v̂′n(t) − v′(t)| = OP

(

1

δnhn

√
n

)

+O

(

h2
n

δn

)

(31)

sup
t∈[δn,1]

|v̂′′n(t) − v′′(t)| = OP

(

1

δnh2
n

√
n

)

+O

(

hn

δ2
n

)

. (32)

Now, let t ∈ [0, δn]. Using the second-order Taylor expansion of v at δn, together
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with the definition (23) of v̂n, we obtain that there exists ψn ∈ (t, δn) such that

|v̂n(t) − v(t)| ≤ |v̂n(δn) − v(δn)| + (δn − t)|v̂′n(δn) − v′(δn)|

+
1

2
(t− δn)2|v̂′′n(δn) − v′′(δn)| + 1

2
(t− δn)2|v′′(δn) − v′′(ψn)|

≤ OP

(

1

δn
√
n

)

+OP

(

1

hn

√
n

)

+O
(

h2
n

)

+OP

(

δn
h2

n

√
n

)

+O (hn) +O(δ3
n)

= OP

(

δn
h2

n

√
n

)

+O (hn) +O(δ3
n),

where we have applied (30), (31) and (32) and the fact that v′′ is Lipschitz. Then the

first statement in Proposition 2 b) is deduced from here and (30). The remaining two

statements are proved similarly. 2

Next we state a technical lemma which will be employed to prove Theorem 3.

Lemma 1 Let {Y (t), t ∈ [0, 1]} be a stochastic process whose mean function m(t) and

variance function σ2(t) satisfy that m(0) = σ(0) = 0 and both have a bounded derivative.

Let {δn} be positive numbers which converge to zero. Then

E

∫ δn

0

|Y (t)|dt = O(δ3/2
n ) and E

∫ δn

0

Y 2(t)dt = O(δ2
n).

Proof: Let H be a common upper bound for the derivatives of m2 and σ2.

∫ δn

0

E|Y (t)|dt ≤
∫ δn

0

E
1/2(Y 2(t))dt =

∫ δn

0

(m(t)2 + σ2(t))1/2dt

≤ (2H)1/2

∫ δn

0

t1/2dt = O(δ3/2
n ).

The second statement in the lemma follows analogously. 2

Proof of Theorem 3: From expressions (8) and (9) we see that f = dµ0/dµ1 is a

function of mi, ui, vi and their derivatives. Statement a) corresponds to the simplest

case in which ui(0) > 0. In this situation, the simple structure of the estimators shows

that an upper bound for the convergence rate for log fn(x) is the worst rate for the

estimators involved in its definition, namely that of the estimators v′′0 and v′′1 .

Hence, we concentrate on part b). For simplicity we will omit the sub-index in vi for

the rest of the proof. First notice that in the expressions for dµ0/dµ1 which we obtained

in Theorem 2 the second derivatives of v only appear inside integrals. In other words,

we only need to care about differences of the type

∫ 1

0

Xr(t)(k̂n(t)v̂′′n(t) − k(t)v′′(t)) dt = OP

(
∫ 1

0

Xr(t)k(t)(v̂′′n(t) − v′′(t))dt

)

, (33)
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for r = 1, 2. Here k is a function depending on u, v, u′, v′,m and m′ and X is a mixture

of the Brownian motions under consideration. Let us analyze the case in Theorem 2 b)

for which r = 1 and the function k can be expressed as k = k1/ (v((vu′ − uv′)2), where

k1 is a function which can be written in terms of u, v, u′, v′,m and m′. Therefore, the

assumptions in Theorem 2, imply that k is bounded. Let K be an upper bound of k.

We split in two the integral in the right-hand side of (33), over the intervals [0, δn]

and [δn, 1]. Now, from (32) in the proof of Proposition 2, we have that

E

(

|
∫ 1

δn

X(t)k(t)(v̂′′n(t) − v′′(t))dt|
∣

∣

∣

∣

X1, . . . , Xn

)

≤
(

OP

(

1

δnh2
n

√
n

)

+O

(

hn

δ2
n

))(
∫ 1

δn

E(X2(t))dt

)1/2

. (34)

With respect to the other integral, we have that

E

(

|
∫ δn

0

X(t)k(t)(v̂′′n(t) − v′′(t))dt|
∣

∣

∣

∣

X1, . . . , Xn

)

≤ K ‖v̂′′n − v′′‖ E

∫ δn

0

|X(t)|dt = OP

(

δ
1/2
n√
n

)

+O

(

hn

δ
1/2
n

)

+O(δ5/2
n ), (35)

where the last equality comes from Lemma 1 and Proposition 2 b). Equations (34) and

(35) give

E

(

|
∫ 1

0

X(t)k(t)(v̂′′n(t) − v′′(t))dt|
∣

∣

∣

∣

X1, . . . , Xn

)

≤ OP

(

1

δnh2
n

√
n

)

+O

(

hn

δ2
n

)

+O(δ5/2
n ).

Taking hn = δ
9/2
n and δn = n−1/25 equates the three terms and yields the result. 2

Proof of Proposition 3: It follows the same steps as the proof of Proposition 1, the

only difference being that if we apply a third order Taylor expansion in (29), we obtain

∣

∣

∣

∣

m′′(t) − m(t+ hn) +m(t− hn) − 2m(t)

h2
n

∣

∣

∣

∣

=
hn

3!

∣

∣

(

m′′′(ψ1
n) −m′′′(ψ2

n)
)∣

∣ ≤ Lh2
n

3!
,

and the result follows. 2

Proof of Theorem 4: Let us use the following inequality (see, e.g., Devroye et al.,

1996, p. 93)

L̂n − L∗ ≤ 2 E ( |η(X) − ηn(X)| | Xn) ,

where η is given in (5) and ηn is obtained substituting f = dµ0/dµ1 by f̂n in (5). Without

loss of generality in this proof we consider p = P{Y = 0} = 1/2.
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Observe that, f and f̂n are always positive since they are Radon-Nikodym derivatives

of one probability measure with respect to another. Thus, for any x, we have

|η(x) − ηn(x)| =
|f(x) − f̂n(x)|

(1 + f̂n(x)(1 + f(x))
≤ |f(x) − f̂n(x)|,

which implies that

L̂n − L∗ ≤ 2 E

(

|f(x) − f̂n(x)|
∣

∣

∣
Xn

)

. (36)

We obtain convergence rates (in probability) for the conditional expectation in the right

of (36). Since all the cases are similar, let us consider the simple situation in which

m0 6= m1 and Γ0 = Γ1 = Γ with Γ(s, t) = u(min(s, t)) v(max(s, t)). Then

f − f̂n =
dPm0,Γ

dPm1,Γ

−
dPm̂0,Γ̂0

dPm̂1,Γ̂1

=
dPm0,Γ

dPm1,Γ

−
dPm̂0,Γ̂0

dPm̂1,Γ̂0

+
dPm̂0,Γ̂0

dPm̂1,Γ̂0

(

1 −
dPm̂1,Γ̂0

dPm̂1,Γ̂1

)

. (37)

By Theorem 2 (b) and the mean value theorem we have that, for any x,

dPm0,Γ

dPm1,Γ

(x) −
dPm̂0,Γ̂0

dPm̂1,Γ̂0

(x) = ez(z1 − z2),

where (using the notation of Theorem 2)

z1 = D1 +

(

D2 − 2
G(0)

v(0)

)

x(0) + 2
G(1)

v(1)
x(1) − 2

∫ 1

0

x(t)

v(t)
G′(t) dt,

z2 = D̂1;0 +

(

D̂2;0 − 2
Ĝ(0)

v̂0(0)

)

x(0) + 2
Ĝ0(1)

v̂0(1)
x(1) − 2

∫ 1

0

x(t)

v̂0(t)
Ĝ′

0(t) dt

and z = λ z1 + (1 − λ)z2 for some λ ∈ [0, 1]. The subscripts 0 in the expression of z2

mean that the estimation is carried out only with the sample from P0.

Consequently,

E

(

|dPm0,Γ

dPm1,Γ

(X) −
dPm̂0,Γ̂0

dPm̂1,Γ̂0

(X)|
∣

∣

∣

∣

∣

Xn

)

≤ E

{

e|Z1|+|Z2|

[

|D1 − D̂1;0| +
(

|D2 − D̂2;0| + 2

∣

∣

∣

∣

∣

G(0)

v(0)
− Ĝ(0)

v̂0(0)

∣

∣

∣

∣

∣

)

|X(0)|

+2

∣

∣

∣

∣

∣

G(1)

v(1)
− Ĝ0(1)

v̂0(1)

∣

∣

∣

∣

∣

|X(1)| + 2

∫ 1

0

|X(t)|
∣

∣

∣

∣

∣

G′(t)

v(t)
− Ĝ′

0(t)

v̂0(t)

∣

∣

∣

∣

∣

dt

]∣

∣

∣

∣

∣

Xn

}

(38)

≤ κ

{

|D1 − D̂1;0|E
(

eA‖X‖ |Xn

)

+

(

|D2 − D̂2;0| + 2 max
t=0,1

∣

∣

∣

∣

∣

G(t)

v(t)
− Ĝ0(t)

v̂0(t)

∣

∣

∣

∣

∣

(39)

+2

∫ 1

0

∣

∣

∣

∣

∣

G′(t)

v(t)
− Ĝ′

0(t)

v̂0(t)

∣

∣

∣

∣

∣

dt

)

E
(

‖X‖eA‖X‖|Xn

)

}

(40)
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where κ = exp(|D1| + |D̂1;0|) and

A = max

(

|D2| + |D̂2;0|,
∥

∥

∥

∥

∥

G

v
+
Ĝ0

v̂0

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

G′

v
+
Ĝ′

0

v̂0

∥

∥

∥

∥

∥

)

.

Using Propositions 1 and 2 we obtain that the conditional expectations appearing in

(39) and (40) are bounded in probability. Then

E

(

|dPm0,Γ

dPm1,Γ

(X) −
dPm̂0,Γ̂0

dPm̂1,Γ̂0

(X)|
∣

∣

∣

∣

∣

Xn

)

= OP

(

max
j=1,2

|Dj − D̂j;0|
)

+OP

(

max
t=0,1

∣

∣

∣

∣

∣

G(t)

v(t)
− Ĝ0(t)

v̂0(t)

∣

∣

∣

∣

∣

)

+OP

(

∫ 1

0

∣

∣

∣

∣

∣

G′(t)

v′(t)
− Ĝ′

0(t)

v̂′0(t)

∣

∣

∣

∣

∣

dt

)

.

To find the convergence rates to 0 of these last three terms we use the expressions

of D1, D2 and G appearing in Theorem 2. Some straighforward computations yield

|D1 − D̂1;0| = OP (‖v̂′0 − v′‖), |D2 − D̂2;0| = OP (‖v̂0 − v‖),

max
t=0,1

∣

∣

∣

∣

∣

G(t)

v(t)
− Ĝ0(t)

v̂0(t)

∣

∣

∣

∣

∣

= OP (‖v̂′0 − v′‖) and

∫ 1

0

∣

∣

∣

∣

∣

G′(t)

v′(t)
− Ĝ′

0(t)

v̂′0(t)

∣

∣

∣

∣

∣

dt = OP (‖v̂′′0 − v′′‖).

Thus we get

E

(

|dPm0,Γ

dPm1,Γ

(X) −
dPm̂0,Γ̂0

dPm̂1,Γ̂0

(X)|
∣

∣

∣

∣

∣

Xn

)

= OP (‖v̂′′0 − v′′‖). (41)

Let us now focus on the last term of (37). The analysis is similar to the one carried

out above. On the one hand, for any x it holds that

dPm̂0,Γ̂0

dPm̂1,Γ̂0

(x) ≤ κ e2B‖x‖,

where B = max(|D̂2;0|, ‖Ĝ0/v̂0‖, ‖Ĝ′
0/v̂0‖). On the other hand, for any x it also holds

that
∣

∣

∣

∣

∣

1 −
dPm̂1,Γ̂0

dPm̂1,Γ̂1

(x)

∣

∣

∣

∣

∣

≤ |C1 − Ĉ1| +
1

2
Ĉ1 e

Λ‖x‖2

(

|Ĉ3|x2(0) + |Ĉ2|x2(1) +

∫ 1

0

x2(t)
|F̂ ′(t)|

v̂0(t)v̂1(t)
dt

)

(42)

≤ |C1 − Ĉ1| + Ĉ1 Λ eΛ‖x‖2‖x‖2,

where Λ = (|Ĉ3| + |Ĉ2| +
∫ 1

0
|F̂ ′|/(v̂0v̂1))/2. Consequently

E

(

dPm̂0,Γ̂0

dPm̂1,Γ̂0

(X) |1 −
dPm̂1,Γ̂0

dPm̂1,Γ̂1

(X)|
∣

∣

∣

∣

∣

Xn

)

≤ κ
{

|C1 − Ĉ1| E
(

e2B‖X‖|Xn

)

+ Ĉ1 Λ E

(

‖X‖2 e2B‖X‖+Λ‖X‖2

∣

∣

∣
Xn

)}

. (43)
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The conditional expectations in (43) and Ĉ1 are OP (1). The term Λ is OP (maxj=0,1 ‖v̂′′j −
v′′‖). The difference |C1 − Ĉ1| is OP (maxj=0,1 ‖v̂j − v‖). Thus the term in (43) is

OP (maxj=0,1 ‖v̂′′j −v′′‖). This, together with (41) and Proposition 2 (a), yield the desired

result. 2
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k-NN

‖ ‖∞
k-NN

PLS

Nonpar.

plug-in

Param.

plug-in

Bayes

rule

Two

Brownian

motions

Deterministic

at t = 0

(θ0 = θ1 = 0)

c = 1.5, σ = 1
0.68 0.73 0.71 0.77 0.77

(0.07) (0.07) (0.16) (0.06) (0.06)

c = 3, σ = 1
0.90 0.91 0.86 0.93 0.93

(0.05) (0.05) (0.16) (0.04) (0.03)

c = 2, σ = 2
0.60 0.64 0.64 0.69 0.69

(0.08) (0.08) (0.16) (0.07) (0.06)

Random

at t = 0

(θ0, θ1 6= 0)

c = 1.5, σ = 1

θ0 = θ1 = 1

0.67 0.66 0.71 0.77 0.77

(0.07) (0.08) (0.08) (0.07) (0.06)

c = 1.5, σ = 1

θ0 = θ1 = 0.5

0.67 0.70 0.72 0.77 0.77

(0.07) (0.08) (0.08) (0.06) (0.06)

Two

Ornstein-

Uhlenbeck

processes

Deterministic

at t = 0

β0 = 1, η0 = 0, σ0 = 1

β1 = 1, η1 = 1

0.54 0.58 0.60 0.63 0.62

(0.08) (0.08) (0.14) (0.07) (0.07)

β0 = 0.4, η0 = 0, σ0 = 0.4

β1 = 1, η1 = 1

0.83 0.86 0.82 0.88 0.88

(0.09) (0.06) (0.16) (0.05) (0.05)

Random

at t = 0

β0 = 0.5, η0 = 0, σ0 = 1

β1 = 1, η1 = 0.5

0.59 0.60 0.63 0.63 0.64

(0.13) (0.11) (0.14) (0.07) (0.14)

β0 = 0.5, η0 = 0, σ0 = 2

β1 = 1, η1 = 2

0.69 0.72 0.74 0.74 0.74

(0.11) (0.10) (0.11) (0.07) (0.09)

Table 1: Results of the Monte Carlo study

k-NN
‖ ‖∞

k-NN
PLS

Nonpar.
plug-in

0.79 0.66 0.85

Table 2: Proportion of correctly classified for the transformed cell data.
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Figure 1: Some trajectories (P0 in gray and P1 in dotted black) of the processes used in

the Monte Carlo study. In (a) and (b) we have two Brownian motions and in (c) and

(d) the processes are Ornstein-Uhlenbeck. In (a) and (c) X(0)|Y = i is 0 and in (b) and

(d) it is random.
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Figure 2: Cell data (control group in grey and treatment group in black): (a) all the

original observations; (b) sample means.
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