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Abstract

We provide two families of lower bounds for the L2-Wasserstein metric
in separable Hilbert spaces which depend on the basis chosen for the space.
Then we focus on one of these families and we provide a necessary and
sufficient condition for the supremum in it to be attained. In the finite
dimensional case, we identify the basis which provides the most accurate
lower bound in the family.
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1 Introduction.

Although the L2-Wasserstein distance can be defined in more general
settings, we limit the scope of this paper to separable real Hilbert
spaces. In such spaces the L2-Wasserstein metric is defined as fol-
lows:

Let (H; 〈 , 〉) be a separable real Hilbert space and let µ and ν
be Radon probability measures defined on its Borel σ-algebra such
that

∫
‖x‖2dµ and

∫
‖x‖2dν are finite. The L2-Wasserstein distance

between µ and ν is defined as the positive square root of

W 2(µ, ν) := inf {
∫
‖x− y‖2dP (x, y)}

∗Research partially supported by the Spanish DGICYT under grants PB91-0306-02-00, 01
and 02.
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where the infimum is taken over the family of probability measures
on H2 with marginals µ and ν respectively.

Some results have appeared in which the value of W 2(µ, ν) is
computed if H is finite dimensional and µ and ν are Gaussian (see
for instance [6, 8, 10, 11, 12, 13]). It is then well known that if µ
and ν are Gaussian distributions, with parameters (mµ, ) and (mν , )
respectively, then

W 2(µ, ν) = ‖mµ −mν‖2 + trace (+− 2) .

In [7] it is proved that this expression provides a universal lower
bound for the Wasserstein distance in the sense that if µ and ν are
two probability measures on a Euclidean space and mµ and mν and
and are their expectations and covariance matrices respectively,
then we have that

W 2(µ, ν) ≥ ‖mµ −mν‖2 + trace (+− 2) . (1)

A sufficient condition for the equality to hold appears in [7]. It
is also shown in [7] that the equality is valid in separable Hilbert
spaces if µ and ν are Gaussian.

Later, in [14], an incomplete but very simple proof for (1) has
been given. Moreover, from that proof it also follows that Gelbrich’s
sufficient condition is also necessary. These authors work in the
finite dimensional case.

In this paper we analize the situation in general separable Hilbert
spaces from a different point of view. The basic idea consists of
relating the Wasserstein distance between the probabilities to the
Wasserstein distances between the marginal probabilities on every
complete orthonormal system (orthonormal basis). For every such
a basis such a procedure provides not only a lower bound in terms
of the variances of the components, but even a better bound based
on the Wasserstein distances between the components (Proposition
2.4). This methodology allows to obtain Gelbrich’s bound (1) as the
best of those lower bounds based on the variances even in the infi-
nite dimensional case (Theorem 2.7). The proof is based on the fact
that equality holds for Gaussian distributions (a new simple proof
for this fact in the finite dimensional case is included, Theorem 2.5).
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The orthonormal basis which provides the best lower bound is ob-
tained in the same theorem if the dimension is finite and we give
a counterexample on the existence of such a basis in the general
case. Moreover, a better natural bound, the best of those based
on marginal distances, BMD, appears. It is interesting to remark
that Gelbrich’s bound is related to linear dependence, while BMD
is related to the structure of dependence (see [6]) of the probabil-
ity measures. The paper also includes an analysis of the interplay
between both lower bounds.

We finalize by giving a necessary and sufficient condition to that
(1) becomes an equality in the infinite dimensional case (Theorem
2.15).

On a different line let us consider the right hand side in (1) and
suppose that mµ = mν = 0. Then this right hand side coincides
with the Wasserstein distance between two centered Gaussian dis-
tributions with covariance operators and respectively. So if Σ1

and Σ2 are two self-adjoint, compact operators, then Σ2
1 and Σ2

2

are the covariance operators of two Gaussian distributions and the
expression

d(Σ1,Σ2) = trace1/2
(

Σ2
1 + Σ2

2 − 2
(
Σ1Σ2

2Σ1

)1/2
)

(2)

defines a distance on the family of the self-adjoint, compact linear
operators. Moreover in spite of the fact that this distance is related
to a norm, d is not a norm. This is because if d arised from a norm,
then

d(Σ1,Σ2) = d(Σ1 − Σ2, 0)

while, by definition,

d(Σ1−Σ2, 0) = trace1/2
(
(Σ1 − Σ2)2

)
= trace1/2

(
Σ2

1 + Σ2
2 − 2(Σ1Σ2)

)
.

This expression is equal to the right hand side of (2) if Σ1 and
Σ2 commute, but they differ in general (take for instance Σ1 =(

1 0
0 0

)
and Σ2 =

(
1 1
1 1

)
).

On the other hand it is well known (see e.g. [2, pag. 274]) that
the expression
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d∗(Σ1,Σ2) = trace1/2
(
Σ2

1 + Σ2
2 − 2(Σ1Σ2)

)
defines a norm (the so-called Hilbert-Schmidt norm; in fact that
norm is induced by an inner product). It may be of interest to note
that this expression coincides with the Wasserstein distance between
a probability measure concentrated in the point 0 and the centered
Gaussian distribution with covariance operator (Σ1 − Σ2)2.

Through the paper we will often assume without loss of generality
that mµ = mν = 0 because (see for instance [1]) if µ and ν are two
probability measures on H and µ∗ and ν∗ are the result of centering
them in mean, then

W 2(µ, ν) = W 2(µ∗, ν∗) + ‖mµ −mν‖2.

2 The results.

We begin with the notation to be employed and with some well-
known definitions and properties related to the covariance operators
in a Hilbert space. We state them for sake of completeness.

Let (H, 〈 , 〉) be a separable real Hilbert space and let µ be
a Radon probability measure (i.e. µ(B) = sup{µ(K) : K ⊂
B, K compact}) defined on the Borel σ-algebra. Let us suppose
that µ is of strong order two (i.e.

∫
‖x‖2dµ < ∞). Under these

conditions the mean value of µ, mµ, and the covariance operator of
µ, , can be defined through the relations:

〈mµ, a〉 =
∫
〈x, a〉µ(dx) ; a ∈ H

and

〈a, b〉 =
∫
〈x−mµ, a〉〈x−mµ, b〉µ(dx) ; a, b ∈ H.

is positive (i.e. 〈a, a〉 ≥ 0 ; a ∈ H), self-adjoint (i.e., 〈a, b〉 =
〈a, b〉 ; a, b ∈ H), compact (i.e. maps every bounded set in H onto
a relatively compact set in H) and has finite trace (for definitions,
properties and related facts see e.g. [9, 16]).

On the other hand, if Σ is a compact positive self-adjoint linear
operator, there exists an orthonormal basis for H, {}, consisting of
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eigenvectors of Σ whose associated eigenvalues are nonnegative [2,
p. 48]. Therefore, if we denote by λn the eigenvalue associated with
the eigenvector , we can define the linear operator Σ1/2 by

Σ1/2~en = λ1/2
n ~en

and, if we fix in H the basis given by the eigenvectors {} and we
considerH as a space of sequences, we could define Σ− in an obvious
way from the relations

Σ−~en =

∣∣∣∣∣ λ−1
n ~en, if λn 6= 0

0, if λn = 0
.

The basic result in this section is proved in two steps. We first
solve the problem in the finite-dimensional case and then we use this
partial result to obtain the general one.

Therefore we set H = <k and let µ and ν be two probability
measures with finite second order moment and covariance matrices
and . Let us consider the matrix

A(, ) := (3)

(which defines a linear, self-adjoint, positive semidefinite operator).
According to Theorem 2.13 in [6], if X is a <k-valued random vector,
then ‖X − AX‖2 = W (PX , PAX), where A := A(, ).

Unless the contrary is stated, while we are in the case H = <k,
we represent by {~en} an orthonormal basis of <k of eigenvectors of
the linear operator A(, ) such that the basis of KerA(, ) contains a
basis of Ker (this is possible because Ker ⊂ KerA(, )). Therefore,

we have that ~en ∈ Ker or ~en ∈ (Ker)⊥ for every n.
In that follows, given the linear operator Σ, ΠΣ denotes the pro-

jection onto the subspace (KerΣ)⊥. Note the basic property relating
the operators ΠΣ and Σ−:

ΠΣ~x = Σ−Σ~x = ΣΣ−~x, ∀~x ∈ H.

Lemma 2.1 Let {λn} be the eigenvalues of A := A(, ) associated
with the eigenvectors {~en}. Then:

trace =
∑
n

λn〈~en, ~en〉.
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PROOF.- As stated we have two possibilities:
If ~en ∈ Ker = Ker, then ~en ∈ Ker and

〈~en, ~en〉 = 〈A~en, ~en〉 = 0.

If ~en ∈ (Ker)⊥ then

〈A, 〉 = 〈ΠΣµ , 〉
= 〈,ΠΣµ〉 = 〈, 〉

and we have that

trace = trace (A) = trace(A)

=
∑
i〈A, 〉 =

∑
i λi〈, 〉.

The key ideas in the paper arise in the (proof of the) following
theorem.

Theorem 2.2 With µ and ν as above we have that

W 2(µ, ν) ≥ ‖mµ −mν‖2 + trace(+− 2).

The equality holds if and only if ν∗ ◦ Π−1
Σµ = µ∗ ◦ A−1, where µ∗

and ν∗ are the centered in mean measures and A:=A(, ).

PROOF.- Without loss of generality let us assume that mµ = mν =
0.

Let X and Y be two random vectors such that PX = µ, PY = ν
and W (µ, ν) = ‖X − Y ‖2. If we denote Xi := 〈X, 〉, we have that

W 2(µ, ν) = ‖X − Y ‖2
2 =

∑
i

E|Xi − Yi|2.

Let {X̂i} and {Ŷi} be real r.v.’s. such that

X̂i
d
= Xi, Ŷi

d
= Yi, and W (PXi ;PYi) = ‖X̂i − Ŷi‖2.

Then we have the following inequalities
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W 2(µ, ν) =
∑
iE|Xi − Yi|2 ≥

∑
iW

2(PXi ;PYi) =
∑
iE|X̂i − Ŷi|2

≥ ∑i

∣∣∣‖X̂i‖2 − ‖Ŷi‖2

∣∣∣2 =
∑
i |σ(Xi)− σ(Yi)|2

=
∑
i

∣∣∣〈, 〉1/2 − 〈, 〉1/2∣∣∣2
= trace (+)− 2

∑
i〈, 〉1/2〈, 〉1/2,

(4)
where σ(Xi) is the standard deviation of Xi, i = 1, ..., k.

Now note that Ker ⊂ Ker. Therefore, if x ∈ <k, we have that
x ∈ (Ker)⊥ and we obtain that

ΣAX = AA == ΠΣµΠΣµ

and then
〈, 〉 = 〈ΠΣµ ,ΠΣµ〉 = 〈ΠΣµΠΣµ , 〉

= 〈AA, 〉 = λi〈A, 〉 = λ2
i 〈, 〉

if ∈ (Ker)⊥.
Therefore we have proved that

W 2(µ, ν) ≥ trace(+)− 2
∑
i

λi〈, 〉.

By Lemma 2.1 the inequality in the theorem is proved.
To end the proof note that the first inequality in (4) is an equality

if and only if W 2(PXi , PYi) = E|Xi − Yi|2, i.e. if and only if we can

assume that Xi = X̂i and Yi = Ŷi a.s. and the second inequality in
(4) is an equality if and only if X̂i and Ŷi are linearly related a.s..

But this implies that, if ∈ (Ker)⊥ then Ŷi = αiX̂i a.s. for some
constant αi. In that case αi = λi and the second statement is also
proved.

Next we extend Theorem 2.2 to the infinite dimensional case.
This extension is carried out in several steps. First we show that
inequalities in (4) hold in the infinite dimensional case. We will use
Theorem 2.2 in our proof. To do this, we fix an orthonormal basis
{} in H and we denote by Πn the projection on the linear subspace
spanned by the vectors ~e1, ..., and µn = µ ◦ Π−1

n and νn = ν ◦ Π−1
n .
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We also employ the following lemma which was proved for general
Banach spaces in [1, Lemma 8.3].

Lemma 2.3 Let {µi} and µ be strong order two probability mea-
sures defined on H. Then the following statements are equivalent

1. W (µi, µ)→ 0.

2. µi → µ weakly and
∫
‖x‖2dµi →

∫
‖x‖2dµ.

Proposition 2.4 Let µ and ν be two Radon probability measures of
strong order two defined on H. Let X and Y be two random vectors
with distribution µ and ν respectively. Let {~en} be an orthonormal
basis on H and let us define Xi := 〈X,~ei〉 and Yi := 〈Y,~ei〉. Then
we have the following inequalities

W 2(µ, ν) ≥
∑
i

W 2(PXi , PYi) (5)

≥ ‖mµ −mν‖2 +
∑
i

σ2(Xi) +
∑
i

σ2(Yi)− 2
∑
i

σ(Xi)σ(Yi)(6)

where σ(Xi) and σ(Yi) denote the standard deviations of the real
random variables Xi and Yi respectively.

PROOF.- We can assume without loss of generality that mµ = mν =
0.

Since ‖ΠnX−X‖2 → 0, we can apply Lemma 2.3 to µn to get that
{W (µn, µ)} converges to zero, so that limnW (µn, νn) = W (µ, ν).

On the other hand, inequalities in (4) hold for every orthonormal
basis, therefore, if we apply them to µn and νn, we have that

W 2(µ, ν) = limnW
2(µn, νn) ≥ limn

∑
i≤nW

2(PXi , PYi)

≥ limn
∑
i≤n |σ(Xi)− σ(Yi)|2,

and the proof ends.

REMARKS

1. Inequality (5) is an equality if and only if µ and ν have the
same structure of dependence on the basis {~en} (see [6]).
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2. Inequality (6) is an equality if and only if the marginal distri-
butions on the basis {~en} are affine positively linearly related.

3. The same kind of proof of the Theorem 2.2 allows to improve
the lower bound given by (5) by considering marginal distri-
butions of higher order. For example, let us assume that k is
an even number and let Pj (resp. Qj) be the two-dimensional
marginal probability of µ (resp. ν) on the subspace generated
by {~e2j−1, ~e2j} j = 1, 2, ..., then

W 2(µ, ν) ≥
∑
j

W 2(Pj, Qj) ≥
∑
i

W 2(PXi , PYi).

(It is also possible consider bounds based on marginal distribu-
tions on orthogonal subspaces Vj of different dimensions with
the only restriction H =

⊕
Vj).

4. The best bounds which can be obtained from (5) and (6) are
obviously

W 2(µ, ν) ≥ sup
∑
i

W 2(PXi , PYi)

≥ sup

(
‖mµ −mν‖2 +

∑
i

σ2(Xi) +
∑
i

σ2(Yi)− 2
∑
i

σ(Xi)σ(Yi)

)

where both suprema are taken over the different orthonormal
basis of H. Indirect considerations (related with the second
bound) show that the more precise bound, BMD, cannot be
generally attained in a linear way.

Note that the lower bounds that inequality (6) gives do not de-
pend on the particular random vector or even on the probability dis-
tributions we choose. They only depend on and . Therefore, given
the orthonormal basis B := {~en}, let us to denote by Low(B, , ) the
lower bound obtained in (6) when we choose B as a orthonormal
basis of H.

All these lower bounds do not coincide in general. For instance
let us suppose that H = <2 and that
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=

(
0 0
0 2

)
and =

(
2 0
0 0

)
.

Then, by Proposition 2.4 we have that W 2(µ, ν) ≥ 4; but if we
consider the basis

B = {(1/
√

2, 1/
√

2), (1/
√

2,−1/
√

2)}

then

=

(
1 −1
−1 1

)
and =

(
1 1
1 1

)

and Low (B, , ) = 0.
This suggests the question of the choice of the best lower bound

and the identification of the basis which produces it. Both ques-
tions will be solved in the finite dimensional setting by analyzing
the Gaussian case. We are going to prove that if µ and ν are two
Gaussian distributions and we choose the basis we handled in the
proof of Theorem 2.2 then equality holds. Therefore the lower bound
obtained through the orthonormal basis of eigenvectors of A(, ) has
to be the best one.

Theorem 2.5 Let and be two positive, symmetric matrices on <k.
Let B0 be an orthonormal basis of eigenvalues of A(, ) which contains
an orthonormal basis of Ker. Then

Low(B, , ) ≤ Low(B0, , ).

Moreover, if µ and ν are two Gaussian distributions with covari-
ance matrices and respectively, then

W 2(µ, ν) = Low(B0, , ).

PROOF.- Let µ and ν be two Gaussian probability measures with
and as covariance matrices respectively. Taking into account that
ΣAX = ΠΣµΠΣµ we obtain that Theorem 2.2 gives an equality for µ
and ν. However, from the reasoning in that theorem we also have
that
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‖mµ −mν‖2 + trace(+− 2) = Low(B0, , )

what joined to Proposition 2.4 gives us the result.

To better explain the different roles played by Gelbrich’s bound
and BMD let us consider in <2 the probability µ given by the stan-
dard bidimensional normal law N2(0, I2) and ν a nonnormal distri-
bution with uncorrelated standard normal, N(0, 1), marginal laws
(in a given basis). Then Gelbrich’s bound is zero while BMD is
strictly greater because some one-dimensional marginal distribution
of ν in some basis must be nonnormal. However, the last term in
inequality (6) is the same for each orthonormal basis. Therefore it
could be still argued that BMD will be attained in a basis where
Gelbrich’s bound is also attained. The following simple example
shows a new situation where Gelbrich’s bound is useless while BMD
coincides with the Wasserstein distance. Moreover the BMD is at-
tained for an orthonormal basis in which Gelbrich’s bound is not
attained.

Example 2.6 For a given orthonormal basis in <2 let µ be the
uniform distribution on the triangle surface determined by the points
(0,0), (1,1) and (1,-1). Now consider a random vector X = (X1, X2)
with distribution µ and let ν be the distribution of the random
vector Y = (X2

1 , (X2 + 1)2). Clearly:

W 2
(
PX1 , PX2

1

)
+W 2

(
PX2 , P(X2+1)2

)
≤ W 2(µ, ν) ≤ E‖X − Y ‖2

= E|X1 −X2
1 |2 + E|X2 − (X2 + 1)2|2.

(7)
Moreover, taking into account that the mappings λ 7→ λ2 and

λ 7→ (λ + 1)2 defined on the interval [−1,∞) are increasing, we
obtain as a consequence of Corollary 2.9 in [17] and Corollary 5.2,
ii) in [3], that:

W 2
(
PX1 , PX2

1

)
= E|X1 −X2

1 |2

W 2
(
PX2 , P(X2+1)2

)
= E|X2 − (X2 + 1)2|2.
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It then follows that the inequalities in (7) are equalities and we
obtain that

W 2(µ, ν) = W 2
(
PX1 , PX2

1

)
+W 2

(
PX2 , P(X2+1)2

)
= 48/30.

On the other hand, simple computations show that:

Σµ =
1

18

(
1 0
0 3

)
, Σν =

1

180

(
15 5
5 1

)
and

Σ1/2
µ ΣνΣ

1/2
µ =

1

3240

(
15 5

√
3

5
√

3 381

)
so that the matrixA(, ) is not diagonal because in other case Σ1/2

µ ΣνΣ
1/2
µ

would be diagonal.

Finally, numerical computations show that trace
(
Σµ + Σν − 2(Σ1/2

µ ΣνΣ
1/2
µ )1/2

)
is approximately 0,189941 (computations realized with MATHE-
MATICA with twenty digits accuracy).

Next we show that Gelbrich’s bound (1) also works in the infinite
dimensional case. At the same time we obtain the relation between
this bound and those bounds given in (5) and (6).

We employ the following additional notation. Given the strong
order two Radon probability measure µ we denote by Gµ to the
Gaussian probability measure with the same mean and covariance
operator as µ (recall that µn = µ ◦ Π−1

n ).
It is interesting to note that it could be possible that the opti-

mal basis for Gµn+1 and Gνn+1 does not contain the corresponding
optimal one for Gµn and Gνn . Therefore some caution is needed to
carry out the extension we are looking for.

Theorem 2.7 Let µ and ν be two Radon probability measures of
strong order two defined on H. Then we have that

W 2(µ, ν) ≥ sup
∑
i

W 2(PXi , PYi)

≥ ‖mµ −mν‖2 + trace(+− 2)

= W 2(Gµ, Gν)

= sup

(
‖mµ −mν‖2 +

∑
i

σ2(Xi) +
∑
i

σ2(Yi)− 2
∑
i

σ(Xi)σ(Yi)

)
,
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where both supremums are taken on all possible orthonormal basis
and Xi, Yi, i = 1, 2, ... are real random variables with the same
distribution as the corresponding marginals of µ and ν respectively.

PROOF.- We are going to use the fact (proved in [7, Theorem 3.5])
that, even in the infinite dimensional case, if mµ = mν = 0, then

W 2(Gµ, Gν) = trace(+− 2). (8)

On the other hand it is obvious that Gµn = Gµ ◦ Π−1
n . So, if we

apply the same reasoning as in Proposition 2.4 we have that

W 2(µ, ν) ≥ limn
∑
i≤nW

2(PXi , PYi)

≥ limnW
2(Gµn , Gνn) ≥ limn

∑
i≤n |σ(Xi)− σ(Yi)|2.

From here, by taking the supremum on all orthonormal basis on
H, we obtain that

W 2(µ, ν) ≥ sup
∑
iW

2(PXi , PYi) ≥ W 2(Gµ, Gν)

≥ sup (
∑
i σ

2(Xi) +
∑
i σ

2(Yi)− 2
∑
i σ(Xi)σ(Yi)) .

Now we only have to prove that the third inequality is, in fact,
an equality. To do this, let us fix, once more, an orthonormal basis,
{}, on H. Let ε > 0 and let k be a natural number such that
W 2(Gµ, Gν) − ε ≤ W 2(Gµk , Gνk). If we apply Theorem 2.5 to the
distributions Gµk and Gνk we have that there exist k orthonormal
vectors, ~e k1 , ..., ~e

k
k , which span the same subspace as ~e1, ..., ~ek such

that if we denote Xk
i =< X,~e ki > and Y k

i =< Y,~e ki >, i = 1, ..., k,
where X and Y are two random elements with distributions µ and
ν, then

W 2(Gµk , Gνk) =
∑
i≤k
|σ(Xk

i )− σ(Y k
i )|2

and, if we consider the orthonormal basis ofH given by {~e k1 , ..., ~e kk , ~ek+1, ~ek+2, ...}
we obtain that

W 2(Gµ, Gν)− ε ≤ W 2(Gµk , Gνk) =
∑
i≤k |σ(Xk

i )− σ(Y k
i )|2

≤ ∑∞
i=1 |σ(Xk

i )− σ(Y k
i )|2

≤ sup (
∑
i σ

2(Xi) +
∑
i σ

2(Yi)− 2
∑
i σ(Xi)σ(Yi)) ,
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where Xk
i and Y k

i are defined in an obvious way when i ≥ k, and
the theorem is proved.

Now, we will study the conditions for the equality in Theorem
2.7 to hold in the infinite dimensional case. This presents some dif-
ficulties. For instance, consider the conditions to have equality in
Theorem 2.2. The first question is that now the operator A(, ) is
not well defined through the expression (3) because if we consider
in H an orthonormal basis of eigenvectors of and X is a random el-
ement with Gaussian distribution µ then the marginal distributions
of X are independent standard Gaussian ones which has sense if we
consider H as an espace of sequences, while ()−X does not belong
to the Hilbert space H µ-a.s., so X is not well defined.

However we can get an almost surely defined operator with the
desired properties through the following methodology.

Proposition 2.8 Let and be covariance operators. Let X be a
random element with covariance operator . Let {} be an orthonormal
basis consisting of eigenvectors of and let {} be the corresponding
eigenvalues. Let L = {i ∈ N : 6∈ Ker} and suppose that ≥ if
i, j ∈ L and i < j.

Then there exist real random variables {Zi; i ∈ L} such that∑
j∈L

1≤j≤k
〈X, 〉〈 , 〉 a.e.

−→
k→∞ Zi, i ∈ L, (9)

and ∑
i∈L

Z2
i <∞ a.e.

PROOF.- Note that the assumption ≥ if i, j ∈ L and i < j is right
because

∑
<∞.

Let i ∈ L. For each j ∈ L let us define

Yj =
〈X, 〉〈 , 〉

.

The sequence {Yj}j∈L is orthogonal (i.e. EY 2
j <∞ for all j ∈ L

and EYkYj = 0 for all k 6= j), so to obtain the convergence in (9) it
suffices to prove that

∑
j∈L jE(Y 2

j ) <∞ (see, e.g.,Corollary 2.2.1 in
[15]).
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But, we have:

∑
j∈L

1
E(Y 2

j ) =
∑
j∈L

1
E
〈X, 〉2〈 , 〉2

=
1 ∑
j∈L

1〈 , 〉2

≤ 1 ∑
j∈L

1‖‖2

=
1 ∑
j∈L

1〈 , 〉

=
1 ∑
j∈L

1〈
(

1/21/2
)
, 〉 =

1 ∑
j∈L
〈, 〉 <∞

because has finite trace.
Now, the convergence of the series

∑
λi implies that, if ε > 0

then there exists N0 ∈ N such that, for every m ≥ N0 we have that

ε > λN0 + . . .+ λm ≥ (m−N0)λm

and we have that limmmλm = 0. Therefore we conclude that 1 >
n if n ≥ n0 and

∑
j∈L jE(Y 2

j ) <∞.

To prove the convergence of the series
∑
i∈L Z

2
i we will see that∑

i∈LE(Z2
i ) <∞. Clearly this condition would be satisfied ifE(Z2

i ) ≤
〈, 〉; but,

E(Z2
i ) ≤ lim inf

k
E

 ∑
j∈L

1≤j≤k

Yj


2

= lim inf
k

∑
j∈L

1≤j≤k

〈 , 〉2

=
1 ∑
j∈L
〈 , 〉2

=
1 ∑
j∈L
〈 , 〉〈 , 〉
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=
1〈 , 〉

=
1〈
(

1/21/2
)
, 〉 = 〈, 〉.

This completes the proof of this proposition.

In view of Proposition 2.8 there exists a set Ω0 with PX(Ω0) = 1
where we can define an H-valued map T (= T (, )) by :

T (x) :=
∑
i∈L

∑
j∈L

〈x, 〉〈 , 〉
 . (10)

Note that in the finite dimensional case T coincides with the
operator in (3). On the other hand, in any situation it is easy to
obtain that T is self-adjoint and linear in its domain.

We have to face another difficulty yet. To analize it let us consider
the following proposition, whose proof appears in [5].

Proposition 2.9 Let µ and ν be strong order two probability mea-
sures and assume that for the probability µ there exists an orthogonal
basis, {}, such that, for each n and almost everywhere ω in the or-
thogonal subspace to , the conditional distribution function on the
subspace generated by given ω is atomless.

Then if W (µ, ν) = ‖X − Y1‖2 = ‖X − Y2‖2 we have that Y1 = Y2

a.s.

Now let B be the self-adjoint positive linear operator defined on
the Hilbert space L2[0, 1] by

B[f(x)] = xf(x), f ∈ L2[0, 1], x ∈ [0, 1].

According to Theorem 2.13 in [6] we have that W (PX , PBX) =
‖X −BX‖2. Moreover, if µ is a non-singular Gaussian distribution
then it verifies the conditions in Proposition 2.9 [4, Proposition 2.11].
Therefore, if X has a Gaussian distribution, by Proposition 2.9, B
is the only map F which verifies that W (PX , PBX) = ‖X −F (X)‖2.
But B has no eigenvector and therefore one of the key ideas of the
proof of Theorem 2.2 (to consider the basis where the linear operator
A is diagonal) is not valid now.
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Moreover, in this case, for every basis we fix, if we denote Y =
BX, we have that

trace(+− 2) >
∑
i

σ2(Xi) +
∑
i

σ2(Yi)− 2
∑
i

σ(Xi)σ(Yi),

because, if this equation were an equality for any basis, then by
the reasoning in Theorem 2.2 we would have that Yi = λiXi almost
surely in this basis and then B would have eigenvalues

However, as announced, we can obtain the following result.

Theorem 2.10 Let and be covariance operators. If X is a random
element with covariance operator , mean vector mX = 0 and T is
the map given by (10), then the covariance operator of T(X) is ΠΠ,

where Π denotes the projection on the subspace (KerΣ1)⊥, and

W 2(PX , PT (X)) = E‖X − T (X)‖2 = trace(+ΠΠ− 2).

PROOF.- The covariance operator ΣT (X) associated with the proba-
bility measure PT (X) is linear and bounded, so to prove ΣT (X) = ΠΠ
it suffices to show that 〈ΣT (X), 〉 = 〈ΠΠ, 〉 for every i, j.

Taking into account that Ker ⊂ Ker we have that, if i, j ∈ L:

〈ΣT (X), 〉 =
∫
〈x, 〉〈x, 〉PT (X)(dx) =

∫
〈T (y), 〉〈T (y), 〉PX(dy)

=
∫
〈y, T ()〉〈y, T ()〉PX(dy) = 〈T, T 〉

=
∑
k∈L

〈, ~ek〉〈, ~ek〉

=
〈, 〉

= 〈, 〉 = 〈ΠΠ, 〉.

The equality is evident if i or j does not belong to L because
then

〈ΣT (X), 〉 = 0 = 〈ΠΠ, 〉.
Consider now

E‖X − T (X)‖2 =
∑
i

E(〈X, 〉 − 〈T (X), 〉)2

= trace(+ΠΠ)− 2
∑
i

E〈X, 〉〈T (X), 〉
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and

E〈X, 〉〈T (X), 〉 = E〈X, 〉〈X,T ()〉 = 〈, T ()〉
= 〈T (), 〉 = 〈, 〉.

Consequently:

E‖X − T (X)‖2 = trace(+ΠΠ− 2)

and the theorem is proved.

REMARK
Let and be covariance operators. If X is a Gaussian random

variable with covariance operator and mean vector mX = 0 then
T(X) is a Gaussian random variable with covariance operator ΠΠ,
because if v ∈ H, then the real-valued random variable

〈T (X), v〉 =
∑
i∈L
〈v, 〉

∑
j∈L

〈X, 〉〈 , 〉


is the a.e. limit of normal random variables and, in consequence,

W 2(PX , PT (X)) = E‖X − T (X)‖2 = trace(+ΠΠ− 2).

We will need the next result, which has independent interest.

Proposition 2.11 Let µ be a strong order two probability measure
which verifies the condition in the Proposition 2.9. Let Σ be a covari-
ance operator. Consider the set PΣ of all strong order two probability
measures whose covariance operator is Σ and define

W 2(µ,PΣ) = infν∈PΣ
W 2(µ, ν).

Then there exists a unique probability measure ν∗ such that

W 2(µ,PΣ) = W 2(µ, ν∗).

PROOF.- Let X be a random element such that PX = µ. The
hyphoteses imply that KerΣµ = {0}. So if we consider the mapping
T := T (, ) then (see Theorem 2.10) ΣT (X) = Σ and T (X) ∈ PΣ.
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Theorems 2.7 and 2.10 imply that W 2(µ, PT (X)) = W 2(µ,PΣ)
and Theorem 3.1 in [5] gives us that PT (X) is the only probability
whith this property.

Lemma 2.12 Let X be a random element. Let G be a Gaussian
random element and let B be a Bernoulli random variable with pa-
rameter p in (0,1) such that X, G and B are mutually independent.

Then the random element Z := B × X + (1 − B) × G satisfies
the condition in Proposition 2.9

PROOF.- Let {} be an orthogonal basis in H of eigenvectors of the
covariance operator of G. Let us denote by Zi, X i, Gi , i ∈ N , the
marginal components in this basis of the r.e.’s Z, X and G respec-
tively.

Let x ∈ < and n ∈ N . We have to show that

P [Zn = x/Zi, i 6= n] = 0.

First note that

P [Zn = x/Zi, i 6= n] = E
[
E[I{x}(Z

n)/B,Xn, Zi, i 6= n]/Zi, i 6= n
]
.

Now take into account that, in the basis we are considering, the
marginal r.v.’s of G are mutually independent. This and the inde-
pendence assumption imply that the conditional distribution of Zn

given (B,Xn, Zi, i 6= n), is an one-dimensional Gaussian and then

P [Zn = x/B,Xn, Zi, i 6= n] = 0.

Next we show the necessary condition under the assumption that
Σµ is non singular.

Proposition 2.13 Let µ and ν be probability distributions of strong
order two such that

W 2(µ, ν) = ‖mµ −mν‖2 + trace(+− 2),

and assume that Ker = {0}.
Then there exists a transformation, T, defined µ-a.s. linear in

its domain, such that if X is a random element with PX = µ then
PTX = ν.
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PROOF.- As usual, we assume to simplify the notation, that mµ =
mν = 0.

Let us first assume, that µ satisfies the condition in the Proposi-
tion 2.9. As stated in that proposition, there exists a unique prob-
ability measure ν∗ in PΣν such that

W 2(µ,PΣν ) = W 2(µ, ν∗).

On the other hand, Gelbrich’s bound only depends on the covari-
ance operators we are considering, and therefore

W 2(µ,PΣν ) ≥ trace(+− 2).

So, we have that ν∗ = ν. If we consider the “operator” T (= T (, ))
defined in (10), then µ ◦ T−1 belongs to PΣν and, by Theorem 2.10
we have that

W 2(µ,PΣν ) = W 2(µ, µ ◦ T−1).

Therefore ν = µ ◦ T−1 and the result is proved if µ fulfils the
condition in Proposition 2.9.

For the general case, let X and Y be two random elements, with
distribution µ and ν respectively, such that

W 2(µ, ν) = E‖X − Y ‖2.

Let B be a Bernoulli random variable and let Gµ be a random
element with Gaussian distribution with the same mean and covari-
ance operator as µ. Let us assume that these random variables are
mutually independent and independent of X and Y respectively.

Let T := T (, ) as defined in (10) and consider Gν = T ◦Gµ. Thus
Gν is a random element with Gaussian distribution with the same
mean and covariance operator as ν.

We define the random elements U := B ×X + (1−B)×Gµ and
V := B×Y +(1−B)×Gν . Then the mean vector and the covariance
operator of U and V coincide with those of X and Y respectively
and

W 2(PU , PV ) ≤ E
[
[U − V ]2

]
= E

[
I{B=1}[X − Y ]2

]
+E

[
I{B=0}[Gµ −Gν ]

2
]

= trace(+− 2)
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and the inequality is an equality by the Theorem 2.7.
Lemma 2.12 implies that U satisfies the condition in Proposition

2.9. Then the first part in this theorem implies that that V = TU
a.s. and we have that in fact Y = TX a.s. as we wanted to prove
because T is linear.

As a consequence of the proof of the previous theorem we obtain
the following corollary which gives the unicity of the representation
of the pair in which the Wasserstein distance between two probabil-
ity measures is reached when there exists a linear relation between
them (compare with Proposition 2.9).

Corollary 2.14 Let µ and ν be two strong order two probability
measures such that Ker = {0}. Let us suppose that there exists a
linear operator A such that ν = µ◦A−1. Then if W (µ, ν) = ‖X−Y ‖2

we have that Y = AX a.s.

Theorem 2.15 Under the hypotheses in Theorem 2.7 we have that

W 2(µ, ν) ≥ ‖mµ −mν‖2 + trace
[
+− 2 ()1/2

]
. (11)

Moreover, the following statements are equivalent

1. Equality holds in (11).

2. ν∗ ◦ Π−1
µ = µ∗ ◦ T (, )−1.

3. µ∗ ◦ Π−1
ν = ν∗ ◦ T (, )−1.

(Recall that µ∗ and ν∗ are the centered in mean probablity mea-
sures, and ΠΣµ and ΠΣν denote the projections on the subspaces

(Ker)⊥ and (Ker)⊥ respectively).

PROOF.- Let {~en} be an orthonormal basis ofH consisting of eigen-
vectors of and let L = {i : ~ei /∈ Ker}.

If X and Y are two random elements with distributions µ and ν
respectively we have that

‖X − Y ‖2 =
∑
i/∈L

E < Y,~ei >
2 +‖ΠΣµX − ΠΣµY ‖2 =
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trace(Π⊥µΠ⊥µ ) + ‖ΠµX − ΠµY ‖2

where Π⊥µ denotes for the projection on Ker.
Therefore the first term in the right-hand side is a constant which

cannot be modified and the equivalence between statements 1 and
2 in the theorem is obtained trivially applying Theorem 2.10 and
Proposition 2.13 to the subspace (Ker)⊥.

The equivalence between 1 and 3 is proved similarly.
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