
Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Data modeling in the NoSQL world☆

Paolo Atzenia, Francesca Bugiottib, Luca Cabibboa,⁎, Riccardo Torlonea

a Università Roma Tre, Italy
b Laboratoire de Recherche en Informatique (LRI) CentraleSupélec, Université Paris-Saclay, France

A R T I C L E I N F O

Keywords:
Data models
Database design
NoSQL systems

A B S T R A C T

NoSQL systems have gained their popularity for many reasons, including the flexibility they provide in
organizing data, as they relax the rigidity provided by the relational model and by the other structured models.
This flexibility and the heterogeneity that has emerged in the area have led to a little use of traditional modeling
techniques, as opposed to what has happened with databases for decades.

In this paper, we argue how traditional notions related to data modeling can be useful in this context as well.
Specifically, we propose NoAM (NoSQL Abstract Model), a novel abstract data model for NoSQL databases,
which exploits the commonalities of various NoSQL systems. We also propose a database design methodology
for NoSQL systems based on NoAM, with initial activities that are independent of the specific target system.
NoAM is used to specify a system-independent representation of the application data and, then, this
intermediate representation can be implemented in target NoSQL databases, taking into account their specific
features. Overall, the methodology aims at supporting scalability, performance, and consistency, as needed by
next-generation web applications.

1. Introduction

NoSQL database systems are today an effective solution to manage
large data sets distributed over many servers. A primary driver of
interest in NoSQL systems is their support for next-generation Web
applications, for which relational DBMSs are not well suited. These are
simple OLTP applications for which (i) data have a structure that does
not fit well in the rigid structure of relational tables, (ii) access to data is
based on simple read–write operations, (iii) relevant quality require-
ments include scalability and performance, as well as a certain level of
consistency [2,3].

NoSQL technology is characterized by a high heterogeneity; indeed,
more than fifty NoSQL systems exist [4], each with different character-
istics. They can be classified into a few main categories [2], including
key-value stores, document stores, and extensible record stores. In any
case, this heterogeneity is highly problematic to application developers
[4], even within each category.

Beside the differences between the various systems, NoSQL datas-
tores exhibit an additional phenomenon: they usually support signifi-
cant flexibility in data, with limited (if any) use of the notion of schema
as it is common in databases. So, the organization of data, and their
regularity, is mainly hard-coded within individual applications and is
not exposed, probably because there is little need for sharing data

between applications. Indeed, the notion of schema, and the need for a
separation between data and programs, were motivated in databases by
the need for sharing data between applications. If this requirement
does not hold any longer, many developers are led to believe that the
importance of schemas gets reduced or even disappears.

As the idea of data model is usually tightly related to that of schema,
this “schemaless” point view may lead to claim that the very notion of
model and of modeling activities becomes irrelevant with respect to
NoSQL databases. The goal of this paper is to argue that models and
modeling do have an interesting role in this area. Indeed, modeling is
an abstraction process, and this helps in general and probably even
more in a world of diversity, as the analyst/designer can reason at a
high level, before delving into the details of the specific systems.
Instead, given the variety of systems, it is currently the case that the
design process for NoSQL applications is mainly based on best
practices and guidelines [5], which are specifically related to the
selected system [6–8], with no systematic methodology. Several
authors have observed that the development of high-level methodolo-
gies and tools supporting NoSQL database design are needed [9–11],
and models here are definitely needed, in order to achieve some level of
generality.

Let us recall the various reasons for which modeling is considered
important in database design and development [12]. First of all, beside

https://doi.org/10.1016/j.csi.2016.10.003
Received 25 March 2016; Received in revised form 30 September 2016; Accepted 6 October 2016

☆ This paper extends a short article appeared in the Proceedings of the 33rd International Conference on Conceptual Modeling (ER 2014) with the title Database Design for NoSQL
Systems [1].

⁎ Corresponding author.

Computer Standards & Interfaces 67 (2020) 103149

Available online 15 October 2016
0920-5489/ © 2016 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09205489
http://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2016.10.003
https://doi.org/10.1016/j.csi.2016.10.003
https://doi.org/10.1016/j.csi.2016.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.10.003&domain=pdf

being crucial in the conceptual and logical design phases, it offers
support throughout the lifecycle, from requirement analysis, where it
helps in giving a structure to the process, to coding and maintenance,
where it gives valuable documentation. The main point to be men-
tioned is that modeling allows the specialist to describe the domain of
interest and the application from various perspectives and at various
levels of abstraction. Moreover, it provides support to communication
(and to individual comprehension). Finally, it provides support to
performance management, as physical database design is also based on
data structures, and query processing efficiency is often based on
reference to the regularity of data.

Conceptual and logical modeling, as they are currently known, were
developed in the database world, with specific attention to relational
systems, but found applications also in other contexts. Indeed, while
the importance of relational databases was clear since the Eighties, it
was soon understood that there were many “non-business” application
domains for which other modeling features were needed: the advocates
of object-oriented databases observed, more or less at the same time,
that some requirements were not satisfied, such as those in CAD,
CASE, and multimedia and text management [13]. This led to the
development of models with nested structures, more complex than the
relational one, and less regular, and so more difficult to manage.

Flexibility in structures was also required in another area, which
emerged a decade later, and has since been very important: the area of
Web applications, where there were at least two kinds of developments
concerned with models. On the one hand, work on complex object
models for representing hypertexts [14–16], and on the other hand
significant development in semistructured data, especially with refer-
ence to XML [17].

Another recurring claim in the database world in the last 10 or 15
years has been the fact that, while relational databases are a de facto
standard, it is not the case that there is one solution that works well for
all kinds of applications. As Stonebraker and Çetintemel [18] argued, it
is not the case that “one size fits all,” and different engines and
technologies are needed in different contexts, for example OLAP and
OLTP have different requirements, but the same holds for other kinds
of applications, such as stream processing, sensor networks, or
scientific databases.

The NoSQL movement emerged for a number of motivations,
including most of the above, with the goal of supporting highly scalable
systems, with specific requirements, usually with very simple opera-
tions over many nodes, on sets of data that have flexible structure.
Given that there are many different applications and the specific
requirements vary, many systems have emerged, each offering a
different way of organizing data and a different programming interface.

Heterogeneity can become a problem if migration or integration are
needed, as this is often the case, in a world with changing requirements
and new technological developments. Also, the availability of many
different systems, with different implementations, has led to different
design techniques, usually related just to individual systems or small
families thereof.

In this paper we argue that a model-based approach can be useful to
tackle the difficulties related to heterogeneity, and provide support in
the form of abstraction. In fact, modeling can be at the basis of a design
process, at various level; at a higher one to represent the features of
interest for the application, and at a lower one to describe some
implementation features in a concrete but system-independent way.

Indeed, we will present a high-level data model for NoSQL
databases, called NoAM (NoSQL Abstract Model) and show how it
can be used as an intermediate data representation in the context of a
general design methodology for NoSQL databases having initial steps
that are independent of the individual target system. We propose a
design process that includes a conceptual phase, as common in
traditional application, followed (and this is unconventional and
original) by a system-independent logical design phase, where the
intermediate representation is used, as the basis for both modeling and
performance aspects, with only a final phase that takes into account the
specific features of individual systems.

The rest of the paper is organized as follows. In Section 2, we
illustrate the features of the main categories of NoSQL systems arguing
that, for each of them, there exists a sort of data model. In Section 3 we
present NoAM, our system-independent data model for NoSQL data-
bases, and in Section 4 we discuss our design methodology for NoSQL
databases. In Section 5 we briefly review some related literature.
Finally, in Section 6 we draw some conclusions.

2. NoSQL data models

In this section we briefly present and compare a number of
representative NoSQL systems, to make apparent the heterogeneity
(as well as the similarities) in the way they organize data and in their
programming interfaces. We first introduce a sample application
dataset, and then we show how to represent these data in the
representative systems we consider.

2.1. Running example

Let us consider, as a running example, an application for an on-line
social game. This is indeed a typical scenario in which the use of a
NoSQL database is suitable, that is, a simple next-generation Web

Fig. 1. Sample application objects.

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

2

application (as discussed in the Introduction).
The application should manage various types of objects, including

players, games, and rounds. A few representative objects are shown in
Fig. 1. The figure is a UML object diagram. Boxes and arrows denote
objects and relationships between them, respectively.

To represent a dataset in a NoSQL database, it is often useful to
arrange data in aggregates [19,20]. Each aggregate is a group of
related application objects, representing a unit of data access and
atomic manipulation. In our example, relevant aggregates are players
and games, as shown by closed curves in Fig. 2. Note that the rounds of
a game are grouped within the game itself. In general, aggregates can
be considered as complex-value objects [21], as shown in Fig. 3.

The data access operations needed by our on-line social game are
simple read-write operations on individual aggregates; for example,
create a new player and retrieve a certain game. Other operations
involve just a portion of an aggregate; for example, add a round to an
existing game. In general, it is indeed the case that most real
applications require only operations that access individual aggregates
[2,22].

2.2. NoSQL database models

NoSQL database systems organize their data according to quite
different data models. They usually provide simple read-write data-
access operations, which also differ from system to system.

Despite this heterogeneity, a few main categories can be identified
according to the modeling features of these systems [2,3]: key-value
stores, document stores, extensible record stores, plus others (e.g.,
graph databases) that are beyond the scope of this paper.

2.3. Key-value stores

In general, in a key-value store, a database is a schemaless
collection of key-value pairs, with data access operations on either
individual key-value pairs or groups of related pairs.

As a representative key-value store we consider here Oracle NoSQL
[23]. In this system, keys are structured; they are composed of a major
key and aminor key. The major key is a non-empty sequence of strings.
The minor key is a sequence of strings. Each element of a key is called a
component of the key. On the other hand, each value is an unin-
terpreted binary string.

A sample key-value is the pair composed of key /Player/mary/-/
username and value “mary. In the key, symbol ‘/’ separates key
components, while symbol ‘-’ separates the major key from the minor
key. The distinction between major key and minor is especially relevant
to control data distribution and sharding.

In a pair, the value can be either a simple value (such as the string
“mary”) or a complex value. In the former case, it is common to use
some data interchange format (such as XML, JSON, and Protocol
Buffers [24]) to represent such complex values.

Oracle NoSQL offers simple atomic access operations, to access and
modify individual key-value pairs: key valueput(,) to add or modify a key
value pair and keyget() to retrieve a value, given the key. Oracle NoSQL
also provides an atomic majorKeymultiGet() operation to access a group
of related key-value pairs, and specifically the pairs having the same
major key. Moreover, it offers an execute operation for executing

Fig. 2. Sample aggregates (as groups of objects).

Fig. 3. Sample aggregates (as complex values).

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

3

multiple put operations in an atomic and efficient way (provided that
the keys specified in these operations all share a same major key).

The data representation for a dataset in a key-value store can be
based on aggregates. These are two common representations for
aggregates:

• Represent an aggregate using a single key-value pair. The key (major
key) is the aggregate identifier. The value is the complex value of the
aggregate. See Fig. 4(a).

• Represent an aggregate using multiple key-value pairs. Specifically,
the aggregate is split in parts that need to be accessed or modified
separately, and each part is represented by a distinct but related key-
value pair. The aggregate identifier is used as major key for all these
parts, while the minor key identifies the part within the aggregate.
See Fig. 4(b).

The data access operations provided by key-value stores usually enable
an efficient and atomic data access to aggregates with respect to both
data representations. Indeed, all systems support the access to
individual key-value pairs (useful in the former case) and most of
them (such as Oracle NoSQL) provide also the access to groups of
related key-value pairs (required in the latter case).

2.4. Document stores

In a document store, a database is a set of documents, each having a
complex structure and value.

In this category, a widely used system is MongoDB [25]. It is an
open-source, document-oriented data store that offers a full-index
support on any attribute, a rich document-based query API and Map-
Reduce support.

In MongoDB, a database comprises one or more collections. Each
collection is a named group of documents. Each document is a
structured document, that is, a complex value, a set of attribute-value
pairs, which can comprise simple values, lists, and even nested
documents. Thus, documents are neither freeform text documents
nor Office documents. Documents are schemaless, that is, each
document can have its own attributes, defined at runtime.

Specifically, MongoDB documents are based on BSON (Binary
JSON), a variant of the popular JSON format. Values constituting
documents can be of the following types: (i) basic types, such strings

numbers, dates, and boolean values; (ii) arrays, i.e., ordered sequences
of values; and (iii) documents (or objects): a document is a collection of
zero or more key-value pairs, where each key is a plain string, while
each value is of any of these types. Fig. 5 shows a JSON representation
of the complex value of a sample player aggregate object of Figs. 2 and
3.

A main document is a top-level document with a unique identifier,
represented by a special attribute _id, associated to a value of a special
type ObjectId.

Data access operations are usually over individual documents,
which are units of data distribution and atomic data manipulation.
The basic operations offered by MongoDB are as follows:

coll docinsert(,) adds a main document doc into collection coll; and
coll selectorfind(,) retrieves from collection coll all main documents

matching document selector. The simplest selector is the empty
document {}, which matches with every document; it allows to retrieve
all documents in a collection. Another useful selector is document
{_id:ID}, which matches with the document having identifier ID. There
is also an operation to update a document. Moreover, it is also possible
to access or update just a specific portion of a document.

In a document store, each aggregate is usually represented by a
single main document. The document collection corresponds to the
aggregate class (or type). The document identifier ID is the aggregate
identifier. The content of the document is the complex-value of the
aggregate, in JSON/BSON, including also an additional key-value pair
{_id:ID} for the identifier. See Fig. 6.

Also in this case, the data access operations offered by document
stores (such as MongoDB) provide an atomic and efficient data access
to aggregates. Specifically, they generally support both operations on
individual aggregates, or to specific portions of them, thereof.

2.5. Extensible record stores

In an extensible record store, a database is a set of tables, each table
is a set of rows, and each row contains a set of attributes (or columns),
each with a name and a value. Rows in a table are not required to have
the same attributes. Data access operations are usually over individual
rows, which are units of data distribution and atomic data manipula-
tion.

A representative extensible record store is Amazon DynamoDB
[26], a NoSQL database service provided on the cloud by Amazon Web
Services (AWS). In DynamoDB a database is organized in tables. A
table is a set of items. Each item contains one or more attributes, each
with a name and a value (or a set of values). Each table designates an
attribute as primary key. Items in a same table are not required to have
the same set of attributes—apart from the primary key, which is the
only mandatory attribute of a table. Thus, DynamoDB databases are

Fig. 4. Representing aggregates in Oracle NoSQL.

Fig. 5. The JSON representation of the complex value of a sample player object.

Fig. 6. Representing aggregates in MongoDB (abridged).

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

4

mostly schemaless.
Specifically, the primary key is composed of a partition key and an

optional sort key. If the primary key of a table includes a sort key, then
DynamoDB stores together all the items having the same partition key,
in such a way that they can be accessed in an efficient way.

Distribution is operated at the item level and, for each table, is
controlled by the partition key only.

Some operations offered by DynamoDB are as follows:
table key avputItem(, ,) adds (or modifies) a new item in table table with

primary key key, using the set of attribute-value pairs av; and
table keygetItem(,) retrieves the item of table table having primary key

key. It is also possible to access or update just a subset of the attributes
of an item. All these operations can be executed in an efficient way.

In an extensible record store (such as DynamoDB), each aggregate
can be represented by a record/row/item. The table corresponds to the
aggregate class (or type). The primary key (partition key) is the
aggregate identifier. Then, the item can have a distinct attribute-value
pair for each top-level attribute of the complex value of the aggregate
(or for each major part of the aggregate that needs to be accessed
separately). See Fig. 7.

Again, the data access operations provided by the systems in this
category support an efficient data access to aggregates or to specific
portions of them.

2.6. Comparison

To summarize, it is possible to say that each NoSQL system
provides a number of “modeling elements” to organize data, which
can be considered the “data model” of the system. Moreover, the
various systems can be effectively classified in a few main categories,
where each category is based on “data models” that, even though not
identical, do share some similarities. In the next section we show that it
is possible to pursue these similarities, thus defining an “abstract data
model” for NoSQL databases.

3. The NoAM data model

In this section we present NoAM (NoSQL Abstract Data Model), a
system-independent data model for NoSQL databases. In the following
section we will also discuss how this data model can be used to support
the design of NoSQL databases.

Intuitively, the NoAM data model exploits the commonalities of the
data modeling elements available in the various NoSQL systems and
introduces abstractions to balance their differences and variations.

A first observation is that all NoSQL systems have a data modeling
element that is a data access and distribution unit. By “data access unit”
we mean that the system offers operations to access and manipulate an
individual unit at a time, in an atomic, efficient, and scalable way. By
“distribution unit” we mean that each unit is entirely stored in a server
of the cluster, whereas different units are distributed among the various
servers. With reference to major NoSQL categories, this element is: (i)
a group of related key-value pairs, in key-value stores; (ii) a document,
in document stores; or (iii) a record/row/item, in extensible record
stores.

In NoAM, a data access and distribution unit is modeled by a block.
Specifically, a block represents a maximal data unit for which atomic,
efficient, and scalable access operations are provided. Indeed, while the

access to an individual block can be performed in an efficient way in the
various systems, the access to multiple blocks can be quite inefficient.
In particular, NoSQL systems do not usually provide an efficient “join”
operation. Moreover, most NoSQL systems provide atomic operations
only over single blocks and do not support the atomic manipulation of
a group of blocks. For example, MongoDB [25] provides only atomic
operations over individual documents, whereas Bigtable does not
support transactions across rows [22].

A second common feature of NoSQL systems is the ability to access
and manipulate just a component of a data access unit (i.e., of a block).
This component is: (i) an individual key-value pair, in key-value stores;
(ii) a field, in document stores; or (iii) a column, in extensible record
stores. In NoAM, such a smaller data access unit is called an entry.

Finally, most NoSQL databases provide a notion of collection of
data access units. For example, a table in extensible record stores or a
document collection in document stores. In NoAM, a collection of data
access units is called a collection.

According to the above observations, the NoAM data model is
defined as follows.

• A NoAM database is a set of collections. Each collection has a
distinct name.

• A collection is a set of blocks. Each block in a collection is identified
by a block key, which is unique within that collection.

• A block is a non-empty set of entries. Each entry is a pair ek ev〈 , 〉,
where ek is the entry key (which is unique within its block) and ev is
its value (either complex or scalar), called the entry value.

For example, Fig. 8 shows a possible representation of the
aggregates of Figs. 2 and 3 in terms of the NoAM data model. There,
outer boxes denote blocks representing aggregates, while inner boxes
show entries. Note that entry values can be complex, being this another
commonality of various NoSQL systems.

Fig. 7. Representing aggregates in DynamoDB (abridged). Fig. 8. A sample database in NoAM.

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

5

Note that the same data can be usually represented in different
ways. Compare, for example, Fig. 8 with Fig. 9. We will discuss this
possibility in the next section.

In summary, NoAM describes in a uniform way the features of
many NoSQL systems, and so can be effectively used, as we show in the
next section, for an intermediate representation in a NoSQL database
design methodology.

4. System-independent design of NoSQL databases with
NoAM

The main goal of NoAM is to support a design methodology for
NoSQL databases that has initial activities that are independent of the
specific target system. In particular, in our approach, NoAM is used to
specify an intermediate, system-independent representation of the
application data. The implementation in a target NoSQL system is
then a final step, with a translation that takes into account its
peculiarities.

The motivations to consider database design for NoSQL systems are
as follows. It is important to notice that despite the fact that NoSQL
databases are claimed to be “schemaless,” the data of interest for
applications do show some structure, which should be mapped to the
modeling elements (collections, tables, documents, key-value pairs)
available in the target system. Moreover, different alternatives in the
organization of data in a NoSQL database are usually possible, but they
are not equivalent in supporting qualities such as performance,
scalability, and consistency (which are typically required when a
NoSQL database is adopted). For example, a “wrong” database
representation can lead to performance that are worse by an order of
magnitude as well as to the inability to guarantee atomicity of
important operations.

Specifically, our design methodology has the goal of designing a
“good” representation of the application data in a target NoSQL

database, and is intended to support major qualities such as perfor-
mance, scalability, and consistency, as needed by next-generation Web
applications.

The NoAM approach is based on the following main activities:

• conceptual data modeling and aggregate design, to identify the
various entities and relationships thereof needed in an application,
and to group related entities into aggregates;

• aggregate partitioning and high-level NoSQL database design,
where aggregates are partitioned into smaller data elements and
then mapped to the NoAM intermediate data model;

• implementation, to map the intermediate data representation to the
specific modeling elements of a target datastore.

In this approach, only the implementation depends on the target
datastore.

We will discuss the various steps of this approach in the rest of this
section.

4.1. Conceptual modeling and aggregate design

The methodology starts, as it is usual in database design, by
building a conceptual representation of the data of interest, in terms
of entities, relationships, and attributes. (This activity is discussed in
most database textbooks, e.g., [12].) Following Domain-Driven Design
(DDD [19]), which is a widely followed object-oriented methodology,
we assume that the outcome of this activity is a conceptual UML class
diagram defining the entities, value objects, and relationships of the
application. An entity is a persistent object that has independent
existence and is distinguished by a unique identifier (e.g., a player or a
game, in our running example). A value object is a persistent object
which is mainly characterized by its value, without an own identifier
(e.g., a round or a move). Then, the methodology proceeds by
identifying aggregates.

The design of aggregates has the goal of identifying the classes of
aggregates for an application, and various approaches are possible.
After the preliminary conceptual design phase, entities and value
objects are grouped into aggregates. Each aggregate has an entity as
its root, and it can also contain many value objects. Intuitively, an
entity and a group of value objects are used to define an aggregate
having a complex structure and value.

The relevant decisions in aggregate design involve the choice of
aggregates and of their boundaries. This activity can be driven by the
data access patterns of the application operations, as well as by
scalability and consistency needs [19]. Specifically, aggregates should
be designed as the units on which atomicity must be guaranteed [20]
(with eventual consistency for update operations spanning multiple
aggregates [27]). In general, it is indeed the case that most real
applications require only operations that access individual aggregates
[2,22]. Each aggregate should be large enough so as to include all the
data required by a relevant data access operation. (Note that NoSQL
systems do not provide a “join” operation, and this is a main motivation
for clustering each group of related application objects into an
aggregate.) Furthermore, to support strong consistency (that is, atom-
icity) of update operations, each aggregate should include all the data
involved by some integrity constraints or other forms of business rules
[28]. On the other hand, aggregates should be as small as possible;
small aggregates reduce concurrency collisions and support perfor-
mance and scalability requirements [28].

Thus, aggregate design is mainly driven by data access operations.
In our running example, the online game application needs to manage
various collections of objects, including players, games, and rounds.
Fig. 2 shows a few representative application objects. (There, boxes and
arrows denote objects and links between them, respectively. An object
having a colored top compartment is an entity, otherwise it is a value
object.) When a player connects to the application, all data on the

Fig. 9. Another NoAM sample database.

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

6

player should be retrieved, including an overview of the games she is
currently playing. Then, the player can select to continue a game, and
data on the selected game should be retrieved. When a player
completes a round in a game she is playing, then the game should be
updated. These operations suggest that the candidate aggregate classes
are players and games. Fig. 2 also shows how application objects can be
grouped in aggregates. (There, a closed curve denotes the boundary of
an aggregate.)

As we mentioned above, aggregate design is also driven by
consistency needs. Assume that the application should enforce a rule
specifying that a round can be added to a game only if some condition
that involves the other rounds of the game is satisfied. An individual
round cannot check, alone, the above condition; therefore, it cannot be
an aggregate by itself. On the other hand, the above business rule can
be supported by a game (comprising, as an aggregate, its rounds).

In conclusion, the aggregate classes for our sample application are
Player and Game, as shown in Figs. 2 and 3.

4.2. Data representation in NoAM and aggregate partitioning

In our approach, we use the NoAM data model (Section 3) as an
intermediate model between application aggregates (Section 4.1) and
NoSQL databases (Section 2). We represent each class of aggregates by
means of a distinct collection, and each individual aggregate by means
of a block. We use the class name to name the collection, and the
identifier of the aggregate as block key. The complex value of each
aggregate is represented by a set of entries in the corresponding block.
For example, the aggregates of Figs. 2 and 3 can be represented by the
NoAM database shown in Fig. 8. The representation of aggregates as
blocks is motivated by the fact that both concepts represent a unit of
data access and distribution, but at different abstraction levels. Indeed,
NoSQL systems provide efficient, scalable, and consistent (i.e., atomic)
operations on blocks and, in turn, this choice propagates such qualities
to operations on aggregates.

In general, an application dataset of aggregates can be represented
in NoAM database in several different ways. Each data representation
for a dataset δ is a NoAM database Dδ representing δ. Specifically, the
various data representations for a dataset differ only in the choice of
the entries used to represent the complex value of each aggregate. We
first discuss basic data representation strategies, which we illustrate
with respect to the example described in Fig. 3. We then introduce
additional and more flexible data representations.

A simple data representation strategy, called Entry per Aggregate
Object (EAO), represents each individual aggregate using a single
entry. The entry key is empty. The entry value is the whole complex
value of the aggregate. The data representation of the aggregates of
Fig. 3 according to the EAO strategy is shown in Fig. 9.

Another data representation strategy, called Entry per Top-level
Field (ETF), represents each aggregate by means of multiple entries,
using a distinct entry for each top-level field of the complex value of the
aggregate. For each top-level field f of an aggregate o, it employs an
entry having as value the value of field f in the complex value of o (with
values that can be complex themselves), and as key the field name f.
Fig. 10 shows the data representation of the aggregates of Fig. 3
according to the ETF strategy.

As a comparison, we can observe that the EAO data representation
uses a block with a single entry to represent the Player object having
username mary, while the ETF representation needs a block with four
entries, corresponding to fields username, firstName, lastName, and
games. Moreover, blocks in EAO do not depend on the structure of
aggregates, while blocks in ETF depend on the top-level structure of
aggregates (which can be “almost fixed” within each class).

The general data representation strategies we just described can be
suited in some cases, but they are often too rigid and limiting. For
example, none of the above strategies leads to the data representation
shown in Fig. 8. The main limitation of such general data representa-

tions is that they refer only to the structure of aggregates, and do not
take into account the data access patterns of the application operations.
Therefore, these strategies are not usually able to support the perfor-
mance of these operations. This motivates the introduction of aggre-
gate partitioning.

We first need to introduce a preliminary notion of access path, to
specify a “location” in the structure of a complex value. Intuitively, if v
is a complex value andw is a value (possibly complex as well) occurring
in v, then the access path ap for w in v represents the sequence of
“steps” that should be taken to reach the component valuew in v. More
precisely, an access path ap is a (possibly empty) sequence of access
steps, ap p p p= … n1 2 , where each step pi identifies a component value in
a structured value. Furthermore, if v is a complex value and ap is an
access path, then ap(v) denotes the component value identified by ap
in v.

For example, consider the complex value vmary of the Player
aggregate having username mary shown in Fig. 3. Examples of access
paths for this complex value are firstName and games[0].opponent. If
we apply these access paths to vmary, we access values Mary and
Player:rick, respectively.

A complex value v can be represented using a set of entries, whose
keys are access paths for v. Each entry is intended to represent a
distinct portion of the complex value v, characterized by a location in
its structure (the access path, used as entry key) and a value (the entry
value). Specifically, in NoAM we represent each aggregate by means of
a partition of its complex value v, that is, a set E of entries that fully
cover v, without redundancy. Consider again the complex value vmary
shown in Fig. 3; a possible entry for vmary is the pair 〈games [0].
opponent, Player:rick . We have already applied the above intuition
earlier in this section. For example, the ETF data representation
(shown in Fig. 10) uses field names as entry keys (which are indeed
a case of access paths) and field values as entry values.

Aggregate partitioning can be based on the following guidelines
(which are a variant of guidelines proposed in [12] in the context of
logical database design):

Fig. 10. The ETF data representation.

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

7

• If an aggregate is small in size, or all or most of its data are accessed
or modified together, then it should be represented by a single entry.

• Conversely, an aggregate should be partitioned in multiple entries if
it is large in size and there are operations that frequently access or
modify only specific portions of the aggregate.

• Two or more data elements should belong to the same entry if they
are frequently accessed or modified together.

• Two or more data elements should belong to distinct entries if they
are usually accessed or modified separately.

The application of the above guidelines suggests a partitioning of
aggregates, which we will use to guide the representation in the target
database.

For example, in our sample application, consider the operations
involving games and rounds. When a player selects to continue a game,
data on the selected game should be retrieved. When a player
completes a round in a game she is playing, then the aggregate for
the game should be updated. To support performance, it is desirable
that this update is implemented in the database just as an addition of a
round to a game, rather than a complete rewrite of the whole game.
Thus, data for each individual round is always read or written together.
Moreover, data for the various rounds of a game are read together, but
each round is written separately. Therefore, each round is a candidate
to be represented by an autonomous entry. These observations lead to a
data representation for games shown in Fig. 8. However, apart from
rounds, the remaining data for each game comprises just a few fields,
which can be therefore represented together in a single entry. This
further observation leads to an alternative data representation for
games, shown in Fig. 11.

4.3. Implementation

We now discuss how a NoAM data representation can be imple-
mented in a target NoSQL database. Given that NoAM generalizes the
features of the various NoSQL systems, while keeping their major
aspects, it is rather straightforward to perform this activity. We have
implementations for various NoSQL systems, including Cassandra,
Couchbase, Amazon DynamoDB, HBase, MongoDB, Oracle NoSQL,
and Redis. For the sake of space, we discuss the implementation only
with respect to a single representative system for each main NoSQL
category. Moreover, with reference to the same aggregate objects of
Figs. 2 and 3 we will sometimes show only the data for one aggregate.
Similar representations can be obtained for the other aggregates of the
running example.

4.3.1. Key-value store: Oracle NoSQL
In the key-value store Oracle NoSQL [23] (Section 2.3), a data

representation D for an application dataset can be implemented as
follows. We use a key-value pair for each entry ek ev〈 , 〉 in D. The major
key is composed of the collection name C and the block key id, while
the minor key is a proper coding of the entry key ek (recall that ek is an
access path, which we represent using a distinct key component for
each of its steps). An example of key is /Player/mary/-/firstName,
where symbol/separates components, and symbol—separates the ma-
jor key from the minor key. The value associated with this key is a

representation of the entry value ev; for example, Mary. The value can
be either simple or a serialization of a complex value, e.g., in JSON.

The retrieval of a block can be implemented, in an efficient and
atomic way, using a single multiGet operation—this is possible because
all the entries of a block share the same major key. The storage of a
block can be implemented using various put operations. These multiple
put operations can be executed in an atomic way—since, again, all the
entries of a block share the same major key.

For example, Fig. 4(b) shows the implementation in Oracle NoSQL
of the data representation of Fig. 8. Moreover, Fig. 4(a) shows the
implementation in Oracle NoSQL of the EAO data representation of
Fig. 9.

An implementation can be considered effective if aggregates are
indeed turned into units of data access and distribution. The effective-
ness of our implementation is based on the use we make of Oracle
NoSQL keys, where the major key controls distribution (sharding is
based on it) and consistency (an operation involving multiple key-value
pairs can be executed atomically only if the various pairs are over a
same major key).

More precisely, a technical precaution is needed to guarantee
atomic consistency when the selected data representation uses more
than one entry per block. Consider two separate operations that need to
update just a subset of the entries of the block for an aggregate object.
Since aggregates should be units of atomicity and consistency, if these
operations are requested concurrently on the same aggregate object,
then the application would require that the NoSQL system identifies a
concurrency collision, commits only one of the operations, and aborts
the other. However, if the operations update two disjoint subsets of
entries, then Oracle NoSQL is unable to identify the collision, since it
has no notion of block. We support this requirement, thus providing
atomicity and consistency over aggregates, by always including in each
update operation the access to the entry that includes the identifier of
the aggregate (or some other distinguished entry of the block).

4.3.2. Extensible record store: DynamoDB
In the extensible record store Amazon DynamoDB ([26], Section

2.5), the implementation of a NoAM database can be based on a
distinct table for each collection, and a single item for each block. The
item contains a number of attributes, which can be defined from the
entries of the block for the item.

A NoAM data representation D can be represented in DynamoDB as
follows. Consider a block b in a collection C having block key id.
According to D, one or multiple entries are used within each block. We
use all the entries of a block b to create a new item in a table for b.

Specifically, we proceed as follows: (i) the collection name C is used
as a DynamoBD table name; (ii) the block key id is used as a
DynamoBD primary key in that table; (iii) the set of entries (key-value
pairs) of a block b is used as the set of attribute name-value pairs in the
item for b (a serialization of the values is used, if needed). For example,
Fig. 7 shows the implementation of the NoAM database of Fig. 8.

The retrieval of a block, given its collection C and block key id, can
be implemented by performing a single getItem operation, which
retrieves the item that contains all the entries of the block. The storage
of a block can be implemented using a putItem operation, to save all the
entries of the block, in an atomic way. It is worth noting that, using
operation getItem, it is also possible to retrieve a subset of the entries of
a block. Similarly, using operation updateItem, it is also possible to
update just a subset of the entries of a block, in an atomic way.

This implementation is also effective, since DynamoDB controls
distribution and atomicity with reference to items.

4.3.3. Document store: MongoDB
In MongoDB ([29], Section 2.4), which is a document store, a

natural implementation for a NoAM database can be based on a
distinct MongoDB collection for each collection of blocks, and a single
main document for each block. The document for a block b can beFig. 11. An alternative data representation for games (ROUNDS).

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

8

defined as a suitable JSON/BSON serialization of the complex value of
the entries in b, plus a special field to store the block key id of b, as
required by MongoDB, {_id:id}.

With reference to a NoAM data representation D, consider a block b
in a collection C having block key id. If b contains just an entry e, then
the document for b is just a serialization of e. Otherwise, if b contains
multiple entries, we use all the entries in block b to create a new
document. Specifically, we proceed by building a document d for b as
follows: (i) the collection name C is used as the MongoDB collection
name; (ii) the block key id is used for the special top-level id field
{_id:id} of d; (iii) then, each entry in the block b is used to fill a
(possibly nested) field of document d. See Fig. 12.

The retrieval of a block, given its collection C and key id, can be
implemented by performing a find operation, to retrieve the main
document that represents all the block (with its entries). The storage of
a block can be implemented using an insert operation, which saves the
whole block (with its entries), in an atomic way. It is worth noting that,
using other MongoDB operations, it is also possible to access and
update just a subset of the entries of a block, in an atomic way.

An alternative implementation for MongoDB is as follows. Each
block b is represented, again, as a main document for b, but using a
distinct top-level field-value pair for each entry in the NoAM data
representation. In particular, for each entry (ek,ev), the document for b
contains a top-level field whose name is a coding for the entry key
(access path) ek, and whose value is either an atomic value or an
embedded document that serializes the entry value ev. For example,
according to this implementation, the data representation of Fig. 8
leads to the result shown in Fig. 13.

4.4. Experiments

We will now discuss a case study of NoSQL database design, with
reference to our running example. For the sake of simplicity, we just
focus on the representation and management of aggregates for games.

Data for each game include a few scalar fields and a collection of
rounds. The important operations over games are: (1) the retrieval of a
game, which should read all the data concerning the game; and (2) the
addition of a round to a game.

Assume that, to manage games, we have chosen a key-value store as
the target system. The candidate data representations are: (i) using a
single entry for each game (as shown in Fig. 9, in the following called
EAO); (ii) splitting the data for each game in a group of entries, one for
each round, and including all the remaining scalar fields in a separate
entry (as shown in Fig. 11, called ROUNDS).

We expect that the first operation (retrieval of a game) performs
better in EAO, since it needs to read just a key-value pair, while the
second one (addition of a round to a game) is favored by ROUNDS, which
does not require to rewrite the whole game.

We ran a number of experiments to compare the above data
representations in situations of different application workloads. Each
game has, on average, a dozen rounds, for a total of about 8 kB per
game. At each run, we simulated the following workloads: (a) game
retrievals only (in random order); (b) round additions only (to random
games); and (c) a mixed workload, with game retrieval and round
addition operations, with a read/write ratio of 50/50. We ran the
experiments using different database sizes, and measured the running
time required by the workloads. The target system was Oracle NoSQL,
deployed over Amazon AWS on a cluster of four EC2 servers.1

The results are shown in Fig. 14. Database sizes are in gigabytes,
timings are in milliseconds, and points denote the average running
time of a single operation. The experiments confirm the intuition that
the retrieval of games Fig. 14(a) is always favored by the EAO data
representation, for any database size. On the other hand, the addition

of a round to an existing game Fig. 14(b) is favored by the ROUNDS data
representation. Finally, the experiments over the mixed workload
Fig. 14(c) show a general advantage of ROUNDS over EAO, which however
decreases as the database size increases. Overall, it turns out that the
ROUNDS data representation is preferable.

We also performed other experiments on a data representation that
does not conform to the design guidelines proposed in this paper.
Specifically, a data representation that divides the rounds of a game
into independent key-value pairs, rather than keeping them together in
a same block, as suggested by our approach. In this case, the
performance of the various operations worsens by at least an order of
magnitude. Moreover, with this data representation it is not possible to
update a game in an atomic way.

Overall, these experiments show that: (i) the design of NoSQL
databases should be done with care as it affects considerably the
performance and consistency of data access operations, and (ii) our
methodology provides an effective tool for choosing among different
alternatives.

5. Related works

Although several authors have observed that there is a need for
data-model approaches to the design and management of NoSQL
databases [9–11], very few works have addressed this issue, especially
from a general and system-independent point of view. Indeed, most of
them propose a solution to a specific problem in a limited scenario.

For instance, Pasqualin et al. have recently shown how a document-
oriented model can be efficiently implemented in a NoSQL document
store [30]. Similarly, Olivera et al. [31] and de Lima and Mello [32]
have proposed a data-model based methodology for the design of
NoSQL document database [32], whereas Chevalier et al. have ad-
dressed the specific problem of leveraging on a document-oriented
model for implementing a multidimensional database in a NoSQL
document store [33] and in a column-oriented NoSQL database [34].

Most of the other contributions to data modeling for NoSQL
systems come from on-line papers, usually published in blogs of

Fig. 12. Implementation in MongoDB.

Fig. 13. Alternative implementation in MongoDB.

1 This activity was supported by AWS in Education Grant award.

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

9

practitioners, that discuss best practices and guidelines for modeling
NoSQL databases, most of which are suited only for specific systems.
For instance, [5] lists some techniques for implementing and managing
data stored in different types of NoSQL systems, while [35] discusses
design issues for the specific case of key-value datastores. Similarly,
Mior et al. [36] have recently proposed an approach to the problem of
schema design for the specific class of extensible record stores. On the

system-oriented side, [6–8] illustrate design principles for the specific
cases of HBase, MongoDB, and Cassandra, respectively. However, none
of them tackles the problem from a general perspective, as we advocate
in this paper.

Recently, Ruiz et al. have proposed a reverse engineering strategy
aimed at inferring the implicit schema of NoSQL databases [37]. This
approach supports the idea that, even in this context, a model-based
description of the organization of data is very useful during the entire
life-cycle of a data set.

To the best of our knowledge, this paper presents the first general
design methodology for NoSQL systems with initial activities that are
independent of the specific target system. Our approach to data
modeling is based on data aggregates, a notion that is central in
NoSQL databases where application data are grouped in atomic units
that are accessed and manipulated together [3]. The notion of
aggregate also occurs in other contexts with a similar meaning. For
example, in Domain Driven Design [19], a widely followed object-
oriented software development approach, an aggregate is a group of
related application objects, used to govern transactions and distribu-
tion. Also Helland [20] advocates the use of aggregates (there called
entities) as units of distribution and consistency. In this framework,
Baker et al. [38] propose the notion of entity groups, a set of entities
that can be manipulated in an atomic way. They also describe a specific
mapping of entity groups to Bigtable [22], which however makes the
approach targeted only to a specific NoSQL system. Our approach is
based on a more abstract database model, NoAM, and is system
independent, as it is targeted to a wide class of NoSQL systems.

The issue of identifying data access units in database design shows
some similarities with problems studied in the past, such as: (i) the
early works on vertical partitioning and clustering [39], with the idea to
put together the attributes that are accessed together and to separate
those that are visited independently, and (ii) the more recent
approaches to relational (or object-relational) storage of XML docu-
ments [40], where various alternatives obviously exist, with tables that
can be very small and handle individual edges, or very wide and handle
entire paths, and many alternatives in between.

A major observation from [9] is that the availability of a high-level
representation of the data remains a fundamental tool for developers
and users, since it makes understanding, managing, accessing, and
integrating information sources much easier, independently of the
technologies used. We have addressed this issue by proposing NoAM,
an abstract data model that makes it possible to devise an initial phase
of the design process that is independent of any specific system but
suitable for each.

Along this line, SOS [41] is a tool that provides a common
programming interface towards different NoSQL systems, to access
them in a unified way. The interface is based on a simple, high-level
common data model which is inspired by those of non-relational
systems and provides simple operations for inserting, deleting, and
retrieving database objects. However, the definition of tools for data
access is complementary to data models and design issues.

Finally, Jain et al. discuss the potential mismatch between the
requirements of scientific data analysis and the models and languages
of relational database systems [42], whereas Alagiannis et al. [43]
advocate a new database design philosophy for emerging applications.
This paper tries to provide a contribution to these problems.

6. Conclusion

In this paper we have argued how data modeling can be useful in
the NoSQL arena. Specifically, we have proposed a comprehensive
methodology for the design of NoSQL databases, which relies on an
aggregate-oriented view of application data, an intermediate system-
independent data model for NoSQL datastores, and finally an imple-
mentation activity that takes into account the features of specific
systems.

Fig. 14. Experimental results.

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

10

References

[1] F. Bugiotti, L. Cabibbo, P. Atzeni, R. Torlone, Database design for NoSQL systems,
in: Conceptual Modeling—33rd International Conference, ER 2014, Atlanta, GA,
USA, October 27–29, 2014. Proceedings, 2014, pp. 223–231.

[2] R. Cattell, Scalable SQL and NoSQL data stores, SIGMOD Record 39 (4) (2010)
12–27.

[3] P.J. Sadalage, M.J. Fowler, NoSQL Distilled, Addison-Wesley, Upper Saddle River,
NJ, USA, 2012.

[4] M. Stonebraker, Stonebraker on NoSQL and enterprises, Commun. ACM 54 (8)
(2011) 10–11.

[5] I. Katsov, NoSQL Data Modeling Techniques, Highly Scalable Blog, 〈https://
highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/〉,
2012 (accessed February 2016).

[6] A. Khurana, Introduction to HBase Schema Design, ;login. Usenix Mag. 37 (5)
(2012) 29–36.

[7] M. Hamrah, Data Modeling at Scale: MongoDB + Mongoid, Callbacks, and
Denormalizing Data for Efficiency, 〈http://blog.michaelhamrah.com/2011/08/
data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-
efficiency/〉, 2011 (accessed February 2016).

[8] A. Chebotko, A. Kashlev, S. Lu, A big data modeling methodology for Apache
Cassandra, in: IEEE International Congress on Big Data, 2015, pp. 238–245.

[9] P. Atzeni, C.S. Jensen, G. Orsi, S. Ram, L. Tanca, R. Torlone, The relational model is
dead, SQL is dead, and I don't feel so good myself, SIGMOD Record 42 (2) (2013)
64–68.

[10] A. Badia, D. Lemire, A call to arms: revisiting database design, SIGMOD Record 40
(3) (2011) 61–69.

[11] C. Mohan, History repeats itself: sensible and NonsenSQL aspects of the NoSQL
hoopla, in: EDBT, 2013, pp. 11–16.

[12] C. Batini, S. Ceri, S.B. Navathe, Conceptual Database Design: An Entity-
Relationship Approach, Benjamin/Cummings, Redwood City, CA, USA, 1992.

[13] F. Bancilhon, Object-oriented database systems, in: Proceedings of the Seventh
ACMSIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
March 21–23, 1988, Austin, TX, USA, 1988, pp. 152–162.

[14] P. Atzeni, P. Merialdo, G. Mecca, Data-intensive web sites: design and main-
tenance, World Wide Web 4 (1–2) (2001) 21–47.

[15] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera, Designing
Data-Intensive Web Applications, Morgan Kaufmann, San Francisco, CA, USA,
2003.

[16] G. Mecca, A.O. Mendelzon, P. Merialdo, Efficient queries over web views, IEEE
Trans. Knowl. Data Eng. 14 (6) (2002) 1280–1298.

[17] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations to
Semistructured Data and XML, Morgan Kaufmann, San Francisco, CA, USA, 1999.

[18] M. Stonebraker, U. Çetintemel, “one size fits all”: an idea whose time has come and
gone (abstract), in: Proceedings of the 21st International Conference on Data
Engineering, ICDE 2005, 5–8 April 2005, Tokyo, Japan, 2005, pp. 2–11.

[19] E. Evans, Domain-Driven Design, Addison-Wesley, Boston, MA, USA, 2003.
[20] P. Helland, Life beyond distributed transactions: an Apostate's opinion, in: CIDR

2007, 2007, pp. 132–141.
[21] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley,

Reading, MA, USA, 1995.
[22] F. Chang, et al., Bigtable: a distributed storage system for structured data, ACM

Trans. Comput. Syst. 26 (2) (2008).
[23] Oracle, Oracle NoSQL Database, 〈http://www.oracle.com/us/products/database/

nosql/〉 (accessed February 2016).

[24] J. Shute, et al., F1: a distributed SQL database that scales, PVLDB 6 (11) (2013)
1068–1079.

[25] MongoDB Inc., MongoDB, 〈http://www.mongodb.org〉 (accessed February 2016).
[26] Amazon Web Services, DynamoDB, 〈http://aws.amazon.com/it/dynamodb〉

(accessed February 2016).
[27] D. Pritchett, ASE: an ACID alternative, ACM Queue 6 (3) (2008) 48–55.
[28] V. Vernon, Implementing Domain-Driven Design, Addison-Wesley, Upper Saddle

River, NJ, USA, 2013.
[29] K. Chodorow, MongoDB: The Definitive Guide, (Eds.), O'Reilly Media, Sebastopol,

CA, USA, 2013.
[30] D. Pasqualin, G. Souza, E.L. Buratti, E.C. de Almeida, M.D. Del Fabro, D.

Weingaertner, A case study of the aggregation query model in read-mostly NoSQL
document stores, in: 20th International Database Engineering & Applications
Symposium (IDEAS '16), IDEAS '16, ACM, New York, NY, USA, 2016, pp. 224–
229.

[31] H. V. Olivera, M. Holanda, V. Guimarâes, F. Hondo, W. Boaventura, Data modeling
for NoSQL document-oriented databases, in: 2nd Annual International Symposium
on Information Management and Big Data (SIMBig 2015), vol. 1478 of CEUR
Workshop Proceedings, 2015, pp. 129–135.

[32] C. de Lima, R. dos Santos Mello, A workload-driven logical design approach for
NoSQL document databases, in: 17th International Conference on Information
Integration and Web-based Applications & Services (iiWAS '15), iiWAS '15, ACM,
New York, NY, USA, 2015, pp. 73:1–73:10.

[33] M. Chevalier, M.E. Malki, A. Kopliku, O. Teste, R. Tournier, Implementation of
multidimensional databases with document-oriented NoSQL, in: 17th
International Conference on Big Data Analytics and Knowledge Discovery, (DaWaK
2015), Cham, Switzerland, Lecture Notes in Computer Science, vol. 9263, Springer,
2015, pp. 379–390.

[34] M. Chevalier, M.E. Malki, A. Kopliku, O. Teste, R. Tournier, Implementation of
multidimensional databases in column-oriented NoSQL systems, in: 19th East
European Conference on Advances in Databases and Information Systems (ADBIS
2015), 2015, pp. 79–91.

[35] T. Olier, Database design using key-value tables, 〈http://www.devshed.com/c/a/
mysql/database-design-using-key-value-tables/〉, 2006 (accessed February 2016).

[36] M.J. Mior, K. Salem, A. Aboulnaga, R. Liu, Nose: schema design for NoSQL
applications, in: 32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16–20, 2016, pp. 181–192.

[37] D.S. Ruiz, S.F. Morales, J.G. Molina, Inferring versioned schemas from NoSQL
databases and its applications, in: 34th International Conference on Conceptual
Modeling (ER 2015), 2015, pp. 467–480.

[38] J. Baker, et al., Megastore: Providing scalable, highly available storage for
interactive services, in: CIDR 2011, 2011, pp. 223–234.

[39] T.J. Teorey, J.P. Fry, The logical record access approach to database design, ACM
Comput. Surv. 12 (2) (1980) 179–211.

[40] D. Florescu, D. Kossmann, Storing and querying XML data using an RDMBS, IEEE
Data Eng. Bull. 22 (3) (1999) 27–34.

[41] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to NoSQL systems, Inf. Syst. 43
(2014) 117–133.

[42] S. Jain, D. Moritz, D. Halperin, B. Howe, E. Lazowska, SQLShare: results from a
multi-year SQL-as-a-service experiment, in: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, 26 June–1 July 2016, pp. 281–293.

[43] I. Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos, A. Ailamaki, NoDB: efficient
query execution on raw data files, Commun. ACM 58 (12) (2015) 112–121.

P. Atzeni et al. Computer Standards & Interfaces 67 (2020) 103149

11

http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref1
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref1
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref2
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref2
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref3
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref3
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://blog.michaelhamrah.com/2011/08/data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-efficiency/
http://blog.michaelhamrah.com/2011/08/data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-efficiency/
http://blog.michaelhamrah.com/2011/08/data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-efficiency/
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref4
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref4
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref4
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref5
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref5
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref6
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref6
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref7
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref7
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref8
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref8
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref8
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref9
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref9
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref10
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref10
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref11
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref12
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref12
http://www.oracle.com/us/products/database/nosql/
http://www.oracle.com/us/products/database/nosql/
http://www.mongodb.org
http://aws.amazon.com/it/dynamodb
http://aws.amazon.com/dynamodb
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref13
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref14
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref14
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref15
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref15
http://www.devshed.com/c/a/mysql/database-design-using-key-value-tables/
http://www.devshed.com/c/a/mysql/database-design-using-key-value-tables/
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref16
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref16
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref17
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref17
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref18
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref18
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref19
http://refhub.elsevier.com/S0920-5489(16)30118-0/sbref19

	Data modeling in the NoSQL world
	Introduction
	NoSQL data models
	Running example
	NoSQL database models
	Key-value stores
	Document stores
	Extensible record stores
	Comparison

	The NoAM data model
	System-independent design of NoSQL databases with NoAM
	Conceptual modeling and aggregate design
	Data representation in NoAM and aggregate partitioning
	Implementation
	Key-value store: Oracle NoSQL
	Extensible record store: DynamoDB
	Document store: MongoDB

	Experiments

	Related works
	Conclusion
	References

