
Information Systems 104 (2022) 101898

C
F

B
s
t
a
T
c
v
p

(

h
0
n

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

A unifiedmetamodel for NoSQL and relational databases✩

arlos J. Fernández Candel, Diego Sevilla Ruiz, Jesús J. García-Molina ∗
aculty of Computer Science, University of Murcia, Murcia, Spain

a r t i c l e i n f o

Article history:
Received 19 July 2021
Received in revised form10 September 2021
Accepted 11 September 2021
Available online 25 September 2021
Recommended by Dennis Shasha

Keywords:
Unified metamodel
NoSQL databases
Schemaless
Schema inference
Model-driven engineering

a b s t r a c t

The Database field is undergoing significant changes. Although relational systems are still predominant,
the interest in NoSQL systems is continuously increasing. In this scenario, polyglot persistence is
envisioned as the database architecture to be prevalent in the future. Therefore, database tools and
systems are evolving to support several data models.

Multi-model database tools normally use a generic or unified metamodel to represent schemas of
the data model that they support. Such metamodels facilitate developing database utilities, as they can
be built on a common representation. Also, the number of mappings required to migrate databases
from a data model to another is reduced, and integrability is favored.

In this paper, we present the U-Schema unified metamodel able to represent logical schemas for the
four most popular NoSQL paradigms (columnar, document, key–value, and graph) as well as relational
schemas. We will formally define the mappings between U-Schema and the data model defined for
each database paradigm. How these mappings have been implemented and validated will be discussed,
and some applications of U-Schema will be shown.

To achieve flexibility to respond to data changes, most of NoSQL systems are ‘‘schema-on-read,’’
and the declaration of schemas is not required. Such an absence of schema declaration makes structural
variability possible, i.e., stored data of the same entity type can have different structure. Moreover, data
relationships supported by each data model are different; For example, document stores have aggregate
objects but not relationship types, whereas graph stores offer the opposite. Through the paper, we will
show how all these issues have been tackled in our approach.

As far as we know, no proposal exists in the literature of a unified metamodel for relational and
the NoSQL paradigms which describes how each individual data model is integrated and mapped. Our
metamodel goes beyond the existing proposals by distinguishing entity types and relationship types,
representing aggregation and reference relationships, and including the notion of structural variability.
Our contributions also include developing schema extraction strategies for schemaless systems of each
NoSQL data model, and tackling performance and scalability in the implementation for each store.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
p
d
t
b
t

/
E

1. Introduction

With the advent of modern data-intensive applications (e.g.,
ig Data, social networks, or IoT), NoSQL (Not only SQL) database
ystems emerged to overcome the limitations that relational sys-
ems evidenced to support such applications, namely, scalability,
vailability, flexibility, and ability to represent complex objects.
hese systems are classified in several database paradigms, but
ommonly the term NoSQL refers to four of them: columnar, key–
alue, document, and graph systems. NoSQL systems of the same
aradigm can have significant differences in features and in the

✩ This work has been funded by the Spanish Ministry of Science and
Innovation (project grant TIN2017-86853-P).
∗ Corresponding author.

E-mail addresses: cjferna@um.es (C.J.F. Candel), dsevilla@um.es
D. Sevilla Ruiz), jmolina@um.es (J.J. García-Molina).
ttps://doi.org/10.1016/j.is.2021.101898
306-4379/© 2021 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
structure of the data. This is because there is no specification,
standard, or theory that establishes the data model of a particular
paradigm. Therefore, we will assume here the data model of the
most popular stores of each category. Table 1 shows the main
features of the four mentioned NoSQL paradigms.

Over last years, as the popularity of NoSQL systems increased,1

olyglot persistence (a new term coined for heterogeneous
atabase systems) has been gaining acceptance as the data archi-
ecture of the future: applications using the set of databases that
etter fit their needs. Today, relational databases are still clearly
he most used by a wide margin, but most popular relational

1 Four of the top 10 being NoSQL systems in the DB engines ranking (https:
/db-engines.com/en/ranking) as of January 2021: MongoDB (5th), Redis (7th),
lasticsearch (8th), and Cassandra (10th).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.is.2021.101898
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2021.101898&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cjferna@um.es
mailto:dsevilla@um.es
mailto:jmolina@um.es
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://doi.org/10.1016/j.is.2021.101898
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

m
p
a
o
s

i
v
N
i
T
w
s
r
s

r

Table 1
Types of NoSQL systems and some example implementations.
NoSQL system types

Type Data structure Appropriateness Database systems

Key–value Associative array of key–value
pairs

Frequent small read and writes with simple
data

Redis, Memcache

Columnar Tables of rows with varying
columns. Column-based
physical storage

High performance, availability, scalability, and
large volumes of data for OLAP queries

HBase, Cassandra

Document JSON-like document collections Nested Objects, structural variation, and large
volumes of heterogeneous data

MongoDB, Couchbase

Graphs Data connected in a graph Highly connected objects, references prevail
over nested objects

Neo4J, OrientDB
v
a
t

systems are evolving to support NoSQL features.2 Two facts have
otivated this interest in polyglot persistence [1,2]: (i) the com-
lexity and variety of data to be managed by software systems,
nd (ii) a single type of database system does not fit all the needs
f an increasing number of systems (e.g., learning management
ystems, online retail systems, or social networks.)
The successful adoption of NoSQL requires database tools sim-

lar to those available for relational systems. This entails to in-
estigate how common database utilities can be available for
oSQL systems. In addition, these tools should be built taking
nto account the expected predominance of polyglot persistence.
hus, they should support widespread relational databases as
ell as NoSQL databases. In the case of data modeling tools, the
hift towards multi-model solutions is evident: the most popular
elational modeling tools are being extended to integrate NoSQL
tores (e.g. ErWin3 and ER/Studio4 provide functionality for Mon-
goDB) and new tools supporting a number of relational and
NoSQL databases have appeared (e.g. Hackolade5). This multi-
model nature should be considered for database tooling, i.e., tools
should support multiple data models.

Data models determine how data can be organized and ma-
nipulated in databases. They are applied to a particular domain
by defining schemas that express the structure and constraints
for the domain entities. Such information, provided by schemas,
is necessary to implement many database tools. However, most
NoSQL systems are schemaless (a.k.a ‘‘schema-on-read’’), that is,
data can be directly stored without requiring the previous dec-
laration of a schema. This feature is motivated by the fact that
the pace of data structure changes is considerably faster in the
new data-intensive applications. Being schemaless does not mean
the absence of a schema, but that the schema information is
implicit in data and code. Therefore, the schemas implicit in
NoSQL stores must be reverse engineered in order to build a cohe-
sive set of utilities for NoSQL databases such as schema viewers,
query optimizers, or code generators. This reverse engineering
process must tackle the fact that ‘‘schema-on-read’’ systems can
store data with different structure even belonging to the same
database entity type (and relationship type in graphs), i.e., each
entity or relationship type can have one or more structural varia-
tions. Recently, several NoSQL schema extraction approaches have
been published [3–5], and some data modeling tools such as
those mentioned above provide some kind of reverse engineering
functionality.

When building multi-model database tools, the definition of
a generic, universal, or unified metamodel can provide some
benefits [6–10]. It offers a unified view of different data models,
so that their schemas will be represented in a uniform way. This

2 Top-8 systems in the DB engines ranking (https://db-engines.com/en/
anking are multi-model.
3 http://erwin.com/products/erwin-data-modeler.
4 https://www.idera.com/er-studio-enterprise-architecture-solutions.
5 https://hackolade.com/.
2

uniformity facilitates building generic tools that are database-
independent. With the predominance of relational databases, the
interest in multi-model tools declined, and little attention has
been paid to the definition of unified metamodels. A remarkable
proposal is the DB-Main approach [6,11] that defined the GER
generic metamodel based on the EER (Extended Entity Relation-
ship) data model. More recently, some universal metamodels [8,
9] have been created in the context of ‘‘Model Management’’ [7,
12]. With the emergence of NoSQL systems, some unified meta-
models have been proposed to have a uniform access to data [8,
13], and the idea of an unified metamodel for data modeling tools
was outlined in [10].

Unified data models are also used to define generic query
language. Three decades ago, the ODMG standard [14] speci-
fies a unified object-oriented data model and a SQL-like generic
query language to make it easier for programmers to use object-
oriented databases. Currently, the widespread use of NoSQL and
other kinds of data stores along with relational systems, is mo-
tivating the definition of some generic data models on which
generic query languages are defined, for example, Amazon has
developed the PartiQL data model and query language [15] to
offer uniformity in the treatment of the variety of data models
(relational, document, columnar and key–value) and data pro-
cessing engines (NoSQL, relational, and data lakes) used in the
company.

In the past years, we defined a reverse engineering strategy
to infer logical schemas from document NoSQL databases [3],
and have presented approaches to visualize inferred schemas [16]
and automatically generate object-document mappers code [17]
from schemas. Currently, we are tackling the definition of a
synthetic data generation approach [18], and the extraction of
implicit physical schemas from NoSQL data [19]. As our inten-
tion is to build multi-model database utilities, we have tackled
the definition of a unified metamodel named U-Schema, which
is capable of representing schemas for the four most common
NoSQL data models, as well as the relational model. In this paper,
we present U-Schema jointly with a data model for each NoSQL
paradigm, and the mapping from those data models to U-Schema
(forward mappings), and from U-Schema to the data models (re-
erse mappings). Common strategies are defined to implement
nd validate the mappings. Several applications of U-Schema are
hen commented.

The research contributions of this work are as follows:

1. To our knowledge, we present the first unified metamodel
able to represent logical schemas both for the four most
common kinds of NoSQL systems and relational systems.
Two salient features of our proposal are: (i) U-Schema
includes the notion of structural variation for entity and
relationship types, as most NoSQL systems are schemaless,
and (ii) unlike other proposals, the four kinds of rela-
tionships between entities that are typical in logical data
modeling are supported by U-Schema: aggregation, refer-
ences, graph relationships, and generalization. Capturing

https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
http://erwin.com/products/erwin-data-modeler
https://www.idera.com/er-studio-enterprise-architecture-solutions
https://hackolade.com/

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

w
s
s
w
s
f
f
m
t
m
a
p
f

2

2

t
o
s
u
t

f
c
r
w

b

s
o
m
w
F
m

a
c
v
a
a
s
o
a
e
k
i

e
a
H
r

g
c
E
d
h
a

o
l
o
c

structural variability allows us to accurately describe the
structure of the stored data.

2. Defining the forward and reverse mappings between U-
Schema and the data models that it integrates, we have es-
tablished the notion of canonical mapping in which there is
a natural correspondence between each element of a data
model and elements of U-Schema. For each data model,
its canonical mapping has been formally defined, as well
as the reverse mapping for characteristics not present in
the considered data model (e.g. graph systems do not sup-
port aggregate relationships, or structural variation is not
possible in relational tables.)

3. A common strategy is proposed to extract unified schemas
from databases. This strategy has been applied to imple-
ment canonical mappings for each paradigm integrated in
U-Schema. As far as we know, all the schema extraction
proposals for NoSQL stores, only consider one kind of store,
normally document-based [4,5] or graph [20]. Our strategy
also takes into account scalability and performance, using
MapReduce processing on the native data.

4. We provide insights on how U-Schema can ease the imple-
mentation of database utilities in multi-model and multi-
database environments such as database migration, schema
queries, data generation for testing, query optimization,
and schema visualization.

5. We show how U-Schema can act as generic metamodel to
create a universal query language for relational and NoSQL
stores.

6. We have defined the U-Schema metamodel with the Ecore
metamodel, which is the central element of the Eclipse
Modeling Framework (EMF) [21], a widely used open-
source platform to develop Model-Driven Software Engi-
neering (MDE) solutions [22]. Thus, the proposal is open
to be used and incorporated in any future database tool
development.

The rest of this paper is organized as follows. Next section
ill present the U-Schema data model. Then, Section 3 will de-
cribe the common process devised to reverse engineer implicit
chemas from data, introduce a running example database, and
ill explain the common strategy applied to validate and as-
ert the performance of the schema extraction algorithms. Next
ive sections will be devoted to define a logical data model,
ormally specify the mapping between U-Schema and the data
odel defined, and show the implementation and validation of

he corresponding forward mapping. Once presented the unified
etamodel and the mappings, we will discuss how they can be
pplied in common database tasks. Finally, we will contrast our
roposal with related works, draw some conclusions, and outline
urther work.

. The U-Schema unified data model

.1. Logical modeling concepts in U-Schema

A data model provides a set of concepts to specify the struc-
ure and constraints of a database type, and a schema results
f applying a concrete data model on a domain or problem. A
chema is therefore an instance of a data model. Given a partic-
lar data model, textual and graphical languages can be defined
o express schemas.

Data models (and therefore schemas) can be defined at dif-
erent levels of abstraction. Typically, they are classified in three
ategories: conceptual, logical, and physical. Conceptual schemas
epresent the domain of an application in a platform-independent
ay. Logical schemas describe data structures and constraints,
3

ut providing physical independence. Finally, Physical schemas
include all details needed to implement a logical schema on a
specific database system.

At the logical or physical level, a unified or generic data model
can be defined to integrate concepts from several data models
with the purpose of offering a uniform representation. When
using a unified model for n data models, instead of managing
n × (n − 1) mappings (each data model with the others), only
n+ n mappings are needed (between the unified and each of the
integrated data models in both directions.)

U-Schema is a unified logical model that integrates the con-
cepts and rules of both the relational model and the four most
common NoSQL data models: columnar, document, graph, and
key–value. While the relational model is a well-defined data
model, there is no specification, standard, or theory that estab-
lishes the data model of a particular NoSQL paradigm. In fact,
NoSQL systems of the same kind can have significant differences
in features and in the structure of the data. We have therefore
defined a logical model for each NoSQL category by abstracting
from the logical/physical data organization of the most popular
stores of each category. This section will present U-Schema, while
the logical model defined for each particular NoSQL paradigm will
be presented in the section devoted to describe how that data
model has been integrated into U-Schema.

U-Schema includes the basic concepts traditionally used to
create logical schemas, which are part of well-known formalisms
such as Entity-Relationship (ER) [23] and UML Class Models [24]:
entity type, simple and multivalued attributes, key attribute, and
three kinds of relationships between entity types: aggregation,
reference, and inheritance. Also, U-Schema incorporates some
additional concepts, such as relationship types (as they are con-
idered in the graph data model [25]), and structural variations
f entity and relationship types. Before presenting the U-Schema
etamodel, we will define all these concepts. Not all concepts
ill be present in all of the data models supported by U-Schema.
or example, the relationship type is exclusive of the graph
odel, but conversely, it does not define aggregation.
In data models, an entity type ε is normally characterized by
set Pε

= {Pε
i }, i = 1 . . . n of named properties. Properties

an be of several kinds depending on the type of the object or
alue a property can hold. Three common kinds are: attributes,
ggregations, and references. Given a property Pε

i , it would be
n attribute if it can take values of scalar type (e.g. Number) or
tructured type (i.e. Array or Set), and it would be an aggregation
r reference if it is associated to an entity type ε′ whose objects
re, respectively, embedded in or referenced from objects of the
ntity type ε, to which the Pε

i property belongs. Keys are a special
ind of attribute able to record values used as identifiers of
nstances of entity types.

Graph data models include relationship types in addition to
ntity types. While nodes are instances of entity types, arcs
re instances of relationship types, which can have attributes.
ereafter, we will use ‘‘schema type’’ to gather both entity and
elationship types.

Schemas play a similar role to types in programming lan-
uages. Given a database schema S, only data conforming to S
an be stored in the database. Therefore, all data of an entity type
(resp. a relationship type R) will have the same structure, that
efined for E (resp. R) in S. In absence of schema declarations,
owever, data of E and R can have different structure, that is, E
nd R will have one or more structural variations.
A structural variation of a schema type ε is formed by a set

f properties Q ε
⊂ Pε , and each pair of variations of ε differ, at

east, in one property. The set Pε is therefore the union of the sets
f properties of each of its variations. The set Pε is commonly
alled union schema of a schema type in a schemaless system.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

T
c
a
s
i
r
d
U

s

o
c
t
o
S

2

m
c
t
t
O
m
c
a
t
c

l
(
t
s
f

a
t
a
s
a

i
t
A
r
p
a
a

r
a
t
c
d
r

w
c
t
u
a
(

e
e
T
i
(

i
S
n
t
o

m
M
v
E
m
c
b
h
f
i
n
a
f
w
d
t

2

f

t
i

s
s⨄
he properties of an schema type can therefore be classified as
ommon or specific, depending on whether they are present in
ll the variations, or in a subset of them. It is worth noting that
pecifying a schema type as the union schema, the information on
ts structural variability is lost. We have considered convenient to
ecord this structural variability in data models defined for NoSQL
atabases, and therefore the notion of ‘‘variation’’ will be part of
-Schema.
When structural variations are considered, entity and relation-

hip types can be defined as follows.

• An entity type has a name and is formed by a set of struc-
tural variations.
• A relationship type (only for graph stores) has a name, is

formed by a set of structural variations, and refers to both a
source and a target entity type.
• A structural variation is formed by a set of named proper-

ties. The kind of properties depend on the data model, and
can be: attributes, keys, aggregates, and references.

Table 2 shows the correspondence between concepts of each
f the considered database kinds and the logical modeling con-
epts that we will use in U-Schema. We will use these concepts
o abstract a logical data model for the most popular systems
f each NoSQL paradigm. These models will be presented in
ections 4 to 7 .

.2. The U-Schema metamodel

Data models are commonly expressed formally in form of
etamodels. A metamodel is a model that describes a set of
oncepts and relationships between them. That description de-
ermines the structure of models that can be instantiated from
he metamodel elements, i.e. a metamodel is a model of a model.
bject-oriented conceptual modeling is usually applied to create
etamodels: concepts and their properties are modeled with
lasses, and reference, aggregation, and inheritance relationships
re used to model relationships between concepts. Fig. 1 shows
he metamodel of the U-Schema data model in form of a UML
lass diagram. Below, we describe this metamodel.
A U-Schema model represents a schema formed by a col-

ection of types (SchemaType) that can be either entity types
EntityType) or relationship types (RelationshipType). Both
ypes have two common properties: They include one or more
tructural variations (StructuralVariation), and they can
orm a type hierarchy (parent relationship).

A StructuralVariation has an identifier and is char-
cterized by a set of logical and structural features. Struc-
uralFeatures determine the structure of database objects,
nd include Attributes and Aggregates, while logical features
pecify what identifies an object (Key), and which References
n object has to other objects.
Each attribute has a name and a data type. The data types

ncluded are: Primitive (e.g., Number, String, Boolean), collec-
ions (sets, maps, lists, and tuples), and the special Null type.
lso, the JSON and BLOB primitive types are included to support
elational systems. An aggregation has a name, a cardinality (up-
er and lower bound), and refers to the structural variation it
ggregates, or to a list of variations, if the aggregated object is
n heterogeneous collection.
Unlike aggregations, references refer to an entity type (via

efsTo), and one or more attributes that match the set of key
ttributes of the referenced object (all the variations of an entity
ype must have the same key.) References also have a name, a
ardinality, and an optional inverse reference (opposite). Ad-
itionally, references can have their own attributes when they
epresent graph arcs. This entails that a reference has to specify
4

hich variation (of its RelationshipType) its set of attributes
orresponds to (isFeaturedBy). Key represents the set of at-
ributes playing the role of key for an entity type, holding a
nique set of values for each element of the type. Reference
lso points to the set of attributes that form the referenced key
attributes property).

The aggregation relationship allows objects to be recursively
mbedded, then forming aggregation hierarchies. In these hi-
rarchies, the identification of the root element is important.
hus, an entity type includes a boolean attribute named root to
ndicate whether or not their entities are aggregated by others
aggregates relationship).

U-Schema also records information that could be useful to
mplement some database tasks. For example, as shown in Fig. 1,
tructuralVariations have a count attribute to record the
umber of objects that belong to each variation, and two times-
amps that hold the creation dates for the first and last stored
bject of a variation (firstTimestamp and lastTimestamp).
The U-Schema metamodel has been defined with the Ecore

etamodeling language. Ecore is the central element of Eclipse
odeling Framework (EMF) [21], a framework widely used to de-
elop Model-Driven Software Engineering (MDE) solutions [22].
MF-provided tools such as model transformation languages,
odel comparison and diff/merge tools, or workbenches for the
reation of domain-specific languages (DSLs) could be used to
uild database tools based on U-Schema models. Metamodeling
as traditionally been applied to define data models, and trans-
ormational approaches have been proposed to tackle problems
nvolving schema mappings [12,26]. However, the database engi-
eering community has paid little attention to MDE techniques
nd tools, although metamodeling and model transformations
oundations are well established in the MDE field. Using Ecore,
e obtain two benefits: leveraging the EMF tooling to develop
atabase utilities, and favor their interoperability with other
ools [27].

.3. U-Schema flavors: Full variability vs. union schema

U-Schema allows to accommodate the definition of two model
lavors:

• Full Variability: All structural variations of all entity and
relationship types are stored.
• Union Schema: Only one structural variation is stored for

each schema type. Structural variability is recorded by using
the optional boolean attribute of Feature to indicate if a
feature is present or not in all the objects of an schema type.
Union schemas are the schemas normally obtained in NoSQL
schema discovering processes [4,5], and visualized in NoSQL
modeling tools.

Note that it is easy to convert a U-Schema model from the Full
o the Union flavors. This conversion loses information, and thus it
s not reversible: Given a schema type t with a set of n variations
t.variations = {V t

i }, i = 1 . . . n, then t will be replaced by a
chema type s with the same name (t.name = s.name), and the
et s.variations will have a single variation W s with W s.features =
n
i=1 V

t
i , where

⨄
is a function that returns the union set of all

the features of all the variations with the following rules:

1. If the same structural feature appears in all variations V t
i ,

then it is included in the result set with its optional
attribute set to false (common structural features).

2. Each structural feature that appears at least in a variation is
included in the result set, but with its optional attribute
set to true.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

T
M

s
a
i

able 2
apping between logical modeling concepts and NoSQL/relational database systems.

Logical modeling
concepts

Relational Columnar Document Graph Key/Value

Schema Schema Database or
keyspace

Database Graph Database or
namespace

Entity type Table Table with column
families

Collection and
nested object

Node label Multirow
entities

Relationship type Relationship
table

N/A N/A Relation type N/A

Structural variation Table (only one
variation)

Rows with
different structure
within column
families

Documents with
different structure
in a collection

Same label with
different structure

Multirow
entities with
different
structure

Key Primary key Row key Document key N/A Pair key

Reference Foreign key Join between
tables

Join between
documents

N/A Join between
pairs

Aggregation N/A Nested object Nested object N/A Nested object

Attribute Column Column Document
property

Node and relation
property

Pair Value

Primitive types Scalar types Scalar types Scalar types Scalar types Scalar types

Structured types N/A Collections Collections Array Collections
Fig. 1. U-Schema metamodel.
3. Structural features that appear with the same name (name
attribute of StructuralFeature) but with different type
(they belong to a different sub-metatype of
StructuralFeature or have different values of their at-
tributes), are included with a numeric identifier appended
to their name, and with their optional attribute set to
true.

Example of an union schema for the running example pre-
ented in Section 3.2 is shown in Fig. 9(b). StructuralVari-
tions are omitted for clarity, and optional features are shown
n cursive and green color.
5

We will use the Full Variability flavor through the rest of
the article, as it contains more information and can be trivially
converted to the Union Schema if desired.

2.4. Mappings between U-Schema and the logical data models

A unified metamodel is intended to represent all the concepts
of the individual data models that it integrates. Therefore, a map-
ping must be established between the unified metamodel and
each data model. We will call forward mapping to a mapping from
a NoSQL or relational model to U-Schema, and reverse mapping to
a mapping in the opposite direction.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

e
t
m
i
t
U

m
t
i
a
c

o
r
c
f
d
m
m
a
i
c
a
o

i
s
d
m
r
s
f
m
m

3
o

a
c
u
F
b
t
o
m

3

p
t
t
T
i
t
f
r
i

As indicated above, we had to define a logical data model for
ach NoSQL paradigm. As most NoSQL databases are schemaless,
he schemas are implicit in data and code. Therefore, the imple-
entation of a forward mapping must first capture all the logical

nformation of the implicit schema, as described in Section 3, and
hen apply the mapping to obtain the U-Schema schema (i.e., a
-Schema model).
As U-Schema is richer in concepts than each individual data

odel, forward and reverse mappings are not unique for a par-
icular data model. In addition, U-Schema concepts not present
n a specific data model could be mapped in different ways in
reverse mapping. This has led us to introduce the notion of

anonical mapping. A canonical mapping satisfies two conditions:

1. It must be forward-complete, that is, the rules must cor-
rectly map all the characteristics of the data model to
U-Schema concepts.

2. As a consequence, it must be trivially bidirectional within a
data model. This is because given a U-Schema model, the
original database schema could always be reproduced (as
the U-Schema model holds all its information.)

While the canonical mapping rules cover the characteristics
f each of the logical data models, there may be cases where a
everse mapping has to be performed on a U-Schema model that
ontains elements not present in a given data model. Specialized
orward and reverse mappings could also be defined for each
ata model, and even for a given database implementation. These
appings could be devised for specific needs within a develop-
ent such as a database migration that involves different source
nd target data models. The need for these mappings raises the
nterest in creating a mapping language able to specify how the
onstructs of a given database paradigm are translated into the
bstractions of U-Schema, and vice versa. This is out of the scope
f this work.
In the following Section, the common strategies devised to

mplement and validate all the forward mappings will be de-
cribed. In Sections 4 to 8 , we will define a logical model for each
atabase paradigm addressed and formally express the canonical
apping between each data model and U-Schema. Additionally,
everse mapping examples will be shown for characteristics not
upported in each of the data models. For each paradigm, the
orward mapping implementation and validation will be com-
ented. Here, we will introduce the notation used to define the
appings.

• A mapping between an element u of U-Schema and an
element m of a data model is expressed as:

u↔ m ∥ {list of property relations}

where property relations are expressed as indicated below,
and the↔ operator is commutative.
• A property relation p1 = p2 expresses that a property p1 of u

and an property p2 of m have the same value. The = operator
is commutative.
• A property relation p ← v expresses that the value v is

assigned to the p property of u or m.
• Let e1 be a property of u and let e2 be a property of m, a

property relation e1 ↔ e2 expresses an enclosed mapping
between e1 and e2.
• In a property relation that expresses a mapping between

two elements, the map(e, t) function can be used to obtain
the target element of type t that maps to the source element
e; if e maps to a single target element, then the second
argument is optional.
6

Fig. 2. Generic schema extraction strategy.

• Given an instance of a meta-class in U-Schema, dot notation
is used to refer to its properties. For example, given an
instance e of EntityType, e.name refers to the attribute
name.
• Functions will be applied on elements of the data model

to obtain the value of their properties. Functions will have
the same name as the property. For example, given an
entity type e, name(e) will refer to its name property. Other
functions will be introduced in some rules, and their proper
definition will be shown.

. A common strategy for the implementation and validation
f the extraction of U-Schema models

In this Section, we will first explain how U-Schema models
re built from NoSQL databases or relational schemas. Then, a
onceptual schema will be presented as a running example to be
sed to illustrate the explanations of the following five sections.
inally, the experiments used to validate the U-Schema model
uilding process will be exposed. The implementation and valida-
ion strategies are common for all the paradigms, but some stages
r experiments are not required in the case of the relational
odel.

.1. Building U-Schema models

As indicated in Section 2.4, in the case of NoSQL stores, ap-
lying a forward mapping first requires inferring the schema
hat is implicit in the data and code. These schemas conform
o the logical data model abstracted for each NoSQL paradigm.
herefore, U-Schema models are built in a 2-stage process, as
llustrated in Fig. 2. First, a MapReduce operation is performed on
he database to infer its logical schema. This stage is not needed
or the relational model. In the second stage, the forward mapping
ules are applied to create a U-Schema model from the previously
nferred schema. Next, we explain these two stages.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

I
i
s
d
f
o
i
p

i
w
i
a

r

M
e
o

c
r
t
s
N
v

s
e

i
o
S
i
r

G
s
p
a
i
a
W
t
i

nferring the logical schema. In the map operation, a raw schema
s obtained for each object stored in the database. We call raw
chema to an intermediate representation (JSON-like format) that
escribes the data structure of a structural variation: a set of pairs
ormed by the name of a property and its data type. Given an
bject O stored in the database of an entity type e, its raw schema
s obtained by applying the following 4 rules on the values of its
roperties pi:

R1 Each value vi of a pi property is replaced by a value repre-
senting its type according to the rules R2 and R3.

R2 If vi is of scalar or primitive type, it is replaced by a value
that denotes the primitive type: ‘‘s’’ for String, 0 for
numeric types, true for Boolean, and so on.

R3 If vi is an embedded object, the rules R1, R2, and R3 are
recursively applied on it.

R4 If vi is an array of values or objects, rules R2 and R3 are
applied to every element, and the array is replaced with
an array of values representing types.

In the case of document systems, where the key is explicitly
ncluded in the documents, the representation of the structure
ill contain one scalar property with the name ‘‘_id’’, represent-

ng the key of the entity type. Additionally, the following rule is
pplied to infer references between objects:

R5 Some commonly used conventions and heuristics are taken
into account to identify references. For example, if a prop-
erty name (with an optional prefix or suffix) matches the
name of an existing entity type and the property values
match the values of the ‘‘_id’’ property of such an entity.
The value of the property is replaced concatenating the
value indicated in rule R2 with the name of the entity type
and the suffix ‘‘_ref’’.

The process is repeated to obtain the raw schemas of the
elationship types in the case of graph databases.

Fig. 2 shows how the above rules are applied to User and
ovie objects of a document store. A raw schema is obtained for
ach User object with identical structure, and the same for Movie
bjects.
Once the map function is performed, the reduce function

ollects all the identical raw schemas and outputs a single rep-
esentative raw schema for each structural variation of an entity
ype, to which we will refer, hereafter, as variation schema. Fig. 2
hows the variation schemas obtained for User and Movie objects.
ote that a variation schema will be generated for each structural
ariation of the objects.
In the case of graph and key–value systems, a preliminary

tage is needed to achieve an efficient MapReduce processing, as
xplained in Sections 4.4 and 6.4.
We decided to build U-Schema models directly from the

ntermediate representation of the MapReduce output instead
f building specific metamodels for each paradigm, because U-
chema already contains the abstractions present in each of the
ndividual data models, and the transformation would have been
edundant.

enerating a u-schema model. In the second stage, variation
chemas are analyzed to build the U-Schema model. For this, a
arsing process is connected to a schema construction process by
pplying the Builder pattern [28]. Variation schemas are parsed to
dentify its constituent parts: properties and relationships, as well
s the entity type (or relationship type) to which they belong.
henever the parser recognizes a part, it passes it to a builder

hat is in charge of creating the schema. A builder has been
mplemented for each data model, which captures how parts
7

Fig. 3. ‘‘User profile’’ running example schema.

are mapped to U-Schema. The same parser is used for all the
data models as its input are variation schemas. In the case of
relational databases, only this second stage is needed, as schemas
are already declared.

3.2. The ‘‘User Profiles’’ running example

Fig. 3 shows a ‘‘User Profiles’’ conceptual schema that will be
used to build a database example for each paradigm integrated
in our unified model. In each case, a ‘‘User Profiles’’ database will
be populated to execute the algorithm that creates the corre-
sponding U-Schema model and also to validate this algorithm as
explained in the next subsection.

‘‘User Profiles’’ schema could be an excerpt of the conceptual
schema of a movie streaming platform, which is expressed as a
UML class model. It has 3 entities labeledMovie, User, and Address,
and 3 relationships: a user aggregates an address, a user has zero
or more favorite movies, and a user has zero or more watched
movies. User has the attributes name, surname, and email; Address
has city, street, number, and postcode; and Movie has title, year,
and genre.

When instantiating each database, we will suppose that there
are 2 variations for the Address entity type: {street, number, city},
and {street, number, city, postcode}; and 2 variations for User that
vary in the relationships: either favoriteMovies andwatchedMovies
coexist, or only watchedMovies is present, and in the attributes:
the surName attribute is only present when both relationships are.

3.3. Validation of the schema building process

To validate our schema building process, we have applied
the same validation for the four kinds of NoSQL paradigms. For
each system, we used two databases, a synthetic one based on
the running example, and a real dataset. In each one of them,
two experiments were carried out: (i) a round-trip strategy to
check that the obtained U-Schema model is equivalent to the
schema used to synthesize the database or the schema of the real
existing database; and (ii) two queries are issued on the real and
synthesized databases to assure that at least a data object exists
for each inferred structural variation (‘‘all variations exist’’ query)
and that the extraction process correctly calculates the number
of data objects of each variation (‘‘correctness count’’ query). In
the case of the relational model, only the second experiment
is performed, as only the canonical forward mapping must be
implemented, because there is no need to infer the logical model
of the database.

The round-trip experiment consisted in the following steps.
First, we manually created a U-Schema model (i.e. a schema) with
the desired database structure (or the existing structure in the

case of the real database). The running example model covers all

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

T
D

t
t
r
w
A
t
t
v
i
s

m
d
t
M
U
v
r

6
T
i
a
o
t
i
i
T
e
t
d
t
t
i
b
m
t
i
t

o

4

4

o
(
a
f

able 3
atabase sizes.
Size/Item User Movie Watched/Favorite

movies
Nodes Relationships

Larger 800 k 400 k 20/user 2,000 k 24,800 k
Large 400 k 200 k 10/user 1,000 k 6,400 k
Medium 200 k 100 k 5/user 500 k 1,700 k
Small 100 k 50 k 3/user 250 k 550 k

Fig. 4. Inference to query time ratio.

he elements that can be mapped into the logical data model of
he corresponding paradigm, but this may not be the case for the
eal dataset. To populate the initial running example database,
e randomly created elements according to the defined model.
fterwards, we inferred the implicit schema, and finally verified
hat this schema was equivalent to the original U-Schema model:
he resulting model can differ in the ordering of the different
ariations found for each entity or relationship type, this is why
n this case we could not use standard model comparison tools,
o we built a custom U-Schema model compare utility.
To evaluate the scalability and performance of the U-Schema

odel building algorithms, we have generated four datasets of
ifferent size for the running example. The larger database con-
ains 800,000 objects for the User and Address entities, 400,000 for
ovie, and a mean of 20 watched movies and 20 favorite movies.
ser and Address have the same number of objects in each of their
ariations. The rest of datasets reduce the number of objects and
elationships in a factor of 2, 4, and 8, as shown in Table 3.

All the performance tests were run on an Intel(R) Core(TM) i7-
700 CPU @ 3.40 GHz with 48 GB of RAM and using SSD storage.
o give a meaningful expression of the scalability of the schema
nference process, instead of comparing absolute times, we used
s a time baseline an aggregate query that calculates the average
f watched movies by users. This query could be representative of
hose obtaining periodic reports, so we suppose that the database
s not optimized for it. In this way, we can get results that are
ndependent of the different configurations in the deployment.
able 4 show the different times for the queries, schema infer-
nce, and the normalized value (inference time divided by query
ime) for the database sizes in Table 3. We expected the ratio to
iminish as the size of the database increases, as the initialization
ime of the MapReduce framework becomes smaller with respect
o the total inference time. Moreover, in all cases the ratio stays
n the range of 17.58x (MongoDB, smaller case) to 2.04x (HBase,
iggest case), and for the biggest case, the inference reaches a
aximum of about 10x slower (MongoDB). This is expected as

he query only has to process a part of the database while the
nference treats the whole database. In the following sections,
hese results will be studied.

With the extracted U-Schema model, we build a set of queries
n the databases to perform the second experiment:
8

Table 4
Times for inference and queries for all the database implementations.
DB Small Medium Large Larger

Neo4j Query (ms) 686 1,213 3,165 12,016
Inference (ms) 11,821 20,177 41,814 109,724
Normalized 17.23 16.63 13.21 9.13

MongoDB Query (ms) 295 380 840 2,366
Inference (ms) 5,187 6,730 10,226 23,452
Normalized 17.58 17.71 12.17 9.91

HBase Query (ms) 931 1,942 6,419 24,023
Inference (ms) 5,615 6,840 11,526 49,042
Normalized 6.03 3.52 1.80 2.04

Redis Qyery (ms) 1,002 2,833 10,091 43,888
Inference (ms) 11,487 22,013 61,505 252,794
Normalized 11.46 7.77 6.10 5.76

1. All variations exist The database must store, at least, a
database object for each entity type variation (and relation-
ship type variation in the case of a graph store) present in
the extracted U-Schema model.

2. Count correctness No other variations are present in the
database, i.e., the total number of objects in the database
matches the sum of objects that belong to each structural
variation of the entity types present in the extracted model
(count attribute included in the StructuralVariation
metaclass of the U-Schema metamodel.) Also, this check
would be performed for relationship type variations in the
case of graph stores.

. Representing graph databases as U-Schema models

.1. A data model for graph databases

In graph systems (e.g., Neo4j and OrientDB), a database is
rganized as a graph whose nodes (a.k.a. vertex) and edges
a.k.a. arcs) are data items that correspond to database entities
nd relationships between them, respectively. Edges are directed
rom an origin node to a destination node, and more than one edge
can exist for the same pair of nodes. Both nodes and edges can
have labels and properties. Labels denote the entity or relationship
type to which nodes or relationships belong, and properties are
key–value pairs. This is the so called labeled property graph data
model [25], that most NoSQL graph systems implement.

Graph databases are commonly schemaless, so there may exist
nodes and relationships with the same label but different set of
properties. Moreover, the same label can be used to name rela-
tionships that differ in the type of the origin and/or destination
nodes. Thus, graph databases can have structural variations as
explained in Section 2.1.

For this kind of graph store, we have abstracted the following
notion of logical graph data model, which is represented in form
of UML class diagram in Fig. 5:

(i) A graph schema has a name (that of the database) and is
formed by a set of entity types and a set of relationship types.

(ii) An entity type denotes the set of nodes with the same label
(or set of labels).

(iii) Entity types can be single-label or multi-label depending
on whether they have one or more labels.

(iv) A relationship type denotes the set of relationships with
the same label (or set of labels). A relationship type has
origin and destination entity types.

(v) Entity and relationship types can have structural variations.
(vi) A structural variation is characterized by a set of properties

that is shared by elements with the same set of labels.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

e
t
t

n
A
W

N
n
w
s

4

u
r

o
n
w
N
a
w
c

u

Fig. 5. Graph data model.
m
f
L

t
a

r
r

R
c
o

i
w
i
i
r

w
P
i
m
U
T

Fig. 6. ‘‘User Profiles’’ graph database example.

(vii) A property is a pair that mimics the property of a node or
relationship in the graph, having a key and the scalar data
type that corresponds to the values of the property.

Table 2 shows the correspondence between graph database
lements and the graph model elements expressed above. Note
hat a graph schema is obtained by the MapReduce operation of
he schema extraction process described in the previous section.

Fig. 6 shows a graph database for the ‘‘User Profiles’’ run-
ing example. It has three entity types labeled Movie, User, and
ddress, and three relationship types labeled FAVORITE_MOVIES,
ATCHED_MOVIES, and ADDRESS. In the figure, nodes are repre-

sented as circles, and relationships as arrows. Nodes having the
same labels (i.e. entity type) are filled with the same color. In this
example, gray for Address, white for User, and black for Movie.
odes only show a property for each entity type: title for Movie,
ame for User, and street for Address. Relationships are tagged
ith their relationship types, and no properties are shown. We
uppose that there are the variations indicated in Section 3.2.

.2. Canonical mapping between graph model and U-Schema

Each element of the graph model defined above has a nat-
ral mapping to a U-Schema element, with the exception of
elationship types, that map to two U-Schema elements: Rela-
tionshipType and Reference. The former represents a type
r classifier whose instances are relationships between a pair of
odes, and can have variations based in their set of attributes,
hile the latter denotes a particular link between two nodes.
ote that Aggregation and Key U-Schema elements do not have
direct correspondence to elements of the graph model. Next,
e express the set of rules that defines the Graph to U-Schema
anonical mapping.
R1. A graph schema G corresponds to an instance uS of the

SchemaModel metaclass of U-Schema (i.e., a schema or model)
with the same name:

uS ↔ G ∥ {uS.name = name(G)}
9

R2. Each different single-label entity type e that exists in G maps
to a root EntityType et in the uS schema, whose name is that
of the label associated to e:

et ↔ e ∥ {et.name = name(e), et.root ← true}

EntityType instances are included in the uS.entities collection.
R3. Each different multiple-label entity type e that exists in G

aps to a root EntityType et in the uS schema whose name is
ormed by concatenating the names of the set of n > 1 labels
= {l1, . . . , ln}, and et inherits from each entity type e1, . . . , en

that corresponds to labels in L:

et ↔ e ∥ {et.name = concat(L),
et.root ← true,
et.parents = set{map(e1), . . . ,map(en)}}

R4. Each relationship type r that exists in G maps to a Rela-
ionshipType rt and a Reference rf in the uS schema, which
re named the same as the label associated to r .

↔ rt ∥ {rt.name = name(r)},
↔ rf ∥ {rf .name = name(r)}

elationshipType instances are included in the uS.relationships
ollection, and Rule R7 specifies how references are connected to
ther elements of the U-Schema schema.
R5. Each ‘‘variation schema’’ v of an entity or relationship type

n G maps to a StructuralVariation sv in the uS schema,
hich is identified by means of a unique identifier index (an

nteger ranging from 1 to |EV | or |RV |). Structural variations are
ncluded in the collection variations that both entity types and
elationship types have in a U-Schema schema.

R6. Let Pv be the set of properties of a ‘‘variation schema’’ v

hich maps to a StructuralVariation sv. Each property pv
i ∈

v will map to an Attribute atsvi with the same name, which is
ncluded in the collection sv.features. The type of the property will
ap to one of the types defined in the Type hierarchy defined in
-Schema, and a mapping has to be specified for each graph store.
he property mapping can be expressed as:

pv
i ↔ atsvi ∥ {atsvi .name = name(pv

i),
atsvi .type↔ type(pv

i)}

R7. Each reference in a U-Schema schema uS has to be con-
nected to other elements of uS. Let rf be a Reference which
maps to a relationship type r according to Rule R4,

(i) rf must be linked to the EntityType that maps to the
entity type that denotes the destination nodes for the re-
lationship r: rf .refs_to← map(destination(r)).

(ii) Let oe the EntityType of uS that maps to the origin entity
type of a relationship type r in G (oe ↔ map(origin(r))), rf
will be present in the set of features of the variations of oe
whose nodes are origin of edges that are instances of r .

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

4

e
c

4
N

b

N
d
d

d
s
d
a
a
p
m
a
f
N
p
m
i
n

a
g
e
F

f
e

c
q
w
q
o
t

5

5

g
e
D
u
f
t
n
s
s
s

i
s
e
s

n
U

h

Fig. 7. Example person data with address aggregate.

Fig. 8. Person aggregates address in Neo4j.

(iii) rf must be linked to the structural variation which features:
rf .isFeaturedBy ← sv, where sv is the StructuralVari-
ation that belongs to the relationship type that returns
map(r, RelationshipType).

(iv) The lowerbound cardinality of rf would be 1 (rf .lowerBound
← 1) and the upperbound cardinality could be 1
(ref .upperBound ← 1) or ∞ (ref .upperBound ← ∞)
depending on whether the instances of r in the database
(i.e. arcs of type r) have one or more destination nodes for
a given origin node.

.3. Reverse mapping completeness

The graph model does not include the Key and Aggregate
lements. Next, we provide a possible mapping for these two
oncepts.

• Key. Remember that the Key concept in U-Schema refers
to those attributes that act as an object key or the set of
attributes that form part of a reference to another object. As
references between objects (nodes) in graphs are explicit in
arcs, there is no need to include key information into the
graph schema. However, that information could be included
in the nodes, for example, using a special _keys property
holding the set of properties that act as key.
• Aggregate. An Aggregate ag that belongs to a particular
StructuralVariation sv, where ag.aggregates is the ag-
gregated variation av, could be mapped to a relationship
type whose name is ag.name adding the prefix ‘‘AGGR_’’,
its origin entity type being sv.container , and its destina-
tion entity type being av.container . Origin and destination
entity types should be created if they do not exist in the
graph schema. Also, properties of av should be mapped
using rules R2 to R7, as well as this rule (if an aggregate
is part of the properties of av). Fig. 7 shows an example
JSON document of an U-Schema entity type Person that
aggregates an object of the entity type Address. Fig. 8
illustrates the reverse mapping where a relationship type
named AGGR_address_address1 connects a Person and
Address nodes (we suppose that the aggregated variation
identifier is 1.)

.4. Implementation and validation of the forward mapping for
eo4j

A slightly revised strategy to that described in Section 3 has

een applied to implement the forward canonical mapping for N

10
eo4j. We chose this store because it is the most popular graph
atabase.6 It is schemaless and fits into the labeled property graph
ata model.
The strategy had to be revised because graph databases usually

o not offer facilities to efficiently process the whole graph, and
ometimes they even fail because of lack of resources. So we
evised a preliminary stage that serialized the graph obtaining
ll the nodes along with their outgoing relationships. Of each
rch, the data included the source node with its properties, the
roperties of the arc, and the ID of the destination node. We
odified the map operation of the generic strategy to construct
ll the raw schemas for nodes and edges with this serialization
ormat. The serialization was organized in batches by using Spark
eo4j connector [29]. This way, an efficient schema extraction
rocess was achieved. The reduce operation did not need any
odification from that described in the generic strategy, generat-

ng variation schemas for both entity and relationship types from
odes and arcs, respectively.
The process finalizes with creating the U-Schema model by

pplying the mapping rules to the previous output (i.e. the logical
raph model). The resulting schema for the ‘‘User Profiles’’ running
xample is shown in Fig. 9(a). We also show the union schema in
ig. 9(b).
The two experiments introduced in Section 3.3 were success-

ully carried out on the Neo4j database created for the running
xample and a Movies dataset available at the Neo4j website.7
Regarding scalability and efficiency of the model creation pro-

ess, Table 4 show that the relative times with the reference
uery decrease as the size of the database increases. Neo4j, jointly
ith MongoDB show the worst ratio cases. This is because the
uery (average of watched movies by user) is, by chance, easily
ptimized by the database. In any case, as the database grows,
he factor is never beyond 10x.

. Representing document databasesmas U-Schema models

.1. A data model for document databases

Document databases (e.g., MongoDB and Couchbase) are or-
anized in collections of data recorded for a particular database
ntity (e.g., Movie, User, and Address in the running example).
ata are stored in the form of semi-structured objects or doc-
ments [30,31] that consist of a tuple of key–value pairs (a.k.a.
ields). Keys denote properties or attributes of the entity, and
he values can be atomic data (e.g. Number, String, or Boolean),
ested or embedded documents, or an array of values. Also, a
tring or integer value can act as a reference to another document,
imilar to foreign keys in relational systems, although usually no
upport for consistency is provided.
Semi-structured data is characterized by having its schema

mplicit in itself [31]. Thus, document databases are commonly
chemaless, and a collection can store different variations of the
ntity documents. Usually, document databases maintain data in
ome JSON-like format.
For document databases, we have abstracted the following

otion of document data model, which is represented in form of a
ML class diagram in Fig. 10:

(i) A document schema has a name (that of the database) and
is formed by a set of entity types.

(ii) An entity type denotes a collection of documents stored in
the database.

6 DB-Engines Ranking https://db-engines.com/en/ranking, (January, 2021).
7 No longer available at the original site, a copy can be obtained from
ttps://github.com/catedrasaes-umu/NoSQLDataEngineering/blob/master/data/
eo4j/Movies/.

https://db-engines.com/en/ranking
https://github.com/catedrasaes-umu/NoSQLDataEngineering/blob/master/data/Neo4j/Movies/
https://github.com/catedrasaes-umu/NoSQLDataEngineering/blob/master/data/Neo4j/Movies/

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

d
a
d
S

b
w
t
a

M
T
r
a

Fig. 9. ‘‘User Profiles’’ schema for graph stores.
t

e

(iii) Entity types have one or more structural variations.
(iv) A structural variation is characterized by a set of properties

that are shared by documents of the same collection.
(v) Properties have a name and a type, and can be attributes,

aggregates, or references.
(vi) Attributes denote object’s fields whose value is of scalar or

array type. An attribute is specified by the name of the field
and the type of its value. We suppose that there exists an
attribute that acts as the key of the Entity type (e.g., ‘‘_id’’
in MongoDB).

(vii) Aggregates denote object’s fields whose value is an embed-
ded object. An aggregate is specified by the name of the
field and the variation schema of the embedded object.

viii) References denote object’s fields whose values are refer-
ences. A reference is specified by the name of the field and
the type of its value.

Table 2 shows the correspondence between document
atabase elements and the document model elements expressed
bove. Note that a document schema is obtained by the MapRe-
uce operation of the schema extraction process described in
ection 3.
Fig. 11 shows how the ‘‘User Profiles’’ running example would

e stored in a document database. Instead of using JSON notation,
e depicted the database objects in a representation that remarks
heir nested structure and the references between objects. There
re two collections: User and Movie objects, and the relationships

are as follows. User objects aggregate watchedMovies objects with
two properties: the stars attribute and the movie_id reference that
records the id value of a movie object (arrow from movie_id to
ovie objects); watchedMovies objects are recorded in an array.
o record favorite movies, User has the favoriteMovies array of
eferences to Movie objects. The user addresses are stored as
n address aggregate object of users. While graph databases rely

on references (i.e. relationships in graph store terminology) to
11
connect data items, and aggregation is normally not available to
compose data, the opposite is true in document database systems.

5.2. Canonical mapping between document model and U-Schema

Each element of the document data model defined above has
a natural mapping to a U-Schema element. Next, we present the
rules for the canonical mapping.

R1. A document schema D corresponds to an instance uS of the
uSchemaModel metaclass of U-Schema (i.e., a schema or model)
with the same name:

uS ↔ D ∥ {uS.name = name(D)}

R2. Each entity type e that exists in D maps to a root Enti-
yType et with the same name:

t ↔ e ∥ {et.name = name(e), et.root ← true}

uS.entities holds the set of instances of EntityType.
R3. Each variation schema v of e corresponds to a Struc-

turalVariation sv of et in the uS schema, which is identified
by means of a unique identifier index (an integer ranging from 1
to |EV |). Each property pv

i of v will be mapped according to rules
R4–R6.
sv ↔ v ∥ {sv.variationId = idgen(),

sv.features↔ properties(v)}

StructuralVariation instances are included in the collection
et.variations.

R4. If pv
i is an attribute,

(i) it will map to an Attribute atsvi with the same name,
which is included in the collection sv.features. The mapping
is the same as that defined in Rule R6 of the mapping
between the graph model and U-Schema.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898
Fig. 10. Document data model.
Fig. 11. ‘‘User Profiles’’ document database example.
(ii) Additionally, if the attribute is the key of the entity type, a
Key instance also exists in sv.features and is connected to
the corresponding attribute atsvi .

R5. If pv
i is an aggregate that has a set of n properties Gv

=

{gv
i }, i = 1..n, it will map to three elements in the U-Schema

model:

(i) A non-root EntityType nr with the same name but capi-
talized and stemmed (function name∗()), which is included
in the collection uS.entities:

nr ↔ pv
i ∥ {nr.name = name∗(pv

i), nr.root ← false}

(ii) A StructuralVariation instance av included in
nr.variations, and each property gv

i is mapped recursively
according to rules R4 to R6:

av ↔ pv
i ∥ {av.features↔ Gv

}

(iii) An Aggregate ag with the same name as the property,
which is included in sv.features. This aggregate ag is con-
nected to the structural variation av that it aggregates. The
12
mapping would be:

ag ↔ pv
i ∥ {ag.name = name(pv

i),
av ∈ ag.aggregates}

The cardinality of ag would be established as indicated
in Rule R7-ii of the mapping between graph models and
U-Schema models.

R6. If pv
i is a reference, it corresponds to two elements of the

U-Schema model:

(i) A Reference rf with the same name, which is included in
sv.features. The mapping is the same defined in Rule R7 of
the mapping between graph models and U-Schema models.

(ii) An Attribute at according to the mapping expressed in
Rule R4-i, and at and rf appear connected in the uS schema:
at exists in rf .attributes and rf is part of at.references.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

5

b
s
s
V

r
e
c
A
a
o
b
w
t
v
n

p
s
e
c

t
F

a

.3. Reverse mapping completeness

The only element of U-Schema that is not directly supported
y the document model is the RelationshipType. Relation-
hipTypes have structural variations, and some References can
pecify (via its isFeaturedBy property) to which Structural-
ariation of a RelationshipType they belong.
Given a RelationshipType rt in a U-Schema model, the

everse mapping for documents would map to an entity type
whose name is rt.name + "_REF". Each variation of rt will

orrespond to a variation in e, applying mapping rule R3 (i.e., each
ttribute in rt maps to an attribute of the corresponding vari-
tion of e). A reference property p will exist in all the variations
f e that will map with rule R6. Then, each Reference rf that
elongs to a StructuralVariation v of the entity type et to
hich origin(rt) maps, where ro is the relationship type such
hat ro = map(rt), and whose isFeaturedBy is a variation
t in rt.variations, will map to a reference property r named
ame(e)+ "_ref " by applying rule R6.

rf ↔ r ∥ {rf ∈ v.features,
et ↔ origin(rt),
v ∈ map(et).variations,
vt = rf .isFeaturedBy,
vt ∈ rt.variations,
r.name← name(e)+ "_ref "}

Fig. 12 illustrates the application of the reverse mapping ex-
lained above for a U-Schema model containing a Relation-
hipType for the watchedMovies relationship type of the running
xample. It can be appreciated how the document schema would
ontain an entity type named WatchedMovie_REF, which has a
structural variation for the single StructuralVariation of the
RelationshipType that exists in the U-Schema schema. That
variation is connected to the attributes named stars and movie_id.
Also, there exists a reference to the entity type Movie, and a
reference and attribute named watchedMovie_REF are present in
the structural variations of the origin entity type (User in our
example). The reference will connect the User objects with the
WatchedMovie_REF objects.

Some document systems provide the dbref construct to record
references between documents, which can include fields. In these
systems, the document data model shown in Fig. 10 could be
extended to consider that references can have attributes. Then,
the document model would include all the U-Schema elements,
as it would also support relationship types.

5.4. Implementation and validation of the forward mapping for
MongoDB

Once the output of the MapReduce described in Section 3.1 is
produced, i.e., the set of variation schemas, the generation of the
U-Schema model is achieved by following the mapping rules de-
scribed above. The only remarkable aspect is that while the root
entity types are discovered by the MapReduce process, aggre-
gated entity types reside ‘‘unfolded’’ inside the variation schemas.
It is needed to recursively process all the aggregated objects to
build the non-root EntityTypes and match the properties to
identify the StructuralVariations.

The schema that would be inferred for the running example is
shown in Fig. 13(a) and the union schema in Fig. 13(b).

The common validation strategy of Section 3.3 was success-
fully applied in MongoDB, with a database created for the running
example, and with the EveryPolitician dataset.8

8 Available at http://docs.everypolitician.org/.
 h

13
As with Neo4j, MongoDB shows worse ratio cases than with
other two database implementations, as shown in Table 4. Again,
this may be caused by the chance that the query benefits by some
optimizations built in the database. The ratio also goes down as
the size of the database doubles, with the exception of the Small
and Medium times, that are similar (17.58x and 17.71x). The ratio
then goes down from around 18x to 10x for the biggest case.

6. Representing key–value databases as U-Schema models

6.1. A data model for key–value databases

Key–Value (K/V) stores conform to the simplest physical data
model of NoSQL systems. A K/V store is an associative array,
dictionary, map, or keyspace, that holds a set of key–value pairs,
usually lexicographically ordered by key. As such, they are used
to record data with a simple structure, and references and ag-
gregations are not primitive constructs to build up data. They
usually store a single entity type (e.g. user profile, user login,
or a shopping cart), although data of several entity types could
co-exist in the same keyspace.

Like document and columnar systems, K/V stores can record
semi-structured objects. Several techniques can be used to en-
code a tree-like structure into key–value pairs, which use nor-
mally namespaces to build hierarchical key values. We chose one
of the most commonly used encoding patterns9 to define the
canonical mapping between K/V databases and U-Schema, to
which we will call the flattened key pattern of compound objects
or simply flattened object-key pattern.

When using this pattern, the key of every pair not only acts
as the identifier of the object, but also encodes the name of
a property of the entity type, in a similar format to XPath or
JSONPath [32]. Keys are built with a separator to differentiate be-
tween the object identifier and the property name (e.g., a colon:
‘‘<id>:<property>’’). It can also be used to differentiate the
entity type if different namespaces are not used (e.g., ‘‘<entity-
type>:<id>:<property>’’). When a property aggregates an
object, it is possible to use another separator to express prop-
erties of the aggregated object (e.g., a dot: ‘‘<id>:<property>.
<aggregated-property>’’), or an index to represent objects of
an array (e.g., ‘‘<id>:<property>[<index>]’’), that in turn can
have properties (e.g., ‘‘<id>:<property>[<index>].
<aggregated-property>’’). Fig. 14 shows an K/V database ex-
ample that illustrates the usage of this encoding for the ‘‘User
Profile’’ running example. Using this pattern, a database object
consists of several entries in the database, all of them sharing
the same object identifier. Note that the order of the separated
elements of the key may vary depending on the specific queries
needed by the application, as the keys are lexicographically or-
dered.

K/V systems are schemaless, and several structural variations
of an entity type can therefore exist in the database. In Fig. 14,
the variations of the running example can be observed.

Taking into account the use of the flattened object-key pattern,
he document data model presented in Section 5.1, and shown in
ig. 10, can also be used for K/V systems by modifying the Key

notion. In this case, every database object also has a key, but it is
not associated to any attribute. A namespace would correspond
to an entity type or either, if only one namespace is used, each
different entity type will have a different ‘‘<entity-type>’’ key
prefix. This data model, as the Document model, has all the
elements of U-Schema except the RelationshipType element,
s shown in Table 2. We will use the term aggregate-oriented

9 https://redislabs.com/redis-best-practices/data-storage-patterns/object-
ash-storage/.

http://docs.everypolitician.org/
https://redislabs.com/redis-best-practices/data-storage-patterns/object-hash-storage/
https://redislabs.com/redis-best-practices/data-storage-patterns/object-hash-storage/

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

d

Fig. 12. Example of application of the reverse mapping from a RelationshipType of U-Schema to a document schema.
Fig. 13. ‘‘User Profiles’’ schema and union schema for document stores.
ata model to group the Document, Key–Value, and Columnar
data models, as suggested in [2], because they include the same
concepts in their respective data models.
14
A set of data types are available for keys and values, which
vary on each system. Keys are normally stored as byte-arrays
or strings, which can follow formats as those indicated above.

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

R
s

6

b
s
n

t

Fig. 14. Key–value database example for running example.
S
t

egarding the data types of values, they usually provide basic
calar types as well as common collection types.

.2. Canonical mapping between key–value model and U-Schema

The mapping between U-Schema and Document model would
e applicable for K/V, the only exception being that Rule R4-ii
hould be removed, and a new rule has to be added because the
otion of key is different in this data model.
R7. Each StructuralVariation sv in the U-Schema model

contains a Key instance k in sv.features whose value of k.name is
‘‘_id’’, and it is not connected to any Attribute.

6.3. Reverse mapping completeness

The same reverse completeness mapping rules exposed in
Section 5.3 for the document model are applicable in this case.

6.4. Implementation and validation of the forward mapping for Redis

Redis has been used for the implementation and validation
of the general strategy applied for key–value stores. Redis is the
most popular key–value database.10

A preliminary stage is performed to join all the properties of
each entity variation. To do this, a simple MapReduce operation
is performed over the database assuming that properties are
encoded using the flattened object-key pattern. Spark [29] was
used to implement this stage. First, every database pair is mapped
to a new pair whose key is the name of the entity type along
with its identifier, and the value is formed by the property’s name
and its type. Then, the reduce operation joins all pairs of objects
that belong to the same object. The result is a set of JSON objects

10 As shown in https://db-engines.com/en/ranking. Redis appears in
he 7nd position (March, 2021).
15
that are similar to those stored in a document database. Now, the
two stages of the common strategy are performed: a MapReduce
processing to obtain the set of variation schemas, followed by
the generation of the U-Schema model, which is similar to the
document model with the exception of the key generation using
the rule R7.

The schema extracted for the running example is the same as
for documents, shown in Fig. 13(a). The union schema is shown
in Fig. 13(b).

The schema extraction process was validated using a database
built for the running example, as well as using a real-world
dataset. The same EveryPolitician dataset used with MongoDB
(Section 5.4) was inserted into Redis.

The performance of the Redis schema inference process im-
plementation versus the query gets better than in MongoDB or
Neo4j. This is because the query itself has to process the whole
database, as Redis does not include a query language. Note also
that in absolute times, the Redis implementation is the slowest,
which confirms that the calculation of an aggregate value is not
an appropriate operation for a K/V store. As in previous imple-
mentations, the ratio goes down from 11.46x to 5.76x as the
database doubles.

7. Representing columnar databases as U-Schema models

7.1. A data model for columnar databases

In columnar databases, data is structured in a similar way
to relational databases. In the most popular columnar databases
(Hbase [33] and Cassandra [34]),11 a database or Keyspace schema

is composed of a set of tables T = {ti}, i = 1..n, and each
able ti usually stores data of a single entity type. As in relational

11 This can be observed in https://db-engines.com/en/ranking. Cassandra
appears in the 10nd position and HBase in the 22nd position as of March, 2021.

https://db-engines.com/en/ranking
https://db-engines.com/en/ranking

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

d
c
t
t

d

s
c

atabases, each table has a name, and is organized in rows and
olumns, but rows have a more complex structure than in rela-
ional tables because they are organized in column families. A
able t is therefore defined in terms of a set of column families
F t
= {F t

j }, j = 1..m. Moreover, each row r belonging to a
table t contains a row key. Fig. 15 shows an example of colum-
nar database for the running example, which has the User and
Movie tables. The User table contains three column families: User,
Address, and WatchedMovies. The Address and WatchedMovies re-
lationships of the running example are represented as column
families, and the FavoriteMovies relationship is represented as a
column of the User family, which records an array of references
to Movie. In the case of Cassandra, column families will be equiv-
alent to User Defined Types (UDTs): in a Cassandra table, the type
of an attribute can be either a predefined type or a UDT. Thus, the
User table could have the four attributes: name and email whose
type would be Text, and address and watchedMovies whose types
would be the UDTs Address and Movie, respectively.

Columnar databases also record semi-structured data, and
they are normally schemaless, which means that structural varia-
tion is possible: the set of columns present for each column family
can vary in different rows. In Fig. 15, the structure of the Address
object is different for each of the two User objects; moreover,
the second row has an additional surname column for the User
column family.

We will suppose that a table has a default column family that
includes the attributes of the root entity type that corresponds
to the table. The rest of column families represent aggregated
entity types. (Again, in the case of Cassandra, the set of attributes
in the table that are not UDTs will form the default column
family.) In the example, the default column family is User, with
Address and WatchedMovies as aggregated entities. Note that
WatchedMovies aggregates an array of objects, so the name of
the columns is formed by using the flattened object-key pattern12
(‘‘<property>.<index>.<aggregated-property>’’), where
the property name is the name of the column family and can be
omitted. For example: ‘‘0.stars’’, ‘‘0.movie_id’’ in Fig. 15.

As column families are considered a way of embedding objects
into a root object, the data model defined for Key–Value and
Document stores is applicable for columnar stores, that is, the
aggregate-oriented data model.

7.2. Canonical mapping between columnar databases and U-Schema
Models

In the case of columnar stores, the canonical mapping would
be the same as the one defined for document stores. Relationship
type would be the only element of U-Schema not included in the
columnar model.

7.3. Reverse mapping completeness

The data model for columnar databases includes the same
abstractions than those established for the document data model.
Thus, the reverse mapping rules are the same to those introduced
in Section 5.3. Only relationship types do not have a direct map-
ping to the model, and the same approach used in documents can
be implemented: the new entity type with a name convention to
hold the structure residing in the references, and the reference
itself on the origin entity type variations.

12 https://hbase.apache.org/book.html#schema.casestudies.custorder.obj.
enorm.
16
7.4. Implementation and validation of the forward mapping for
HBase and Cassandra

We implemented the forward mapping for Hbase and Cassan-
dra. In the case of HBase, we applied the common strategy of
Section 3.1, with the MapReduce operation identifying the de-
fault and aggregated column families, and building the variation
schemas. In the case of Cassandra, the API was used to retrieve
the database schema, and then build the U-Schema model.

Validation was carried out as described in Section 3.3. A
database was created for the running example, and the same
EveryPolitician real world dataset used in MongoDB and Redis,
introduced in Section 5.4, was injected into Hbase and Cassandra.

Figs. 13(a) and 13(b) show the variation schemas obtained for
the running example, which are the same for all the aggregation-
based stores.

As shown in Table 4 and Fig. 4, Hbase shows the best per-
formance of the inference regarding the ratio relative to the
aggregated query. As with all systems, with a slight difference in
the two bigger databases (1.8x to 2.04x), the ratio decreases as
the size of the database increases. This confirm the scalability of
the schema extraction approach. HBase, like Redis, is specialized
in fast random-access queries, but the aggregated query has to
process most of the database, making the times very close to the
full process of the database performed in the schema extraction.
Thus, ratios go from just 6x slower to around 2x slower in the
case of the Larger databases.

The performance of building the Cassandra model was not
recorded as no inference process is required because the schema
is already declared.

8. Representing relational databases as U-Schema models

8.1. The relational data model

Unlike NoSQL logical data models, there exists a standard
relational data model which is formally defined through rela-
tional algebra and calculus. Being ‘‘schema-on-write’’ is another
significant feature that differentiates relational databases from
NoSQL stores: schemas must be declared prior to store data in
tables. The relational model is based on the mathematical concept
of relation and its representation in form of tables [35]. A detailed
description of the relational model can be found in [36,37].

A relational schema consists of a set of relation schemas.
Each relation schema specifies the relation name, the attribute
names and the domain (i.e., type) of each attribute. Relationships
between relations are implicitly represented by key propagation
from a relation schema to another (one-to-one and one-to-may
relationships) or either by a separated relation schema (many-
to-many relationships). Therefore, relation schemas can represent
entity types or relationship types. A relational schema is instan-
tiated by adding tuples to each relation. Each relation has one or
more attributes that form the key (primary key), and each tuple is
uniquely identified by the values of the key attributes. Relations
are represented as tables, and the term column is used to refer to
the attributes, while rows name the tuples of a relation. A table
can declare foreign keys: one or more columns that reference to
the primary key of another table in a key propagation. Fig. 16
shows a relational database example for the schema of the run-
ning example. User and Movie tables represent the entity types of
identical name, WatchedMovies and FavoriteMovies tables repre-
ent the many-to-many relationships from User and Movie in the
onceptual schema of the running example, and User aggregates
Address by incorporating its attributes. Note that Address could be
a separate table related by foreign key, but it has been integrated
into User because they hold a one-to-one relationship.

https://hbase.apache.org/book.html#schema.casestudies.custorder.obj.denorm
https://hbase.apache.org/book.html#schema.casestudies.custorder.obj.denorm

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

r
m
d
(
u
l
o
m

8
m

b
i
s
t
t
W

Fig. 15. Columnar database example for the running example.
Fig. 16. ‘‘User Profile’’ relational example.
R
a

a
m
(
s

a

A
s

t
c
(
f

i

In the last four decades, conceptual and logical schemas for
elational systems have been extensively studied, and a lot of
ethods and tools are available for using them in the whole
atabase life cycle. Entity-Relationship (ER) [36], Extended ER
EER) [37] and Object-Orientation modeling are the most widely
sed formalisms to model conceptual and logical schemas for re-
ational databases. As explained in Section 2.1, the main concepts
f such formalisms are included in U-Schema, which redefines
ost of them, and adds some other concepts.

.2. Canonical mapping between relational model and U-Schema
odels

The relational model is completely integrated in U-Schema,
ut the latter has the Aggregate element which is not present
n relational schemas. Moreover, all the tuples have the same
tructure, so that the number of structural variations for an entity
ype is limited to one. Next, we expose a set of rules that specify
he canonical mapping between relational and U-Schema models.
e will use the terminology of table data models.
R1. A relational schema D corresponds to a uSchemaModel

instance uS in U-Schema (i.e., a U-Schema model) with the same
name:

uS ↔ R ∥ {uS.name = name(R)}

R2. Each table t in R representing an entity type maps to two
elements of uS: a root EntityType et with the same name, and
a StructuralVariation sv that represents the only structure
of the table that exists in the database. An identifier is generated
for the variation sv and its features are mapped to the columns
of the table t by applying the rules R4 to R6. This mapping can
be expressed as follows:

et ↔ t ∥ {et.name = name(t), et.root ← true},

sv ↔ t ∥ {sv.id← idgen(), sv.features↔ columns(t)}

17
EntityType instances are included in uS.entities and sv is in-
cluded in et.variations.

R3. Each table r in R representing a relationship type maps
to two elements of uS: a RelationshipType rt with the same
name, and a StructuralVariation sv that represents the only
structure of the table that exists in the database. The mapping
between r and sv is solved as in rule R2.
rt ↔ r ∥ {rt.name = name(r)},
sv ↔ r ∥ {sv.id← idgen(), sv.features↔ columns(r)}

elationshipType instances are included in uS.relationships
nd sv is included in et.variations.
R4. Each column c of a table t is mapped to an Attribute

t with the same name, and the data type of the column will
ap to one of types defined in the Type hierarchy of U-Schema

a mapping between types has to be specified for each relational
ystem.) The mapping can be expressed as follows:

t ↔ c ∥ {at.name = name(c), at.type↔ type(c)}

ttributes of an EntityType et are included in the collection
v.features, where sv is the only structural variation that et has.

R5. The primary key pk of a table t is mapped to a Key k and
he collection k.attributes includes the attributes that maps to the
olumns that form pk. The name of k is the name of the attribute
if there is just one), or t.name + "_pk" otherwise (pkname()
unction):

pk↔ k ∥ {k.name = pkname(pk),
k.attributes↔ columns(pk)}

For each attribute at ∈ k.attributes, at.key = k. k is also
ncluded in sv.features.

R6. Each foreign key fk of a table t to a table s = target(fk)
is mapped to a Reference rf , and the collection rf .attributes
includes the attributes that map to the columns that form fk. The
name of fk is the name of the attribute (if there is just one), or

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

s

8

m
N

.name+ "_fk" otherwise (fkname() function). The reference rf is
included in sv. It also refers to the entity type that maps to the
target table s:

fk↔ rf ∥ {rf .name = fkname(fk),
rf .attributes↔ columns(fk),
rf .refsTo = map(s)}

.3. Reverse mapping completeness

The U-Schema elements that are not present in the relational
odel are Aggregate, and (multiple) StructuralVariation.
ext, we describe some possible mappings for these elements.

• The canonical mapping only takes into account a Struc-
turalVariation per schema type (resp. table). If an
schema type has several StructuralVariations, then
two possible alternatives are: (i) mapping each variation to
a table with a distinctive naming scheme, and (ii) mapping
all variations to a single table where the columns result
of the union of the set of properties of each structural
variation. In the latter case, the tuples of the table will
have NULL values in the columns not corresponding to their
structural variation. Obtaining the different entity variations
from a table would require the analysis of all the tuples to
register all the different set of non-NULL columns. This could
be carried out with a similar operation to the MapReduce
described in the common strategy of Section 3.
• Each Aggregate ag in an StructuralVariation sv of

a given EntityType et could be mapped to elements of
the relational model also in several ways: (i) an additional
table t with the name of the aggregate ag.name and the
columns mapped to properties in the StructuralVari-
ation ag.aggregates using rules R4 to R6. A foreign key
column is added to t , and a primary key to the table mapped
to et . (ii) If the aggregate cardinality is one-to-one, the at-
tributes of the ag.aggregates variation could be incorporated
into the table that maps to et . The aggregation relationship
between User and Address in the running example schema
has been mapped using the second alternative, as shown
in Fig. 16.

8.4. Implementing and validating the relational schema extraction
process

In the case of relational databases, it is not necessary to in-
fer schemas: U-Schema models can be obtained from relational
schema declarations. We chose MySQL to implement the set of
rules exposed above for the relational to U-Schema mapping.
Rule R3 cannot be applied as the schema does not distinguish
between relationship and entity tables. This information could be
provided, for example, through name conventions, which could
also be used to specify aggregation tables.

The model generation process is straightforward, and it works
following the described mapping rules. First, R1 is applied to
create and name the model, then an EntityType and a Struc-
turalVariation are created for each table (R2). An Attribute
is created for each column of a table (R4). Next, Keys are created
for primary keys in tables, which will have references to At-
tributes that have been instantiated previously for the columns
that are part of the primary key (R5). Finally, References are
created for foreign keys in tables, and each Reference will
be connected to elements previously created according to the
U-Schema metamodel (R6).
18
The validation has been performed on the Sakila database
available at the MySQL official website.13 Sakila contains 16 ta-
bles, and the average numbers of columns and references be-
tween tables are, respectively, 5.6 and 1.4. The smallest table
has 3 columns, and the biggest one 13 columns. We have checked
the correction of the U-Schema model generation by compar-
ing the model obtained with the information on the database
available at the MySQL website (SQL creation files and official
diagrams). In the study of performance and scalability, as with
Cassandra, relational databases have not been considered because
schemas are already available.

9. Related work

In this section, the U-Schema metamodel will be contrasted to
some relevant generic metamodels defined for database schemas,
and the schema inference strategy to others published for NoSQL
stores.

9.1. Generic metamodels

DB-Main was a long-term project aimed at tackling the prob-
lems related to database evolution [11,38]. The DB-Main approach
was based on three main elements: (i) The Generic Entity/Rela-
tionship (GER) metamodel to achieve platform-independence; (ii)
A transformational approach to implement operations such as re-
verse and forward engineering, and schema mappings; and (iii) A
history list to record the schema changes [11]. Here, our interest
is focused on the two former elements. The generic GER meta-
model was defined as an extension of the ER metamodel [36].
Conceptual, logical, and physical models could be represented
in GER. Models for a particular paradigm, system, or method-
ology were obtained by means of (i) selecting necessary GER
elements, (ii) defining structural predicates to establish legal as-
semblies of that elements, and (iii) choosing an appropriate visual
diagram. Regarding schema transformations, a set of basic trans-
formations were defined, and the signature of each of them
(name, input, and output) was specified in a particular format to
be used to record changes in the history list. Our proposal differs
of the GER approach in several significant aspects.

A. Support of semi-structured data in NoSQL stores It is conve-
nient to remark that our approach shares objectives with DB-
Main. However, DB-Main was focused mainly on relational sys-
tems, and also on earlier database systems. Instead, we are in-
terested in both structured and semi-structured data, specially in
the emerging NoSQL stores and relational databases.

B. Physical and conceptual level separation in different meta-
models U-Schema is intended to represent logical schemas, so
that conceptual and physical schemas are separately modeled.
Instead of mixing all the information in a single metamodel, we
have considered more convenient to separate the large amount of
physical concepts in their own metamodel and to have a simpler
conceptual model. Because of this concern separation, reusabil-
ity is promoted, and models are kept simple and readable. The
conceptual and physical metamodels are out of the scope of this
paper. At this moment, we have defined a physical metamodel
for MongoDB, as described in [19].

C. Concrete schemas are directly represented in U-Schema Unlike
GER, we do not have to define a sub-model of U-Schema for each
database system. U-Schema acts as a pivot representation, able to
represent NoSQL and relational schemas for all paradigms. The set

13 Sakila can be downloaded from https://dev.mysql.com/doc/index-other.
html, and documentation is available at https://dev.mysql.com/doc/sakila/en/
sakila-structure.html.

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/sakila/en/sakila-structure.html
https://dev.mysql.com/doc/sakila/en/sakila-structure.html

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

o
U

D
S
s
i
w
h
e
t

E
w
g
i

F
h
c
a

m
f
a
i
l

a
u
t
a
(
(
f
F
s
r
p
p
a
i
i
m
i
m
g

U

A
t
d
s
a
D
w
o
i
h
v
s
v

B
u

t
p
S
w
N
r
c
t
v
s
o

S
p
h
N
b
T
a
t
n
t
M

f rules that maps each data model to U-Schema determines the
-Schema elements involved, and therefore the valid structures.

. Structural variation representation A central notion of U-
chema is structural variation. Variations of entity and relation-
hip types can be represented. This information can be useful
n different tasks. For example, variations are used to identify
hether an entity type contains a type hierarchy (e.g. a Product
ierarchy) in [39]. Variations also allow to analyze the database
volution, or can be used to generate test datasets, among other
asks.

. Solution based on MDE specification As indicated in Section 2,
e have defined U-Schema with the Ecore metamodeling lan-
uage with the purpose of taking advantage of MDE technology
ntegrated in the EMF framework [21].

. Schema extraction In DB-Main, a different schema extractor
ad to be developed for each database system. In our case, a
ommon strategy have been defined which address the scalability
nd performance issues.
Model Management (MM) is an approach aimed to solve

data programmability problems which normally involve complex
mappings between data schemas of different sources [7,12]. A set
of operators between models are proposed, such as match, union,
erge, diff, or the modelgen operator that generates a schema

rom another. In [7], building a universal metamodel is considered
feasible way of developing tools to specify mappings, although

t does not seems the more adequate alternative because of the
arge complexity of the required metamodel.

Two universal metamodels for applying Model Management
re presented in [8] and [9]. Paolo Atzeni et al. [8] described a
niversal metamodel based on a three-level architecture similar
o those defined in the EMF framework and used in our work:
metamodeling language (Ecore) is used to define metamodels

U-Schema in our case), which, in turn, are used to create models
schemas in our case). In [8], a set of 13 meta-constructs were de-
ined to represent the concepts used in different data formalisms.
or example, Abstract is proposed to model autonomous concepts
uch as ER entities or OO classes, AbstractAttribute to model
eferences, and Generalization to model Abstract hierarchies. This
roposal overlooked the already existing MDE frameworks, in
articular EMF/Ecore. Instead, the authors started from scratch,
nd they even proposed a dictionary structure to store models as
nstances of the universal metamodel. Schemas are expressed by
ndicating, for each element, the construct at the level of the data
odel from which is instantiated, and for each of these constructs

ts meta-construct at the level of the universal metamodel. The
etamodel was accompanied by a basic tooling for textual and
raphical visualization.
The main differences between this universal metamodel and

-Schema are the following:

. A different purpose and meta-modeling architecture While
he universal metamodel of Atzeni et al. is aimed to instantiate
ata models, U-Schema is a unified metamodel able to represent
chemas of a variety of databases. Therefore, the metamodeling
rchitectures are different: Universal metamodel/Data Model/-
atabase Schemas vs. Ecore/U-Schema/Database Schemas. It is
orth noting that our approach does not prevent the definition
f metamodels for representing any existing data model that is
ntegrated in U-Schema. However, as indicated in Section 3.1, we
ave considered that creating these metamodels would not pro-
ide any benefit as intermediate representation, as the variation
chema to data model transformations would be very close to the
ariation schema to U-Schema transformation.

. Availability of tools for basic model operations While we

sed the EMF metamodeling architecture to create U-Schema,

19
Atzeni et al. had to implement their own metamodeling archi-
tecture from scratch, as well reporting and visualization tools.
Instead, EMF provide tools supporting model comparison (EMF
Compare)14 and model diff/merge operations (EMF Diff/Merge),15
as well as model-transformation languages to implement the
modelgen operator.

C. Relationship types and structural variations The expressiveness
of the Universal metamodel is covered by U-Schema elements. In
addition, U-Schema includes the notions of relationship types and
structural variations, which are convenient to represent schemas
of NoSQL stores.

GeRoMe is another generic metamodel proposed for Model
Management [9]. A role-based modeling is applied to define a
metamodel able to represent different data models. In mid-
nineties, role-based modeling approaches received attention in
the context of object-oriented programming to model the
multiple-classification and object collaborations [40]. However,
that interest has decreased over the years because languages
and tools do not support the notion of role. Extended ER, Rela-
tional, OWL-DL, XML Schema, and UML were analyzed in GeRoMe
with the aim to identify their similarities and differences. Then,
a set of roles was established, and the role-based metamodel
created. U-Schema clearly differs of GeRoMe in its purpose and
the kind of representation of the generic metamodel. Our unified
metamodel has been defined by applying object-oriented concep-
tual modeling, the technique commonly used currently to create
metamodels, and using a well-know metamodeling architecture.

As far as we know, neither of the three generic metamodels
here considered (GER, Atzeni et al. and GeRoMe) has evolved
to include elements specific of NoSQL stores. Therefore, none of
them has addressed the representation of structural variations or
relationship types. In the case of DB-Main, the tool can currently
be acquired from the Rever company16 as a tool to simplify data
engineering tasks.

More recently, several metamodels have been proposed to
represent NoSQL schemas. SOS is a metamodel designed to rep-
resent schemas of aggregate-based stores [13]. With this uniform
representation, a NoSQL schema consists of a set of collections
(Set metaclass), which can contain Structs and Attributes. An At-
ribute represents a key–value property, and a group of key–value
airs is modeled as a Struct. Struct and Set can be nested. Later,
OS evolved to the NoAM (NoSQL Abstract Model) metamodel,
hich was defined as part of a design method for aggregate-based
oSQL databases [41,42]. NoAM was designed as an intermediate
epresentation to transform aggregate objects of database appli-
ations into NoSQL data. A NoAM database is a set of collections
hat contains a set of blocks. A block contains a set of key–
alue pairs, and each block is uniquely identified. In [41], several
trategies are described to represent a collection of aggregate
bjects in form of a NoAM database.
NoAM and SOS were designed with a purpose different to U-

chema. SOS aims to achieve a uniform accessing, and NoAM is
art of a design method. Instead, U-Schema has been devised to
ave a uniform representation able to capture data models of
oSQL and relational data models, with the aim of facilitating the
uilding of database tools supporting several database systems.
herefore, U-Schema offers a higher level of abstraction than SOS
nd NoAM. These representations are closer to the physical level
han the logical. Thus, some key aspects for a logical schema are
eglected, such as the relationships between entities. In addition,
he existence of structural variations is not considered. Finally,
DE technology was not used in their definition.

14 https://www.eclipse.org/emf/compare/.
15 https://wiki.eclipse.org/EMF_DiffMerge.
16 https://www.dataengineers.eu/en/db-main/.

https://www.eclipse.org/emf/compare/
https://wiki.eclipse.org/EMF_DiffMerge
https://www.dataengineers.eu/en/db-main/

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

a
e
l
p
b
d
i
m
e
s
i
f
o
S
t
a
i
s
t
r
i
i
s
i

a
f
p
d
m
w
f
d
d
f
t
b
s
e
p
a
t
t
s
r
a
U
c
e
t
a

c
s
i
r
s
i
l
s
d
e

b
t
t
s
v

9

m
s
d
f
a

a
s
a
i

t
s
p

ERwin unified data modeler (ModelSet) is a project outlined in
n article in infoQ [10] whose purpose is very close to ours. How-
ver, to our knowledge, results of that project have not been pub-
ished yet. In [10], Allen Wang, responsible of the ERwin project,
ointed out on the importance of ‘‘using logical models describing
usiness requirements and de-normalizing schema to physical
ata models’’ in database design. A simple unified logical model
s shown to represent three kind of schemas: columnar, docu-
ent, and relational schema. The metamodel only includes four
lements. The three basic modeling constructs: Entity, Relation-
hips, Properties (of entities), and Tags are used to add additional
nformation to basic constructs. A physical model should be built
or each system. Query and data production patterns are defined
n the logical model for its transformation into physical model.
everal significant differences are found between U-Schema and
he ERwin metamodel: (i) U-Schema is not only able to represent
ggregate-based systems, but also graph stores; (ii) U-Schema
s more expressive, ModelSet only includes the three basic con-
tructs of modeling, but this is similar to our variation schemas
hat are input to the analysis process; (iii) Being U-Schema a
epresentation at higher level of abstraction, the definition and
mplementation of operations such as schema mapping, visual-
zation, or schema discovery are easier; (iv) U-Schema represents
tructural variations; (v) Instead of a proprietary tool, U-Schema
s part of a free data modeling tool.

The Typhon project17 is an European project aimed to cre-
te a methodology and tooling to design and develop solutions
or polystore database systems. As part of this project, the Ty-
honML [43] language has been built, which allows schemas to be
efined in a database system-independent way. Columnar, docu-
ent, key–value, graph, and relational schemas can be defined
ith TyphonML. Typhon schemas can also express mappings

rom schemas to the physical representation. Some remarkable
ifferences with U-Schema are: (i) TyphonML is not a language
efined on a unified metamodel, instead U-Schema is separated
rom any schema declaration language. In fact, we have created
he Athena language on U-Schema, and other languages could
e defined18; (ii) The existence of structural variation in NoSQL
ystems is not considered; (iii) As can be observed in [43], for
ach paradigm, the TyphonML metamodel includes logical and
hysical aspects; Instead, our choice is to separate both levels of
bstraction in two metamodels as pointed out in [19]; (iv) Al-
hough graph stores are represented, the concept of relationship
ype is not included in TyphonML; (v) Aggregates are not repre-
ented as a separate concept, but the same metaclass Reference
epresents both aggregates and references by using the boolean
ttribute isComposite to record the kind of relationship; Instead
-Schema represents aggregates and references with two meta-
lasses, which allows us to have a complete semantics. The logical
lements of TyphonML are limited to Entities that aggregate At-
ributes and References, while our unified metamodel has a wider
nd richer set of semantic concepts.
A 2-step model transformation chain aimed to transform con-

eptual models into physical schemas (Cassandra stores are con-
idered) is described in [44]. Logical models are generated in an
ntermediate step. Conceptual schemas and logical schemas are
epresented by means of very simple metamodels. A conceptual
chema is formed by a set of classes and datatypes, and classes
nclude attributes and relationships. A relational model is used as
ogical model, to which relationships are added. This proposal has
ome flaws such as (i) relationship types and references are not
istinguished, which is necessary for graph schemas, (ii) refer-
nces have not properties, and (iii) the separation between logical

17 https://www.typhon-project.org/.
18 https://catedrasaes-umu.github.io/NoSQLDataEngineering/tools.html.
 t

20
and conceptual model is not justified because they include the
same concepts but different names; this can be observed in the
very simple conceptual-to-logical transformation shown in the
paper.

Table 5 summarizes the discussion made above, and compares
the generics metamodels considered according to several criteria.

9.2. NoSQL schema extraction strategies

Recently, several approaches to extract schemas from NoSQL
document stores have been published [4,5,45]. A detailed study of
these works can be found in [46] where they were contrasted to
our previous approach for document stores [3]. Moreover, some
works on schema extraction from JSON datasets have also been
presented. In [45], a MapReduce is used to obtain a collection of
key–value pairs from an input JSON dataset. In each pair, the key
is a document specifying the structure or type of a JSON object
in the dataset, and the value records the number of elements of
the that type. In a second step, heuristics are applied to merge
similar types.

The main differences of the approach described here with pre-
vious extraction strategies are the following: (i) They are focused
on document stores. Instead, we have defined a general strategy
applicable to the four main NoSQL paradigms and the relational
model; (ii) Like [45], our approach use a MapReduce operation to
improve the efficiency of the inference process; (iii) Our inference
strategy discovers relationships between entities, and structural
variations of entities. (iv) The output of our inference process is a
model that conforms to an Ecore unified metamodel. In this way,
we can take advantage of benefits offered by MDE, which were
commented in Section 2.2.

An MDE-based reverse engineering approach for extracting
conceptual graph schemas is described in [20]. CREATE Cypher
statements are analyzed to obtain a graph model: a graph is
formed by nodes and edges, and nodes have incoming and out-
going edges. Then, a model-to-model transformation generates an
Extended Entity-Relation (EER) conceptual schema model, whose
elements are entities, relationships, attributes, and IS-A relation-
ships. Our inference process differs of this strategy in several
significant aspects, apart from being a generic strategy and use a
MapReduce to considerably improve the efficiency: (i) We access
stored data instead of using CREATE statements, which might not
e available. (ii) Instead of building a graph model, we create a
able with all relationships as input to the MapReduce operation;
his table allows us to obtain the cardinality of each relation-
hip. (iii) We obtain a logical schema that include structural
ariations for relationships and entities.

.3. Data modeling tools

With the emergence of NoSQL systems, multi-paradigm data
odeling commercial tools have proliferated. In our study of
ome of the most relevant of these tools, we have found no evi-
ence showing the use of a unified metamodel. Next, we contrast
eatures of these tools with those considered in our U-Schema
pproach.
These tools can be classified in two categories. A first category

re existing tools for relational databases which are incorporating
ome NoSQL systems. At this moment, these tools have only
dded support for document systems, being MongoDB the system
ntegrated in the most of them.

For example, ER/Studio [47] and ERwin [48] provide utilities
o extract and visualize schemas for MongoDB and CouchDB
ince 2015. They extract schemas as a set of entity types whose
roperties are the union of all fields discovered in objects of

hat entity, but variations and relationships are not addressed.

https://www.typhon-project.org/
https://catedrasaes-umu.github.io/NoSQLDataEngineering/tools.html

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

T
A

p
f
d
a
d
a
b
v
e
i
s
s

d
t
i
d
u
i
a

1

b

able 5
pproaches defining a generic metamodel.

DB-Main Universal
metamodel

GeRoMe SOS/NOAM ERwin unified data
modeler (ModelSet)

U-Schema

Aim Evolution tool Model management Model management Uniform access /
Database Design

Modeling tool Database engineering
toolkit

Supported
databases
paradigms

Relational, OO, ER
and early
databases

Any metadata
formalism and
database schema

Any metadata
formalism and
database schema

NoSQL databases Relational, document,
and columnar

Relational and NoSQL
(columnar, document,
graph, and key–value)

Unified metamodel GER based on ER Set of 13
meta-constructs to
cover all data
models

Set of 48 roles to
cover all data
models

Collection, struct or
block, and attribute
(very near to
physical model)

Entity, Property, and
Relationship

Set of concepts to
cover NoSQL and
relational schemas

Metamodeling
language

From scratch From scratch From scratch N/A From scratch Ecore (Eclipse
modeling framework,
EMF)

Levels of
metamodeling

GER metamodel
and restrictions to
define data model

SuperMetamodel/-
data model/schema
(own architecture)

Use of role-based
modeling

Abstract metamodel
/ Instances

Unified metamodel /
Models (schemas of
data models)

Ecore / U-Schema /
Models (schemas of a
data model)

Defining concrete
schemas

Selection of GER
elements and
definition of
constraints

Model elements are
annotated with
meta-construct to
which belong it

Model elements
play one of their
roles

Programmatically,
Java instances

Instances of the
metamodel
(proprietary solution)

Instances of the
metamodel (use of
mapping rules)

Schema Levels Conceptual, logical
and physical

Conceptual and
logical

Conceptual and
logical

Very simple uniform
representation

Conceptual and logical
(physical separated)

Logical (conceptual
and physical
separated)

Schemaless
supported

Not addressed Not addressed Not addressed Structural variations
are supported, but
not extracted or
represented

Not addressed Structural variations
are modeled

Output ER diagrams and
text

ER diagrams and
text

Own visualization N/A Unified ModelSet
notation

U-Schema models in
form of Neo4j graphs

Schema extraction A schema
extractor for each
system

Not addressed Not addressed N/A No details provided,
except the use of
machine leaning and
statistics are obtained

Common strategy of
2 steps: MapReduce
and U-Schema model
building process

Scalability and
performance

Not addressed Not addressed Not addressed N/A No details provided MapReduce operation
on NoSQL stores
Recently, ERwin Data Modeler provides an integrated view of
conceptual, logical and physical data models to help stakeholders
understand data structures and meaning.

The second group is formed by new tools developed with the
urpose of offering data modeling for polyglot persistence. As
ar as we know, Hackolade [49] is the only tool that integrates
atabase systems for the four most common NoSQL paradigms
s well as a wide number of relational systems and other leading
ata technologies. Recently, it has been announced the creation of
unified model named ‘‘Polyglot Data Model’’ but no details have
een published. Unlike U-Schema, Hackolade does not address
ariation and references in the NoSQL schema extraction. Entities
xtracted are represented as the union of all the fields discovered
n different variations of the entity. The collision of fields with the
ame name but different type is not considered but that modeler
hould make a decision.
DBSchema [50] is a tool similar to Hackolade: It allows the

eveloper to define schemas with a graphical layout, but also
o apply a reverse engineering process to an existing database
n order to extract the schema, as long as there is a JDBC Java
river for it. Queries can be created in an intuitive way or either
sing SQL. In this tool, variations are not considered at all, since
t applies a SQL approach to infer the schema, in which variations
re not taken into account.

0. Applications of the U-Schema metamodel

The usefulness of generic metamodels is well known, and has
een extensively discussed in the database literature for more
21
than 30 years. In this section, we shall show how U-Schema
metamodel can be used to define generic solutions that involve
SQL and NoSQL systems. We will first outline an approach to build
a generic query language. Next, we will describe a data migration
process and analyze how U-Schema facilitates such migrations.
Finally, it will be briefly commented the usefulness of U-Schema
to query schemas, generate synthetic data for testing purposes,
and visualize schemas in a data format-independent way.

10.1. A U-Schema -based generic query language

Given the widespread usage of different data models, develop-
ers and companies face the problem of managing several query
languages. Therefore, there exists a great interest in creating
a universal query language for the variety of data managed in
modern applications, and some proposals have recently appeared.
PartiQL [15,51] is a query language created in Amazon to achieve
independence of format and data store in accessing the vari-
ety of data stored in the company. The language is built on
a generic data model able of representing tabular, nested, and
semi-structured data. Also, a model-independent query language
is convenient in multi-model systems, as it is the case of Ori-
entDB [52]. Both languages are based on the SQL standard due
to its widespread adoption.

10.1.1. Main design issues
The U-Schema data model could be used to create a generic

language to manage NoSQL and relational stores. This language
would have specialized components to manipulate data and to

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

c
N
l

s
i

f
g
c
t
f
t
t

reate and evolve schemas. Here, we will focus on the data query.
ext, the main design issues that arise in the building of such a
anguage are dealt with.

• Data representation: Data returned as result of a query and
data inserted into a database must be represented in some
format. In a way similar to PartiQL, a JSON-based format
could be used to represent data. JSON should be extended to
represent specificities of U-Schema as collection types and
references.
• SQL extension: Because SQL is a very popular language, most

query languages for post-relational databases (e.g., object-
oriented, NoSQL, spatial) have been defined as extensions
of the SQL standard. In fact, generic languages such as Par-
tiQL and OrientDB have also been created as extensions of
SQL-92. In this section, query examples will be shown in
a SQL-like syntax, and the language defined for U-Schema
could also be a SQL extension similar to that defined in
OrientDB, which includes document, key–value, and graph
data models.
• Navigation through objects: Like most systems supporting

embedded objects, an aggregation hierarchy specified by U-
Schema could be navigated by using the dot notation. To
navigate through references, a different notation should be
defined to allow a more natural graph-based navigation.
Also, a way to access attributes of references should be
provided.
• Graph queries: An ISO project19 was recently launched with

the aim of integrating a graph query language (GQL) in the
SQL standard. Also, OrientDB extended SQL-92 with func-
tionality to query graphs. These extensions could be appro-
priate to design the manipulation of graphs on U-Schema.
Since U-Schema includes entity types and relationship types,
queries could be issued on both types (i.e., all the nodes that
are instances of a type).
• Issuing queries on variations: Since structural variations are

part of U-Schema models, it should be possible to issue
queries on one or more variations of an entity or relation-
ship type, instead of being issued on the union type as
it occurs by default. Variations could be either extension-
ally identified or assigned identifiers when the schema is
described.
• Describing, creating, and evolving schemas: A query language

is accompanied of a schema declaration language and a
schema operation language. Schemas could be explicitly
specified or either inferred from the database. Recently,
we published the results obtained in applying U-Schema
to define an approach for NoSQL schema evolution [53,
54]. As part of that work, we defined the Athena [54] and
Orion [53] languages to declare and evolve, respectively,
platform-independent schemas.20

The U-Schema query engine would be implemented with a
trategy similar to that applied for PartiQL [15,51], as illustrated
n Fig. 17.

Such an engine could work as follows. Queries could be issued
rom an interactive tool or either been specified as part of pro-
ramming code (e.g., Java or Kotlin) via a library. A parser would
reate the abstract syntax tree of the query, and a compiler would
raverse the AST to express the query in an abstract intermediate
ormat. In addition to the query, the schema must be an input
o the compiler. This schema could be explicitly defined or ei-
her inferred by applying the extractors presented in previous

19 https://www.gqlstandards.org/.
20 With ‘‘platform’’ we refer to data models and data stores.
22
sections. Once queries are compiled, an evaluator would issue
native queries on a concrete data store, which would work in two
steps: first, the abstract query would be converted into a specific
query for a data model, and then the native query for a particular
database is generated and issued. Finally, a component is in
charge of receiving the results returned by the database system
and transforming them in the expected output representation,
i.e. a JSON-like format, as indicated above.

10.1.2. The query language
Now, we will show some query examples to illustrate how

the design issues considered above could be addressed in a U-
Schema-based query language. The query examples will be writ-
ten for the schemas inferred from the databases instantiated for
the running example. A SQL-like syntax will be used to express
the queries. We will focus on how the particular abstractions of
our unified data model could be part of the queries.

Embedded objects and references: Navigation and serialization. In
the running example, Address and WatchedMovies objects are
embedded into User objects in the case of aggregate-based data
models. The query below could be written to return the email
and the list of watched movies of those users whose address has
‘‘Aylesbury’’ as their city. The variable u is used to more clearly
show the navigation using the dot notation.

SELECT u.email, u.watchedMovies
FROM User u
WHERE u.address.city = " Aylesbury "

Q1. Email and watched movies of users who live in ‘‘Aylesbury’’.

Regarding to the serialization of the result, it could be returned
an array of JSON-like documents with the two fields selected
of User. The value of watchedMovies would be an array with
embedded objects that have two fields according to the schema
inferred for the running example in Section 5.1: the number of
starts and a reference to the watched movie. The reference values
could have a special format so that references can be correctly
manipulated in the code that receives the result. This format
could be ‘‘$ref<entity type referenced>(value)’’, and the
query result would be serialized as:
{

email: " alison@gmail.com " ,
watchedMovies: [

{stars:3, movie_id: $ref<Movie>(202)},
{stars:5, movie_id: $ref<Movie>(295)}

]
}

Note that User could denote a document collection, a keyspace,
or a columnar table. But this query should be statically incorrect
for the graph and relational schemas defined for the running
example. This is also true for the queries Q2 and Q3 presented
below.

The following query shows how collections could be filtered
by applying conditions on their elements. The query returns the
name and email of those users that marked a movie with 5 stars
once at least.

SELECT DISTINCT email, name
FROM User
WHERE EXISTS(watchedMovies[stars = 5])

Q2. Name and email of users who marked a movie with 5 stars.

Navigation through references could be expressed as illus-
trated in the query Q3, which returns name and email of those
users that watched the movie titled ‘‘The Matrix’’. The ‘‘*’’ deref-
erencing operator is used to access the object that a reference
points to. In the query, (*movie_id).title denotes the title
field of the Movie object referenced from the movie_id field of

a WatchedMovie object aggregated to an User object.

https://www.gqlstandards.org/

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

Q

Q
U
c
r
s
o
i
a
o
o
t
a

Fig. 17. Overview of a generic query architecture based on U-Schema.
SELECT DISTINCT email, name
FROM User
WHERE EXISTS(watchedMovies[(*movie_id).title =

" The Matrix "])

3. Name and email of users who watched a titled ‘‘The Matrix’’.

ueries on graphs: Navigation and serialization. To query
-Schema models that come from graph stores, it should be
onsidered that they include entity and relationship types, and
eferences can have attributes as they are instances of relation-
hip types. Therefore, the language should distinguish three kinds
f accesses: (i) Given a node, the access to its outgoing and
ncoming relationships; (ii) Given a reference, the access to its
ttributes; (iii) Given a reference, the access to the referenced
bject. The following query examples will illustrate each kind
f access. Recall that User nodes are connected to Movie nodes
hrough WATCHED_MOVIES and FAVORITE_MOVIES relationships,
nd also User nodes are connected to Address nodes through

ADDRESS relationships, as indicated in Section 4.1.
The query Q4 would obtain those users that watched the

movie titled ‘‘The Matrix’’ (title is an attribute of theMovie entity
type) and marked somemovie with zero stars (stars is an attribute
of the WATCHED_MOVIES relationship type). The ‘‘->’’ symbol is
used to navigate to the destination of a reference (a Movie in
this case), and we use the dot operator to access the reference
itself, and its stars attribute. Other operators could be defined
to navigate the graph, such as the ‘‘out()’’ operator defined in
OrientDB.

SELECT *
FROM User u
WHERE EXISTS (u->WATCHED_MOVIES[title = " The

Matrix "]) AND
EXISTS (u.WATCHED_MOVIES[stars = 0])

Q4. Users who have watched the movie ‘‘The Matrix’’ and
marked a movie with zero stars.

With regards to the serialization of references in graphs, they
may contain attributes, and belong to a specific variation of a
relationship type. This information is added to the ‘‘$ref’’ type
shown above for non-graph references. Additionally, they can
include special keys for specifying the source and target ele-
ments of the reference. The query below is similar to Q1, but
returns WATCHED_MOVIES references instead of WatchedMovies
aggregated objects.

SELECT u.name, u.WATCHED_MOVIES
FROM User u
WHERE u->ADDRESS.city = " Aylesbury "

Q5. Name and watched movies of users who live in ‘‘Aylesbury’’.
23
Note that we use the dot notation to return the reference
itself instead of the referenced Movie object. According the format
commented above, the query could return a set of JSON-like
documents like the following:

{
name: " Allison " ,
WATCHED_MOVIES: [
$ref<Movie,WATCHED_MOVIES~1>({stars:3, $target: 202}),
$ref<Movie,WATCHED_MOVIES~1>({stars:5, $target: 295})

]
}

In this case, ‘‘WATCHED_MOVIES˜n’’ refers to the given varia-
tion that describes the set of attributes of each variation. In this
case, the one that has the stars attribute. The special ‘‘$target’’
attribute holds the actual reference.

Queries on graph schemas could be issued on relationships
and/or return relationships, as the query below illustrates. This
query traverses all the relationships of type WATCHED_MOVIES
and returns the name of those users who marked a movie with
zero stars once at least. The target() operator (equivalent to
‘‘*’’) and the source() operator would allow the target and
source nodes of a given reference to be obtained.

SELECT DISTINCT source(w).name
FROM WATCHED_MOVIES w
WHERE w.stars = 0

Q6. User names who marked a movie with 0 stars.

Queries and variations. When the schema is defined, each of the
variations can have their own identifiers. We used
WATCHED_MOVIES˜1 above. It would be convenient to define
a notation intended to specify intensionally variations instead
of using numeric identifiers. For example, the following query
would only be applied on User variations not having the favorite-
Movies attribute.

SELECT *
FROM User - {favoriteMovies} u
WHERE u.address.city = " Aylesbury "

Q7. Users who have no favorite movies and live in ‘‘Aylesbury’’.

The query uses an structure-based expression similar to that
defined in the Deimos language [18] to specify the elements of
User that do not have the given attribute.

Finally, other operations related to the management of vari-
ations themselves, for example, homogenizing all the variations
of a given entity type into just one, are not shown, but are
described in the operations defined in the Orion schema evolution

language [53].

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

1

g
m
m

0.2. Database migrations

Database migration is a typical task in which a unified or
eneric representation provides a great advantage. Given a set of
database systems, the total number of migrators required is
+ m instead of m × (m − 1). Here we will describe how U-

Schema models can be used to help migrate databases when the
source and target systems are different.

To perform a migration, the source and destination databases
have to be specified, as well the mapping rules that determine
how source data are moved to the destination database. A migra-
tion tool usually has to read all the data in the original database,
perform some processing, and write the resulting data in the
destination database. These steps can be carried out in different
ways, that can be simplified by using U-Schema models, as they
contain all the information of entities, attributes, and relation-
ships. Therefore, the U-Schema model has to be obtained prior
to the aforementioned steps.

There are several options when reading the original data. A
set of queries could be constructed to extract the data guided
by its structure (i.e., its schema). The inferred U-Schema model
from the source database can be used to automatically gener-
ate those queries. The queries can produce a set of interchange
format files (e.g. JSON or CSV) or can act as a source feed for a
streaming process. Likewise, U-Schema models could automate
the data ingestion procedure using bulk insertion utilities from
files, generated insert queries, or even help to build the ingestion
as the last stage of a streaming process.

The next step is to specify and execute the mapping rules
between source and destination elements. The mapping rules
introduced in Sections 4 to 8 should be adapted to the specificities
of the migration. For example, an alternate mapping could be de-
vised for characteristics not present in the destination data model,
as was the case we showed with aggregates in a graph data model
in Section 4.3. The migration rules could be hardcoded, or either
specified with a ad-hoc language. This language would be defined
taking into account the abstractions of U-Schema. The migration
rules would include the U-Schema source element, the target
data model element, and the mappings between the parts that
constitute the source and target elements, similarly to how we
expressed the canonical mappings before.

10.3. Definition of a generic schema query language

Schema query languages help developers to inspect and un-
derstand large and complex schemas. In the case of relational
systems, SQL is used to query schemas represented in form of ta-
bles in the data dictionary. In NoSQL stores, a similar query facility
is provided by some systems that require to declare schemas, for
example Cassandra [34] and OrientDB [55]. In the case of schema-
less NoSQL systems, the number of variations can be very large
in some domains, for example 21,302 variations for the Company
entity type of DBPedia are reported by Wang et al. [5]. Using U-
Schema, a generic query language could be defined which would
allow querying relationships and structural variations for any
kind of NoSQL store, unlike existing solutions. As far we know,
querying variations has been only addressed in the mentioned
work of Wang et al. [5], which focused on MongoDB, and only
suggested a couple of queries to illustrate the idea. A first version
of our language can be downloaded.21

The U-Schema query language allows to query the schema
of any type of database system under a unique language, and
even make it possible in scenarios where the data is stored

21 https://github.com/catedrasaes-umu/NoSQLDataEngineering.
24
in different database systems (polyglot persistence). Some ex-
amples of the most common queries that a developer might
need are: (i) get an overview of the entities and the relation-
ships between them, (ii) search variations with a set of proper-
ties, (iii) check all shared properties of all variations of a specific
entity. The results of the queries could be displayed as text or
a graphic representation in the form of tables, graphs or trees
(hierarchical data).

10.4. Generation of datasets for testing purposes

Automatic database generation is a point of interest in de-
signing, validating, and testing of research database tools and
deployments of data intensive applications. Often, researchers in
the data-engineering field lack of real-world databases with the
required characteristics, or they cannot access them.

Some works have addressed the generation of synthetic data
on relational systems, and some restriction languages have been
proposed to this purpose [56,57]. With U-Schema, a database
paradigm-independent restriction language could be defined to
tailor the generation of data. In this way, a given specification
could be used to generate data for different databases. Note that
the language constructs would be at the level of abstraction of
U-Schema, and not aligned to elements of any concrete paradigm.

This is of special importance in the case of distributed systems,
as most NoSQL deployments are. In this context, a cost model
to evaluate query efficiency is very difficult to build, given all
the variables involved [58]. Generating different sets of data with
different characteristics can help fine-tuning application intended
queries. For example, just changing the relationships between
the entities of a schema (for example, changing references into
aggregations or vice versa), new data that follows this change
could be generated to test the queries, helping the developers to
find opportunities for optimization.

Finally, another advantage of our approach around U-Schema
is that in the case of existing databases, their schema can be
inferred into a model, and then used to generate data that can
be for the same or different databases, matching the schema or
even introducing changes, either for performance tuning or for
testing purposes.

We developed an initial version of a U-Schema-based data
generation language with the described characteristics [18].

10.5. U-Schema Schema visualization

When schemas are extracted they must be expressed in a
graphical, textual, or tabular format to be shown to stakehold-
ers. Normally, they are shown as a diagram (e.g., ER or UML).
In a previous work, we explored the visualization of document
schemas and proposed several kinds of diagrams for document
systems [16]. Now, it is possible to take advantage of U-Schema to
define common diagrams for logical schemas taking into account
the existence of variations if needed. Moreover, U-Schema could
be mapped to other formats with the purpose of visualizing
schemas in existing tools.

11. Conclusions and future work

Multi-platform database engineering tools commonly define
a unified metamodel to represent database schemas of a va-
riety of systems. In this paper, we have presented a proposal
of unified metamodel that integrates data models for relational
and NoSQL systems (key–value, document, wide column, and
graph). These systems cover most of current database applica-
tions. Our work is motivated by the growing interest in multi-
model database tooling and systems as polyglot persistence is

https://github.com/catedrasaes-umu/NoSQLDataEngineering

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898

c
U
i
a

N
a
f
S
U
m
f
t
C
r
a
s
a
b

t
w
r
a
v
s
L
s
s
d
p
a
e
l
a
s
a
b
a
Q
g
d
s
t
e
m
l
o
r

D

c
t

R

onsidered essential to satisfy needs of modern applications. With
-Schema, we have defined a representation able to express
nferred or declared schemas at a similar abstraction level to EER
nd Object-Orientation logical models.
U-Schema is the first logical unified metamodel defined for

oSQL and relational systems taking into account structural vari-
tion, relationship types, aggregations, and references. Through
orward and reverse mappings, we have formally shown how U-
chema is able to represent each considered data model, and how
-Schema models can be converted to schemas of the individual
odels. We would like to remark that the extraction of schemas

rom databases (forward mappings) have been implemented for
he most widely used NoSQL systems (Neo4j, MongoDB, Redis,
assandra, and HBase), as well as for one of the most used
elational systems (MySQL). For each extraction algorithm, scal-
bility and performance were assessed. Having used the de facto
tandard Ecore to represent the schemas turns the framework in
reusable and adaptable tool, and Eclipse modeling tooling can
e used to build database tooling.
Future work can be divided in two lines, depending on whether

hey have to do with the unified metamodeling approach, or
ith applications based on U-Schema. We approached the unified
epresentation of schemas by separating logical and physical
spects. The metamodel presented here concerns to the logical
iew, and a new metamodel will represent the unified physical
chemas. Thus, we will have U-Schema-Physical and U-Schema-
ogical, where physical schemas will be extracted from data
tores, and logical schemas could be directly obtained either from
tores or from physical schemas, as described in [19]. Physical
ata models for each system will include data structures at
hysical abstraction level, indexes, physical data distribution,
mong others. Regarding improvements of U-Schema, we will
xtend the metamodel to represent constraints to support new
ogical validation characteristics in some NoSQL databases, such
s the MongoDB Schema Validation. Finally, it is planned to build
everal tools and languages around U-Schema: (i) The migration
pproach outlined in Section 10.2, which will include a U-Schema
ased schema mapping language to express specialized mappings
s described in Section 2.4; (ii) Complete the generic Schema
uery Language introduced in Section 10.3; (iii) Define some dia-
ramming tools from the results in [16]; (iv) A universal schema
efinition language, that, by using U-Schema, allows to define
chemas homogeneously through NoSQL and relational datas-
ores; (v) Support an approach of platform-independent schema
volution through the definition of a change taxonomy imple-
ented by a schema change operation language; and (vi) This

anguage could be used to explore the impact of schema changes
n the set of queries of an application, following automated
einforcement learning techniques.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] M. Stonebraker, The case for polystores, ACM Sigmod Blog (2015) URL
https://wp.sigmod.org/?p=1629.

[2] P. Sadalage, M. Fowler, NoSQL Distilled. A Brief Guide To the Emerging
World of Polyglot Persistence, Addison-Wesley, 2012.

[3] D. Sevilla Ruiz, S. Feliciano Morales, J. García Molina, Inferring versioned
schemas from NoSQL databases and its applications, in: 34th International
Conference on Conceptual Modeling (ER), Stockholm, Sweden, 2015, pp.
467–480.

[4] M. Klettke, U. Störl, S. Scherzinger, Schema extraction and structural outlier
detection for JSON-based NoSQL data stores, in: Conference on Database

Systems for Business, Technology, and Web (BTW), 2015, pp. 425–444.

25
[5] L. Wang, O. Hassanzadeh, S. Zhang, J. Shi, L. Jiao, J. Zou, C. Wang,
Schema management for document stores, Proc. VLDB Endow. 8 (9) (2015)
922–933, http://dx.doi.org/10.14778/2777598.2777601.

[6] V. Englebert, J.-L. Hainaut, DB-Main: A next generation meta-case, Inf. Syst.
24 (2) (1999) 99–112.

[7] P.A. Bernstein, S. Melnik, Model management 2.0: manipulating richer
mappings, in: Proceedings of the ACM SIGMOD Int. Conference on
Management of Data, 2007, pp. 1–12.

[8] P. Atzeni, G. Gianforme, P. Cappellari, A universal metamodel and its
dictionary, Trans. Large Scale Data Knowl. Centered Syst. 1 (2009) 38–62.

[9] D. Kensche, C. Quix, M.A. Chatti, M. Jarke, Gerome: A generic role based
metamodel for model management, J. Data Semantics 8 (2007) 82–117.

[10] A. Wang, Unified data modeling for relational and NoSQL databases,
Infoq (2016) URL https://www.infoq.com/articles/unified-data-modeling-
for-relational-and-nosql-databases/.

[11] J.-M. Hick, J.-L. Hainaut, Strategy for database application evolution: The
DB-MAIN approach, in: International Conference on Conceptual Modeling,
Springer, 2003, pp. 291–306.

[12] P.A. Bernstein, A.Y. Halevy, R. Pottinger, A vision of management of
complex models, SIGMOD Rec. 29 (4) (2000) 55–63.

[13] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to non-relational database
systems: The SOS platform, in: 24th International Conference on Ad-
vanced Information Systems Engineering (CAiSE), Gdansk, Poland, 2012,
pp. 160–174.

[14] R. Cattell, D.K. Barry, The Object Data Standard: ODMG 3.0, Morgan
Kaufmann, 2000.

[15] PartiQL specification, 2021, URL https://partiql.org/assets/PartiQL-
Specification.pdf (Accessed September 2021).

[16] A. Hernández Chillón, S. Feliciano Morales, D. Sevilla Ruiz, J. García Molina,
Exploring the visualization of schemas for aggregate-oriented NoSQL
databases, in: ER Forum 2017, 36th Int. Conf. on Conceptual Modeling
(ER), Valencia, Spain, 2017, pp. 72–85.

[17] A. Hernández Chillón, D. Sevilla Ruiz, J. García Molina, S. Feliciano Morales,
A model-driven approach to generate schemas for object-document
mappers, IEEE Access 7 (2019) 59126–59142.

[18] A. Hernández Chillon, D. Sevilla Ruiz, J. Garcia-Molina, Deimos: A model-
based NoSQL data generation language, in: CoMoNoS Workshop in
Conceptual Modeling Int. Conf., 2020.

[19] P.M. noz, C.J. Fernández, J. Garcia-Molina, D. Sevilla Ruiz, Extracting
physical and logical schemas for document stores, in: CoMoNoS Workshop
in Conceptual Modeling Int. Conf., 2020.

[20] I. Comyn-Wattiau, J. Akoka, Model driven reverse engineering of NoSQL
property graph databases: The case of Neo4j, in: 2017 IEEE International
Conference on Big Data, 2017, Boston, MA, USA, December 11-14, 2017,
2017, pp. 453–458.

[21] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling
Framework 2.0, Addison-Wesley Professional, 2009.

[22] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in
Practice, Morgan & Claypool Publishers, 2012.

[23] P.P. shan Chen, The entity-relationship model: Toward a unified view of
data, ACM Trans. Database Syst. 1 (1976) 9–36.

[24] J.E. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley-Longman, 1999.

[25] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, D. VrgoÄ, Foundations
of modern query languages for graph databases, ACM Comput. Surv. 50 (5)
(2017).

[26] J. Hainaut, The transformational approach to database engineering, in:
Generative and Transformational Techniques in Software Engineering,
International Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005.
Revised Papers, 2005, pp. 95–143, http://dx.doi.org/10.1007/11877028_4.

[27] F.J. Bermudez, J.G. Molina, O. Díaz, On the application of model-driven
engineering in data reengineering, Inf. Syst. 72 (2017) 136–160.

[28] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley Professional, 1994.

[29] Apache spark webpage, 2021, URL https://spark.apache.org/ (Accessed
March 2021).

[30] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations To
Semistructured Data and XML, Morgan Kaufmann, 1999.

[31] P. Buneman, Semistructured data, in: Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, ACM, Arizona, USA,
1997, pp. 117–121.

[32] S. Gössner, JSONPath – XPath for JSON, 2020, URL https://tools.ietf.org/id/
draft-goessner-dispatch-jsonpath-00.html.

[33] Hbase webpage, 2007, URL https://hbase.apache.org/ (Accessed September
2020).

[34] Cassandra webpage, 2016, URL http://cassandra.apache.org/ (Accessed
September 2020).

[35] E. Codd, A relational model of data for large shared data banks, Commun.
ACM 13 (6) (1970) 377–387, http://dx.doi.org/10.1145/362384.362685.

[36] D.C. Tsichritzis, F.H. Lochovsky, Data Models, Prentice Hall Professional
Technical Reference, 1982.

https://wp.sigmod.org/?p=1629
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb2
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb2
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb2
http://dx.doi.org/10.14778/2777598.2777601
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb6
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb6
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb6
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb8
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb8
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb8
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb9
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb9
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb9
https://www.infoq.com/articles/unified-data-modeling-for-relational-and-nosql-databases/
https://www.infoq.com/articles/unified-data-modeling-for-relational-and-nosql-databases/
https://www.infoq.com/articles/unified-data-modeling-for-relational-and-nosql-databases/
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb11
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb11
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb11
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb11
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb11
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb12
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb12
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb12
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb14
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb14
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb14
https://partiql.org/assets/PartiQL-Specification.pdf
https://partiql.org/assets/PartiQL-Specification.pdf
https://partiql.org/assets/PartiQL-Specification.pdf
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb17
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb17
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb17
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb17
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb17
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb21
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb21
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb21
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb22
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb22
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb22
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb23
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb23
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb23
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb24
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb24
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb24
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb25
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb25
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb25
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb25
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb25
http://dx.doi.org/10.1007/11877028_4
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb27
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb27
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb27
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb28
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb28
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb28
https://spark.apache.org/
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb30
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb30
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb30
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb31
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb31
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb31
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb31
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb31
https://tools.ietf.org/id/draft-goessner-dispatch-jsonpath-00.html
https://tools.ietf.org/id/draft-goessner-dispatch-jsonpath-00.html
https://tools.ietf.org/id/draft-goessner-dispatch-jsonpath-00.html
https://hbase.apache.org/
http://cassandra.apache.org/
http://dx.doi.org/10.1145/362384.362685
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb36
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb36
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb36

C.J.F. Candel, D. Sevilla Ruiz and J.J. García-Molina Information Systems 104 (2022) 101898
[37] R. Elmasri, S.B. Navathe, Fundamentals of Database Systems, seventh ed.,
Pearson, 2015.

[38] J. Hainaut, V. Englebert, J. Henrard, J. Hick, D. Roland, Database evolution:
the DB-main approach, in: P. Loucopoulos (Ed.), Entity-Relationship Ap-
proach - ER’94, Business Modelling and Re-Engineering, 13th International
Conference on the Entity-Relationship Approach, Manchester, UK, Decem-
ber 13-16, 1994, Proceedings, in: Lecture Notes in Computer Science, vol.
881, Springer, 1994, pp. 112–131.

[39] A. Hernández Chillon, J.R. Hoyos, D. Sevilla Ruiz, J. Garcia-Molina, Discover-
ing entity inheritance relationships in document stores, Knowl.-Based Syst.
230 (2021) 107394, http://dx.doi.org/10.1016/j.knosys.2021.107394.

[40] T. Reenskaug, P. Wold, O.A. Lehne, Working with Objects - The OOram
Software Engineering Method, Manning, 1996.

[41] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to NoSQL systems, Inf. Syst.
43 (2014) 117–133, URL http://www.sciencedirect.com/science/article/pii/
S0306437913000719.

[42] P. Atzeni, F. Bugiotti, L. Cabibbo, R. Torlone, Data modeling in the NoSQL
world, Comput. Stand. Interfaces 67 (2020).

[43] T. Project, Hybrid Polystore Modelling Language (Final Version), Technical
Report, University of L’Aquila, 2018, URL https://4d97e142-6f1b-4bbd-9bb
b-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f
2298.pdf.

[44] F. Abdelhédi, A.A. Brahim, F. Atigui, G. Zurfluh, Logical unified modeling
for NoSQL databases, in: ICEIS (1), SciTePress, 2017, pp. 249–256.

[45] D. Colazzo, G. Ghelli, C. Sartiani, Typing massive JSON datasets, in: Inter-
national Workshop on Cross-Model Language Design and Implementation,
vol. 541, 2012, pp. 12–15.
26
[46] S. Feliciano., Inferring NoSQL data schemas with model-driven engineering
techniques, (Ph.D. thesis), Faculty of Informatics. University of Murcia,
Spain, 2017.

[47] ER-Studio webpage, 2015, URL https://www.idera.com/er-studio-enterpris
e-data-modeling-and-architecture-tools(Accessed February 2021).

[48] ERwin data modeler webpage, 2016, URL http://erwin.com/products/
erwin-data-modeler (Accessed February 2021).

[49] Hackolade webpage, 2016, URL https://hackolade.com/ (Accessed Septem-
ber 2020).

[50] Dbschema webpage, 2016, URL http://www.dbschema.com (Accessed
October 2018).

[51] Announcing PartiQL: One query language for all your data, 2021, URL
https://aws.amazon.com/es/blogs/opensource/announcing-partiql-one-
query-language-for-all-your-data/ (Accessed September 2021).

[52] OrientDB SQL reference, 2021, URL http://orientdb.com/docs/3.1.x/sql/
(Accessed September 2021).

[53] A. Hernández Chillón, D. Sevilla Ruiz, J. García Molina, Towards a taxonomy
of schema changes for NoSQL databases: The orion language, in: ER 2021,
40th Int. Conf. on Conceptual Modeling (ER), St. John’s, NL, Canada, 2021.

[54] A. Hernández Chillon, D. Sevilla Ruiz, J. Garcia-Molina, Athena: A database-
independent schema definition language, in: CoMoNoS 2nd Workshop in
Conceptual Modeling Int. Conf., 2021.

[55] OrientDB community webpage, 2020, URL http://orientdb.com/orientdb/
(Accessed September 2020).

[56] N. Bruno, S. Chaudhuri, Flexible database generators, in: 31st International
Conference on VLDB, 2005, pp. 1097–1107.

[57] Y. Smaragdakis, et al., Scalable satisfiability checking and test data
generation from modeling diagrams, Auto. Softw. Eng. 16 (1) (2009) 73.

[58] M.J. Mior, K. Salem, A. Aboulnaga, R. Liu, Nose: Schema design for NoSQL
applications, IEEE Trans. Knowl. Data Eng. 29 (10) (2017) 2275–2289.

http://refhub.elsevier.com/S0306-4379(21)00114-9/sb37
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb37
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb37
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb38
http://dx.doi.org/10.1016/j.knosys.2021.107394
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb40
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb40
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb40
http://www.sciencedirect.com/science/article/pii/S0306437913000719
http://www.sciencedirect.com/science/article/pii/S0306437913000719
http://www.sciencedirect.com/science/article/pii/S0306437913000719
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb42
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb42
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb42
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
https://4d97e142-6f1b-4bbd-9bbb-577958797a89.filesusr.com/ugd/d3bb5c_3394b40f9cb54bcbb873f2c4ea1f2298.pdf
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb44
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb44
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb44
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb46
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb46
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb46
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb46
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb46
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
http://erwin.com/products/erwin-data-modeler
http://erwin.com/products/erwin-data-modeler
http://erwin.com/products/erwin-data-modeler
https://hackolade.com/
http://www.dbschema.com
https://aws.amazon.com/es/blogs/opensource/announcing-partiql-one-query-language-for-all-your-data/
https://aws.amazon.com/es/blogs/opensource/announcing-partiql-one-query-language-for-all-your-data/
https://aws.amazon.com/es/blogs/opensource/announcing-partiql-one-query-language-for-all-your-data/
http://orientdb.com/docs/3.1.x/sql/
http://orientdb.com/orientdb/
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb57
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb57
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb57
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb58
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb58
http://refhub.elsevier.com/S0306-4379(21)00114-9/sb58

	A unified metamodel for NoSQL and relational databases
	Introduction
	The U-Schema unified data model
	Logical modeling concepts in U-Schema
	The U-Schema metamodel
	U-Schema flavors: Full variability vs. union schema
	Mappings between U-Schema and the logical data models

	A common strategy for the implementation and validation of the extraction of U-Schema models
	Building U-Schema models
	The ``User Profiles'' running example
	Validation of the schema building process

	Representing graph databases as U-Schema models
	A data model for graph databases
	Canonical mapping between graph model and U-Schema
	Reverse mapping completeness
	Implementation and validation of the forward mapping for Neo4j

	Representing document databasesmas U-Schema models
	A data model for document databases
	Canonical mapping between document model and U-Schema
	Reverse mapping completeness
	Implementation and validation of the forward mapping for MongoDB

	Representing key–value databases as U-Schema models
	A data model for key–value databases
	Canonical mapping between key–value model and U-Schema
	Reverse mapping completeness
	Implementation and validation of the forward mapping for Redis

	Representing columnar databases as U-Schema models
	A data model for columnar databases
	Canonical mapping between columnar databases and U-Schema Models
	Reverse mapping completeness
	Implementation and validation of the forward mapping for HBase and Cassandra

	Representing relational databases as U-Schema models
	The relational data model
	Canonical mapping between relational model and U-Schema models
	Reverse mapping completeness
	Implementing and validating the relational schema extraction process

	Related work
	Generic metamodels
	NoSQL schema extraction strategies
	Data modeling tools

	Applications of the U-Schema metamodel
	A U-Schema -based generic query language
	Main design issues
	The query language

	Database migrations
	Definition of a generic schema query language
	Generation of datasets for testing purposes
	U-Schema Schema visualization

	Conclusions and future work
	Declaration of competing interest
	References

