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A B S T R A C T

In recent years, new data characteristics led to the development of new database management
systems named NoSQL. As opposed to the mature Relational databases, design methods for
the new databases receive little attention and mainly consider the data-related requirements.
In this paper, we present methods for designing two types of NoSQL databases – Document
and Graph databases – that consider not only the data-related but also functional-related
requirements. We empirically evaluate the methods and apply the design methods to two
leading database systems. We found that the databases designed with the consideration of
functional requirements perform better, with respect to time of execution and database I/O
operations, compared to when designed without considering them.

1. Introduction

The new digital era is characterized by multiple types of databases, including the ‘‘traditional’’ Relational model and the relatively
ew NoSQL databases, which comprise four subtypes: Document, Column-based, Key–value, and Graph databases. The proliferation
f the new database systems required the creation of new database design methods, as reviewed by Roy-Hubara and Sturm [1]. While
uch methods continue to emerge, we noticed that they consider mainly data-related requirements of the applications (i.e., the data
ypes, their attributes, and the various types of relationships among them), but they usually neglect the functional requirements
i.e., what the users want to do with the data). Moreover, many existing design methods are in their incubation phase, are not
idely adopted, and the evaluations of their efficiency and usage are limited.

In this paper, we propose design methods for two types of NoSQL databases: Graph databases and Document databases. These
wo types have gained remarkable growth in their usage1 and enable the representation of complex data. Graph databases enable
he capabilities of graph theories, allowing more complex queries than the traditional Relational model, mainly since they consider
elationships as first-class citizens. Document databases are very popular and widely used (e.g., MongoDB is the most non-Relational
atabase used today 1).

Nowadays, only a few design methods exist for Graph databases, e.g., [2,3]. In an earlier study, we presented a design method for
raph databases called GDBS [4]. However, the method is solely based on the data-related requirements of the application, which
ay result in a sub-optimal Graph database schema from the performance point of view. As Graph databases utilize the powers of

raph theory in structure and querying, the consideration of query-related requirements when designing such databases may affect
oth the performance (i.e., execution time) of the sought Graph databases and the complexity of queries posed to the database.

Methods for the design of Document databases also exist, e.g., [5,6]. While they provide important information and insights
n the design process, they are not comprehensive and extensive. To create a more comprehensive design method, some of these
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insights should be utilized and extended with all the possible data requirements and functional requirements as well, as the latter
may affect both the performance and complexity.

As mentioned, most of the limitations of existing NoSQL database design methods lie in the fact that they mainly refer to data-
related requirements, which we claim are insufficient for designing such databases. For example, Huang & Dong [7] conducted
several experiments and comparisons with the Graph database system Neo4j. They concluded that it takes more time to execute
a more complex query when the number of nodes is large. Thus, it can be deduced that queries and the way they are expressed
indeed matter.

In this work, we place the users’ requirements of the sought system at the center of the database design process by considering
not only the data-related requirements but also the functional-related requirements, which are rarely used in design methods
nowadays. In the proposed design methods, the data-related requirements are specified via a class diagram, and the functional-
related requirements are specified via queries. With these considerations in mind, we propose two sets of rules for transforming the
users’ requirements into Graph and Document data logical models. For Graph data models, the rules extend the GDBS method [4]; for
Document databases, the method creates a logical data model that considers the different possible ways to implement relationships.
We demonstrate how the specification of the requirements can be used by the two methods, and thus, these can be generalized for
addressing the design of other database models.

The contribution of this work is as follows:

• We set a common ground for requirements-based database design, regardless of the database type, for future methods. In
addition to data-related requirements, we also refer to functional requirements.

• We formulate the design method of a Graph database as a set of rules.
• We formulate the design consideration of a Document database as a set of rules.
• We empirically evaluate the benefits of applying the sets of rules to the performance of the two databases.

The rest of this paper is structured as follows: Section 2 reviews existing methods for designing the two NoSQL databases and
analyzes their capabilities. Section 3 presents an example of a certain application that will be used throughout the rest of the paper.
Sections 4 and 5 introduce and evaluate the design methods for Graph databases and Document databases, respectively. Section 6
discusses threats to validity of the evaluations. Finally, Section 7 concludes and sets plans for future research.

2. NoSQL database design – state-of-the-art

As the domain of designing NoSQL databases is in its incubation phase, the methods of designing NoSQL databases still rely
mainly on best practices and practitioners’ experience. However, some studies propose design methods for specific NoSQL databases,
and a few propose inclusive design methods for several sub-types of NoSQL databases. Such inclusive methods include the work of
Abdelhed et al. [2]. Their work is based on Model Driven Architecture (MDA) which transforms a conceptual model in the form
of a UML class diagram into a NoSQL physical model, which is either Column, Document, or Graph. Their method requires the
user to decide between several transformation options throughout the process but does not state how to choose or which option is
best under what circumstances. They automated their approach for three databases: MongoDB, Cassandra, and Neo4J. Any other
databases will require changes to the automation parameters. The method does not address the functional requirements.

In this work, we are interested in the considerations of specific design rather than general transformation; thus in the following
sections, we elaborate on graph and document database design methods, respectively.

2.1. Design methods of graph databases

In this section, we review existing design methods for Graph databases. We analyze their capabilities, considering (when
applicable) the following criteria: the purpose of the method, its input (i.e., the data and functional requirements), and the evaluation
of the method.

The earliest method for designing Graph databases was proposed by Bordoloi and Kalita [8]. It focuses on transforming a
Relational database into a Graph database. The method uses a mathematical model to create a Domain-Relationship Diagram (a
form of ERD) and creates a graph (but not an explicit model) consisting of the instances from the source Relational database. Thus,
no schema or constraints are generated or enforced.

De Virgilio et al. [3] proposed a modeling method based on ERD. In their method, an ERD is transformed into an Oriented ER
(O-ER) diagram, which is a directed, labeled, and weighted graph. On top of the O-ER diagram, partitioning is performed based on a
set of rules, which split the O-ER into several parts. Finally, based on the partitioned O-ER diagram, a template for a graph database
is generated, in which each partition is mapped into a node. The template is kind of a schema for a Graph database. The method was
evaluated based on a comparison to the Sparse strategy, in which each property value of an object in the ERD is mapped to a node,
which is said to be commonly used by Graph database users and generates a significantly large number of nodes. The results of the
evaluation indicate that it takes less time to execute queries when applying the proposed design method compared to the Sparse
strategy. In the latter, there are many more nodes than in the proposed method. Therefore, it seems evident that response time will
be faster because of having to traverse significantly fewer nodes. Note that the method does not consider functional requirements.

Daniel et al. [9] proposed a framework called UMLtoGraphDB that translates conceptual schemas expressed in UML into a graph
representation. The framework includes rules to transform a class diagram into a graph model, whereas OCL constraints in the class
2
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Table 1
Comparing graph database design methods.

Method Main concepts Formalism Approach (Conceptual,
Logical, physical)

Design tool Automatic
transformation

Consideration Evaluation

Bordoloi and Kalita [8] Relational model ERD Logical No No Data None

De Virgilio et al. [3] Relational model ERD Logical Yes Yes Data Comparison to
another strategy

Daniel et al. [9] Classes, relationship
& Constraints

UML & OCL Logical Yes Yes Data None

Pokorný [10] Relational model ERD Logical No No Data None
Akoka et al. [11] Relational model ERD & 4Vs Physical No Yes Data None
De Sousa and Cura [12] Relational model ERD Logical No Yes Data None
Ghrab et al. [13] Graph model GRAD Logical Yes Yes Data None
GDBS [4] Relational model ERD Logical No Yes Data None

diagram are transformed into queries expressed in Gremlin, a graph query language adopted by several Graph database providers.
The method is supported by a software tool. This method does not consider functional requirements.

Pokorný [10] discussed general aspects of Graph database modeling. The paper suggests a simple graph database schema based
n entities and relationships (a binary ER model) and integrity constraints for the said schema. As in previous works, functional
equirements are not addressed.

Akoka et al. [11] proposed a method that considers the four Vs of Big data (variety, velocity, volume, and veracity) for devising a
raph database. The method uses an ERD as a conceptual model, and each component in the model receives information regarding

he four V’s. The method further applies two sets of rules: the first set enables the translation of the ERD into a logical property graph
odel, and the second set of rules enables the transformation of the logical property model into a script of Cypher statements. The

esulting graph devised from the script contains fictitious data of realistic size according to the volume property of each component
n the conceptual model. While ‘volume’ is the major property considered in this method, the other Vs are less discussed, and it
eems that they do not affect the structure of the graph. Here again, there is no consideration of functional requirements.

De Sousa and Cura [12] proposed conceptual and logical models for Graph databases. The conceptual model is in the form of
he extended binary entity-relationship model (EB-ER), and a labeled-directed-property based graph is used as the logical model.
he method includes an algorithm for transforming the EB-ER to the graph logical model.

Ghrab et al. [13] present a logical model for graph databases called GRAD. GRAD captures traditional modeling concepts, projects
hem on graphs, and provides the definitions of integrity constraints and graph algebra. The authors implemented a central library
mplementing their work in a domain and storage-independent manner. While they suggest applications that might benefit from the
RAD model, they describe them briefly.

In previous work, we devised a modeling method for Graph databases called GDBS (Graph database schema) [4]. The method
ransforms a conceptual schema in the form of an ERD into a Graph database schema in a two-step process (as will be discussed
ater in Section 3). However, this method did not consider functional requirements, as well.

Table 1 summarizes the analysis we performed. It indicates that all the above methods include some form of modeling where ER
s the most prominent. Most of them result in a logical graph model. All methods consider the data-related requirements but neglect
he functional requirements. Furthermore, the evaluation is performed to a limited extend. In this work, we propose considering
he functional requirements, evaluating the proposed method, and demonstrating the benefit of utilizing it.

.2. Design methods of document databases

In this section we review existing methods for designing Document databases and analyze their strengths and weaknesses.
Varga et al. [14] propose a method that uses Formal Concept Analysis (FCA), or rather a Relational Concept Analysis (RCA),

hich extends FCA, as a data model. According to the authors, ‘‘the objective of RCA is to build a set of lattices whose concepts are
elated by relational attributes, similar to UML associations’’. The method uses ER as a conceptual model that is transformed into a
elational Context Family, which is the structure of data within the RCA. The method refers to the two different relationship types

n Document databases, which is very important in document modeling. Furthermore, it considers the cardinality between entities
n order to choose the right type of relationship. When the two relationship types are possible, they do not suggest other means of
istinction. Furthermore, the method does not consider functional requirements.

In another paper, Varga et al. [15] suggest modeling MongoDB data structure as conceptual graphs (CG). In their work they
emonstrate a conceptual graph structure for the database and its queries. Their reference to queries is only to their representation
ith CG, and not to their effect on the design itself.

De Lima and Dos Santos Mello [16] suggest a method based on EER model and queries workloads. The workload information
s estimated over the conceptual schema, i.e., the size of each construct in the EER model. This is used to estimate the number
f accesses for each construct based on access patterns, which in turn is applied in choosing between different relationship types.
he method introduces essential concepts such as the use of workloads. The transformation rules and functions are based on the
ardinality of the constructs in the relationships, but this concept is not explained. The method is evaluated based on a case study
n which the authors compare their method with and without the workload information.
3
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Table 2
Comparing document database design methods.

Method Main concepts Formalism Approach (Conceptual,
Logical, physical)

Design
tool

Automatic
transformation

Consideration Evaluation

Varga et al. [14] Relational model RCA Logical No Yes Data Performance

Varga et al. [15] Graph model Conceptual
graph

Physical No No Data and query
representation

None

De Lima and Dos
Santos Mello [16]

Relational model ERD Logical No Yes Data, volume, and
workload

Case study

Imam et al. [5] Relationship
classification

Logical No Yes Data Experiments

Herrero et al. [17] Graph All No Yes Data and workload None
Shin et al. [6] Class Model UML Logical No Yes Data Example

Imam et al. [5] further refine the notion of cardinality and suggest a way to handle them. The concept of ‘‘many’’ is broken down
nto several levels: few, many, and squillions. While the paper mainly suggests these new cardinalities for the conceptual model,
t also demonstrates important experiments that assist in choosing the right kind of relationship in the database. The experiments
ead them to recommend the types of relationships. Nevertheless, they did not consider functional requirements.

Herrero et al. [17] present a method for designing NoSQL databases based on traditional design approaches. The method consists
f seven steps spanning the three phases of conventional design (i.e., conceptual, logical, and physical). The fourth step of their
ethod addresses the issue of merging nodes to improve performance. As it is very similar to the issue of embedding vs. referencing

n Document databases, it sheds light on the essential matters in Document database design, that is how to deal with different
elationship types and their cardinalities.

Shin et al. [6] demonstrate the design of a Document database based on a UML class diagram. Their transformation is relatively
imple: a class is transformed into a document collection, an attribute is transformed into a property of a document, and an
ssociation is transformed into a relationship between documents. The method is simple but does not consider more complex
elationships in a UML class diagram, such as hierarchies and aggregations. Moreover, it does not prescribe how to choose the
ype of relationship between documents, which is a primary issue in Document database design.

Table 2 summarizes the analysis we performed. In the case of document databases, it seems that each method refers to a specific
iew neglecting the need for a comprehensive view or a design process. Most methods refer to the selection of relationship types
nd usually aim at a logical document database model. Although guide- lines and rules exist, design tools hardly exist. The most
rominent gap is the lack of reference to functional requirements.

. Example of an application

Before presenting the design methods in Sections 4 and 5, in this section, we provide an example of an application that will
e used later to explain and demonstrate the methods. We use an IMDb-like application, which manages data about watch items:
general term for movies, series, and episodes. For each watch item, the application manages data about its directors, producers,

nd actors and their roles in the watch item. The application also stores information for each watch item, such as goofs (mistakes),
rivia information, and quotes. A user of this application may log in to rate a watch item. Fig. 1 presents the conceptual model –
UML class diagram – of this application, which represents the users’ data-related requirements. We choose UML for that purpose

or the following reasons: (1) It is the standard modeling language; (2) The class diagram of UML is well-known and easy to use;
3) It is commonly used by developers; (4) As the database is part of the development process, we aim at using the same language
or all artifacts; and (5) We use only a subset of the UML class diagram notation, which facilitates the definition of struct types,
elationships, and properties.

In addition to the conceptual model of the application, we present the users’ functional requirements as a list of queries — see
isting 1. The list consists of ten queries, all of which are of ‘‘select’’ type, though queries of ‘‘update’’ type may also be considered
yet, usually, these are simpler).

The queries are written in an SQL-like language adopted from Mior et al. [18].
4



N. Roy-Hubara, A. Sturm and P. Shoval Data & Knowledge Engineering 145 (2023) 102149

o
c

l

4

d

4

I

Fig. 1. The conceptual model of the IMDb application.

In the two next sections, we present the design methods for Graph and Document databases. The two methods use the same input:
a conceptual model in the form of a UML class diagram, which represents the data-related requirements, and a list of queries in an
SQL-like syntax, which represents the functional requirements, as described above. The list may change throughout the lifecycle
f the application (and thus, the design might change as well). In that case, the impact of schema evolution (e.g., [19]) should be
onsidered as well. Yet, this is out of the scope of this paper.

For each database type, we define a specific set of design rules for transforming these inputs to the respective NoSQL database
ogical schema (i.e., design).

. Design method for graph database and its evaluation

In the following section, we introduce the method for graph database model design and its evaluation. The method is
emonstrated with the example introduced in Section 3.

.1. Fundamentals of graph databases

A Graph database logical model consists of the following components:

• Node: A node represents an entity in the real world; it has a label (a name) and properties, including a key property that
enables its unique identification.

• Edge: An edge represents a binary relationship between two nodes. As defined in most graph databases [20], an edge has a
direction, meaning it has a start node and an end node. An edge may also have properties and a label.

• Property: As said, both nodes and edges may have properties. Properties may have constraints, such as (a) Key: each node
has a key, which may be one property or a combination of several properties; (b) Not Null: the property must have a value
for all instances of the node or edge; (c) Set: the property may have many values.

• Cardinality constraints: Cardinality constraints restrict the number of nodes that may participate in a specific edge type,
ranging from at least 0 or 1, to at most 1 or many (not restricted).

n the design process, we will use the following notations:

• Cl = set of all classes in the conceptual model.
• R = set of all relationships in the conceptual model.
• A = set of all attributes in the conceptual model: A(Class) = set of all attributes of a class, 𝑉𝑎 = values of an attribute.
• Q = set of all queries that represent the functional requirements.
• F = set of all filtering objects (aka where clauses) in Q; Co = conditions in a filter.
• ≺ = a hierarchy of classes; type (≺𝑖) = type of the hierarchy (cartesian product of complete and disjoint hierarchies).

• # = the number or size of a thing (i.e., #Q = number of queries)

5
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4.2. Transformation rules that consider the data requirements

In an earlier study [4], we introduced a method to design a Graph database schema — GDBS. The method used ERD as a
conceptual model, which represents the data-related requirements. In this study, we use UML class diagram instead of ERD for the
reasons we specified before.

The transformation of the class diagram to a Graph database schema is a two-phase process. First, we transform some special
constructs in the class diagram into binary relationships. Second, we transform the adjusted class diagram into a Graph database
schema. Note that at this stage, the functional requirements are neglected.

4.2.1. Adjusting the original class diagram
In this phase, we transform all types of hierarchy relationships, aggregation, composition, and association classes. This step is

derived from our previous work [4]; thus, we describe the rules briefly.

Hierarchy (inheritance) Relationships
For a hierarchy (aka is-a) relationship, we distinguish between two cases:

• Removing the sub-classes of the hierarchy and moving their attributes and relationships to the super-class, adding to it a new
property named ‘type’ to enable distinguishing between the different sub-types. This mapping rule is applied in cases where
the inheritance relationship has neither a complete (total-cover) constraint, nor the disjoint constraint, meaning that there
may be an object of a super-class that is not of one of the sub-classes, or that an object may belong to many sub-classes.

• Removing the super-class and moving all its properties and relationships to each of its sub-classes. This mapping rule is
applied in cases where there are both complete and disjoint constraints between the sub-classes, meaning that all objects
of the super-class belong to one sub-class only. Therefore, there is no need to maintain the super-class.

ormal definition of the rule: ∃
(

𝑐1,… , 𝑐𝑛
)

≺𝑖 𝑐𝑠𝑢𝑝𝑒𝑟

1. If type(≺𝑖) = () or (disjoint) or (complete) → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐1,… , 𝑐𝑛
)

𝑎𝑛𝑑 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

= 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

∪ ∀𝑖 𝐴
(

𝑐𝑖
)

𝑎𝑛𝑑 𝑅 =
𝑅 − ∀𝑖 𝑅

(

𝑐𝑖, 𝐶𝑗
)

+ 𝑅
(

𝑐𝑠𝑢𝑝𝑒𝑟, 𝐶𝑗
)

, 𝐶𝑗 = 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜
(

𝑐1,… , 𝑐𝑛
)

2. If type(≺𝑖) = (disjoint, complete) → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

𝑎𝑛𝑑 𝐴
((

𝑐1,… , 𝑐𝑛
))

= 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

+ 𝐴
((

𝑐1,… , 𝑐𝑛
))

𝑎𝑛𝑑 𝑅 =
𝑅 − 𝑅

(

𝑐𝑠𝑢𝑝𝑒𝑟, 𝐶𝑗
)

+ 𝑅
((

𝑐1,… , 𝑐𝑛
)

, 𝐶𝑗
)

, 𝐶𝑗 = 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑐𝑠𝑢𝑝𝑒𝑟

Aggregation and Composition Relationships
In a UML class diagram, aggregation and composition relationships are binary associations between a ‘whole’ class and its ‘parts’

classes. Composition is a stronger type of aggregation, in which an object in the ‘part’ class may be associated with only one object
of the ‘whole’ class, while in aggregation, an object of a ‘parts’ class may be associated with several objects of the ‘whole’ class.

Hence, the rule is to transform both types of relationships based on the above two cases: an aggregation is transformed into many-
to-many relationship, whereas composition is transformed into a one-to-many relationship, where the cardinality of the relationship
at the whole-class is 0,1 (that is: min. 0 and max. 1).

Association Classes
A UML class diagram may include association classes. An association class belongs to a relationship between two classes. In our

example (Fig. 1), there are two association classes: one, named Rate, which belongs to the relationship between classes User and
Watch Item, and a second, named Role, which belongs to the relationship between classes Person and Watch Item. Following GDBS
in the UML class diagram, an association class will be transformed into regular attributes of the relationship.

4.2.2. Mapping the adjusted class diagram to a graph database schema
In this stage, the components of the adjusted class diagram are mapped to a Graph database schema. Here are the rules:

1. Mapping classes to nodes. Each class is mapped to a node, and its properties become the node’s properties.
2. Mapping relationships to edges. Each relationship between entities is mapped to an edge connecting the respective nodes.

The edges are directed, distinguishing between the start and end nodes of each edge.
3. Mapping cardinality constraints. The cardinalities of each relationship are mapped to the edges. (It should be noted that

such constrains are not part of ordinary Graph databases).

Applying the GDBS method for the IMDb application results in a Graph database diagram that is shown in Fig. 2. Note that the
symbols used in this diagram are like class diagram symbols, only that here round rectangles denote nodes, arrows denote edges, and
the arrowheads indicate the directionality of the edges. Each round rectangle (node) includes the node’s possible set of properties.

To keep the presented schema concise, we have unified some of the edges between nodes: Note the edges involving the nodes
Episode, Series, and Movie; these nodes are connected to Goof, Trivia, and Quote: a total of nine edges should be shown here (i.e., Movie
– Quote, Movie – Goof, Movie – Trivia, Episode – Quote, Episode – Goof, Episode – Trivia, Series – Quote, Series – Goof, Series – Trivia).
We unified the said edges, while only the heads and tails of the edges were split. To avoid similar clutter, some edges were omitted
and written in words only. The full schema definition of the Graph database should include all the omitted/unified edges.

Note that the WatchItem class in the class diagram was removed (i.e., it did not become a node), due to the relevant rule, while
all its properties are included within its sub-classes. However, the queries in the following will still use the general term WatchItem,

which may refer to any of its children (Movie, Series, or Episode).

6
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Fig. 2. Graph database diagram for the IMDb application after applying the transformation rules.

.3. Transformation rules that consider functional requirements

Next, we consider functional requirements that are related to database manipulation, namely, data update and retrieval
perations, which are expressed by queries that perform Select, Update, Insert and Delete operations. In the Relational model,
onsidering such requirements may result in adding definitions of secondary indexes for specific attributes, adding assertions,
riggers, stored procedures, or even de-normalizing some tables. Considering such requirements in Graph databases may result
n splitting or unifying nodes, adding edges, indexes, etc. Considering functional requirements may also result in data duplication
e.g., duplication of a property in different nodes). It is assumed that the consideration of functional requirements would generate
database that provides better response time, as it would fit better the users’ needs.

In the following, we introduce a set of rules, based on the functional requirements (namely the queries) aimed at improving
he Graph database schema created solely based on the data-related requirements. We do not claim that the proposed rules are
omprehensive; further research may identify more rules. Nevertheless, we will show how rules that are based on functional
equirements may change the Graph database schema and result in better performance.

In devising these rules, we rely on knowledge and experience gained by professionals, designers, developers, and Graph database
roviders (e.g., Neo4J2). While most of that knowledge is adopted from Robinson et al. [20], we found further examples and
xtensions in forums, question sites (such as Quora3 and Stack Overflow4), and tutorials.

In the following, we describe the proposed set of rules, along with examples.

Adding Generic Edges
In the class diagram of the IMDb application (Fig. 1), there are three relationships between class Person and each of the WatchItem

sub-classes: actor, producer, and director. According to a previous rule, these relationships were transformed into three edges between
each of them and Person. Nevertheless, users may be interested in checking the existence of a relationship between Person and any
of the sub-classes of WatchItem. Such a case can be revealed by examining the functional requirements. See, for example, Query 10

2 https://neo4j.com/.
3 https://www.quora.com/.
4 https://stackoverflow.com/.
7
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Fig. 3. The Graph schema: (a) after applying Rule G1, (b) after applying Rule G2.

in Listing 1: ‘‘Return all projects in which a person was involved in any capacity’’. In such cases, adding a generic edge between the
nodes Person and the different WatchItems (that can be labeled ‘‘participant’’) would make this query more efficient.

Rule G1: In cases where queries involve any type of relationship between two classes (e.g., a query contains ‘‘or’’ operators
etween relationship types), a generic edge should be added to the Graph database schema (in addition to the existing edges).

Formal definition:

𝑐1, 𝑐2 ∈ 𝑞𝑖 𝑎𝑛𝑑 #𝑅(𝑐1, 𝑐2) > 1 𝑎𝑛𝑑 #(𝑅(𝑐1, 𝑐2) ∈ 𝑞𝑖) > 1 → 𝑅
(

𝑐1, 𝑐2
)

= 𝑟𝑛𝑒𝑤
(

𝑐1, 𝑐2
)

∪ 𝑅(𝑐1, 𝑐2)

Following this rule, we add the generic relationship ‘‘participant’’ from class Person to its sub-classes — see Fig. 3a.

Adding Intermediate Nodes
In some cases, intermediate nodes may be added instead of edges between nodes. For example, in the IMDb application, the

relationship actor between Person and WatchItem has an attribute in the form of a list (i.e., roles). It may be difficult to pose queries
involving this attribute, either because the query may be too complex, or because the processing time of the query may be too long
(since finding a specific role requires filtering on the Person, finding the specific relationship to the watch item and then searching
the list of roles. For example, the query ‘‘Find all roles of Tatiana Maslany in Orphan Black’’ requires the system to find the Actor
node of Tatiana Maslany, then the edge of the said node to the node of Orphan Black, and finally return all the roles on the said
edge). A similar example is when a filter is applied to an attribute that has a limited number of values, such as Gender. Based on
best practices, if a query includes such a filter, it may be more efficient to define this attribute as a node rather than to query and
filter on the attributes’ value.

Another example for adding an intermediate node is modeling facts as nodes, as Robinson et al. [20] stated: ‘‘When two or more
domain entities interact for a period of time, a fact emerges’’. The outcome of such interaction should be modeled as an intermediate
node. A common example is Email: while Email can be modeled as an edge between two person nodes (Person A sent an Email to
Person B), Email is referred to as a fact since it is an interaction between two nodes and contains important information such as
time and type of addressee (CC, BCC), and the content of the message. Thus, we define the following two rules:

Rule G2: If there are queries that require filtering on a relationship attribute, the relationship is probably a fact and thus should
be transformed into a node.

Formal definition:

𝑎𝑖 ∈ 𝑟𝑖 𝑎𝑛𝑑 𝐹
(

𝑎𝑖
)

∈ 𝑞𝑖 → 𝐶𝑙 = 𝑐𝑛𝑒𝑤 (𝑎) ∪ 𝐶𝑙, 𝑅 = 𝑅 ∪ (𝑅
(

𝑐𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑟𝑖 , 𝑐𝑛𝑒𝑤
)

+ 𝑅(𝑐𝑛𝑒𝑤, 𝑐𝑒𝑛𝑑 𝑜𝑓 𝑟𝑖 )) − 𝑟𝑖

Rule G3: If there are queries that require filtering on a limited set of attribute values, this attribute should be transformed into
a node.

Formal definition:

𝑉𝑎𝑖 =
(

𝑣1, 𝑣2,… , 𝑣𝑛
)

𝑤ℎ𝑒𝑟𝑒 𝑛 < 𝑥, 𝑎𝑛𝑑 𝐹
(

𝑎𝑖
)

∈ 𝑞𝑖 → 𝐶𝑙 = 𝑐𝑛𝑒𝑤 (𝑎) ∪ 𝐶𝑙, 𝑅 = 𝑅 ∪ 𝑅
(

𝑐𝑛𝑒𝑤, 𝑐𝑎𝑖
)

.

𝑥 𝑖𝑠 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟.

8
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Fig. 4. The Graph schema: (a) after applying Rule G3, (b) after applying Rule G4.

For both rules, the label of the added node will be the attribute’s name, while its instances will be its possible values. For example,
ollowing Query 3: ‘‘Return All From WatchItem, Person Where rel.role like ?’’, in Fig. 3b the new node is labeled role. Following Query

6: ‘‘Return Person, All From Person Where gender = ?’’, results in a new node labeled Gender — see Fig. 4a.

dding a Relationship for Sequences
In the process of modeling, we many times tend to ignore sequences. For example, the IMDb application contains information

bout episodes of a series: Episodes of a series are a sequence, a fact that is not addressed in the model. There may be queries that
efer to such a sequence. For example: ‘‘return the next episode’’. For such a case, we create a unary edge in node Episode named

‘‘next’’.
Rule G4: Instances of a node that are considered as a sequence should be linked by an edge that will make them a linked list.

The direction of the link will be based on the queries (forward, backward, or bi-directional). If no such query exists, then by default,
only a forward edge will be added to the schema.

Formal definition:

𝑐1, 𝑐2 ∈ 𝑞𝑖 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒
(

𝑐1
)

= 𝑡𝑦𝑝𝑒
(

𝑐2
)

𝑎𝑛𝑑 𝑐1, 𝑐2 ∈ 𝑐𝑜𝑖 𝑎𝑛𝑑 (+,−) ∈ 𝑐𝑜𝑖 → 𝑅
(

𝑐1, 𝑐2
)

= 𝑟𝑛𝑒𝑥𝑡
(

𝑐1, 𝑐2
)

∪ 𝑅(𝑐1, 𝑐2)

For example, Return e1.All From Episode as e1, Episode as e2 Where e2.season=? and e2.number=? and e1.season= e2.season and
e1.number = e2.number + 1. This query will return the next episode. As shown in Fig. 4b, the relationship next was added to the
schema to support the sequence of episodes.

Adding Implicit Relationships
Sometimes queries may discover implicit relationships between classes, which are not present in the class diagram. For example,

the IMDb application may be used for recommending watch items by users based on genres, actors, etc. For example, the application
may recommend a new watch item from a frequently watch genre:

RETURN rec.title FROM WatchItem as rec, WatchItem as org, Genre, User Where User.username = ? and count(Genre.name) > 10
This knowledge is not explicated in the conceptual model but is implicit. In such a case, an explicit edge should be defined

between the relevant nodes.
Rule G5: Paths in the functional requirements with implicit meaning should be changed to explicit edges.
Formal definition:

𝐿𝑒𝑡 𝑃𝑎𝑡ℎ = 𝑝
(

𝑐1,… , 𝑐𝑛
)

,∀𝑖=2..𝑛∃𝑟𝑖
(

𝑐𝑖−1, 𝑐𝑖
)

∃𝑝,∀𝑐𝑖 ∈ 𝑝 𝑎𝑛𝑑 𝑐𝑖 ∈ 𝑞𝑖 → 𝑅
(

𝑐1, 𝑐𝑛
)

= 𝑟𝑛𝑒𝑤
(

𝑐1, 𝑐𝑛
)

∪ 𝑅(𝑐1, 𝑐𝑛)

For example: in Query 8, which represents a recommendation based on genres: ‘‘Return Genre.All From User, Rate-Person-Movie,
Rate, WatchItem, Genre Where username = ? and numeric rating = 5’’, a new edge is created between Genre and User — see Fig. 5.

4.4. Evaluation of the graph database designed with considering functional requirements

We performed two experiments with two different applications to evaluate the performance of a Graph database designed
considering the functional requirements compared to a Graph database designed without considering these requirements. All relevant
materials are available in an open Dropbox folder.5

5 https://wwwwww.dropbox.com/sh/uzu1dnnsj3u6m8d/AABMfxTpBfEaQb6yk5gnHW6ca?dl=0.
9
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Fig. 5. The Graph schema after applying Rule G5.

Table 3
Number of labels in the original IMDb graph database.

Label Count Label Count

Person 1907 Episode 921
Genre 21 Trivia 18 768
Movie 100 Quote 11 913
Series 9 Goof 7679

4.4.1. Experiment hypothesis, variables, and technical set-up
We conjecture that there is a difference in the performance of a Graph database designed with rules that consider the functional

equirements compared to a database designed without considering them. Therefore, we set the following statistical hypothesis:

𝐻0 ∶𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐹𝑎𝑐𝑡𝑜𝑟
𝐵𝐿 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐹𝑎𝑐𝑡𝑜𝑟

𝑅𝑈𝐿𝐸

BL stands for baseline system, i.e., without considering the functional requirements rules, and RULE stands for the systems that
onsider them (1–5, or all of them).

We experimented with a Neo4J Graph database (Neo4J 4.0.4 on Neo4j desktop), as it is the leading graph database provider
owadays, installed over a virtual machine with 8 GB RAM, 250 GB disk size, and Windows-OS. The factors that we measured in
he experiment were query execution time and DB hits (an abstract unit that counts the number of requests sent to the storage
ngine). Several actions trigger DB hits, such as getting a node by ID or a property of a node or a relationship. The full list of actions
an be found in the Neo4j documentation.6

Note that when applying the rules to each application, the database gets larger with more nodes, labels, relationships, and
elationship types. It makes sense to assume that the execution time of queries may become slower as the data volume increases.
he evaluation we performed checks whether the increased volume of data resulting from applying the rules negatively affects the
uery performance or improves it.

.4.2. Evaluation of the IMDb application
For the IMDb application, we performed the following experiment: we created six databases: the original database (created from

he original GDBS), four databases, where each is built by applying one of the functional-related rules G1 to G4 separately (rule G5
s not applicable in the example), and a database that applies all four rules.

The data for the databases were loaded from IMDb application via Python code with IMDbPY,7 a package in Python which
ccesses IMDb web server and retrieves data. Since the data in IMDb is limited to publicly available information, including Persons,
ovies, Series, and Episodes, we created a sample database without Users and Ratings.

We populated the databases as follows: First, with IMDbPY we created the original database, a snippet of IMDb, which contained
1,318 nodes and 55,147 relationships. The number of entities is shown in Table 3. This database was cloned for each rule. In each
f the four clones, we applied one rule, while in the last clone, we applied all four rules and adjusted the data to fit the new schema.
able 4 presents the descriptive statistics of the six databases.

6 https://neo4j.com/docs/cypher-manual/current/execution-plans/#:~:text=unique%20end%20nodes.-,3.,of%20this%20storage%20engine%20work.
7 https://github.com/alberanid/imdbpy.
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Table 4
Summary of the IMDb graph databases.

Database Number of nodes Number of labels Number of relationships Number of relationship types

IMDb-Like Baseline 41 318 8 55 147 8
Applying Rule G1 41 318 8 68 473 9
Applying Rule G2 42 837 9 66 989 10
Applying Rule G3 41 320 9 57 053 9
Applying Rule G4 41 318 8 56 008 9
Applying All 4 Rules 42 839 10 83 082 13

To test the hypothesis, we run the queries in Listing 1. Only eight out of the ten queries are relevant (Queries 1 and 8 were
mitted since they deal with the User class, which is not included in the database.). The queries were expressed in Cypher, the
eo4j query language. Before running the queries, they were examined for correctness (i.e., that they returned the expected results)

n all six database versions. Lastly, all queries were run after arriving at a stable cache.8

Results and Analysis
We tested the time of execution of the queries and the number of DB hits. Four of the eight queries were addressed by the four

rules, i.e., the rules were applied based on these queries. The other four queries should not be affected by applying the rules. While
after applying the rules, the databases become larger than the original, the rules, and thus the design, address the application’s
functional requirements better. Consequently, we expect to see better results in these measures.

Table 5 presents the results. The gray-colored cells indicate the relevant query for the rule of the database, i.e., the rule that was
applied due to the said query and therefore had to be adjusted (i.e., to be written differently in Cypher) based on the new database
design. For example, Rule G1 is applied due to Q10, which searches for relationships between the classes Person and WatchItem.
Therefore, the cells that cross both Rule G1 and Q10 are gray-colored.

The results present major improvements when moving from the IMDb original database (the ‘‘baseline’’) to the databases that
consider functional requirements, i.e., that apply the above rules. Applying the rules reduces the number of DB hits by 17% and the
execution time by 53%. In queries affected by the rules (Q3, Q6, Q7, and Q10), the total number of DB hits decreased, while the
number of DB hits increased in the rest of the queries. We conjecture that the reason for this increment is because of the increase
in the size of the graph. The total number of DB hits and execution time improved when applying the rules, as can be seen on the
right-hand side of the table.

To examine the significance of these improvements, we tested the effect of the application of each rule individually and compared
it to the baseline database. We performed paired t-tests for both DB hits and execution time. We found out that for three out of the
four rules, the application of a single rule did not improve these measures significantly (𝑝-value > 0.05), while applying rule G4
improved the execution time significantly (𝑝-value = 0.042). This means that the application of each rule alone, other than rule G4,
did not improve the measures significantly.

We then compared the baseline databases to the final database in which all four rules were applied. In this case, while the
improvement in the DB hits was not statistically significant, the improvement of execution time was statistically significant (p-
value= 0.045). To assess the significance of the improvements, we also calculated Hedges’s g9 for a small number of samples (<20).
We found out that the rules caused a medium effect (0.682, using average variance10), i.e., the change in execution time is indeed
significant and matters.

We also examined whether the application of the rules resulted in performance reduction due to non-relevant queries. For both
measurements of time and DB hits, the difference between the paired groups was not statistically significant, i.e., the newly designed
databases did not cause deterioration in the database performance.

4.4.3. Evaluation of the northwind database
Northwind11 is a sample database used by Microsoft to show and learn its programs (Microsoft access, management studio)

capabilities. Since this is a well-known database, we decided to use the set of provided queries12,13 for our purpose with some minor
changes. In Fig. 6, the said class diagram is presented, while the relevant queries appear in Listing 2.

In the Northwind evaluation, we created two databases: the first is a baseline database based on the schema and the
transformation rules based on data-related requirements only; the second is after utilizing the functional-related transformations
rules. Based on the queries in Listing 2, we applied two rules: Rule G3 was applied on the attribute ‘‘discontinued’’ in the product
nodes, and rule G5 was applied twice: new relationships between Category and Order, and Category and OrderDetails, were created.
The size of the baseline database is 3.28 MiB, while the size of the transformed database is 4.36 MiB

8 https://community.neo4j.com/t/query-execute-time-varies/24556.
9 https://www.statisticshowto.com/hedges-g/.

10 https://www.real-statistics.com/students-t-distribution/paired-sample-t-test/cohens-d-paired-samples/.
11 https://www.outsystems.com/forge/component-overview/7058/northwind-db#:~:text=The%20Northwind%20database%20is%20a,speciality%20foods%
0export%2Fimport%20company.&text=Very%20good%20example%20to%20test%20and%20practice%20data%20queries.
12 https://www.geeksengine.com/database/problem-solving/northwind-queries-part-1.php.
13 http://www.geeksengine.com/database/problem-solving/northwind-queries-part-2.php.
11

https://community.neo4j.com/t/query-execute-time-varies/24556
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https://www.outsystems.com/forge/component-overview/7058/northwind-db#:~:text=The%20Northwind%20database%20is%20a,speciality%20foods%20export%2Fimport%20company.&text=Very%20good%20example%20to%20test%20and%20practice%20data%20queries
https://www.outsystems.com/forge/component-overview/7058/northwind-db#:~:text=The%20Northwind%20database%20is%20a,speciality%20foods%20export%2Fimport%20company.&text=Very%20good%20example%20to%20test%20and%20practice%20data%20queries
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Table 5
The IMDb application: DB hits and execution time (in ms) for different queries and Graph databases.

Fig. 6. The class diagram of the Northwind database.

As in the previous application, we examined the queries in the listing. Four of the ten queries were affected by the rules. As in
the first evaluation, the queries were translated to Cypher, examined for correctness, and run after arriving at a stable cache.

Results and Analysis
Table 6 presents the results for the Northwind application. The results show minor improvements when moving from the baseline

atabase to the final database. Applying the rules reduces the number of DB hits by 6% only, but the execution time was reduced by
12
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Table 6
The Northwind application: DB hits and execution time (in ms) for the different queries and Graph databases.

Database Performance Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Sum

Baseline DB hits 36 941 37 002 28 846 3091 976 24 179 24 378 362 3870 449 160 094
Time 15 31 15 15 15 15 16 ≪1 ≪1 31 153

Final DB hits 38 849 24 772 30 754 3122 629 23 811 24 460 316 3422 449 150 584
Time 39 15 15 ≪1 ≪1 16 16 ≪1 ≪1 16 117

Table 7
Summary of the ‘‘big-data’’ IMDb Graph Databases.

Database Number of nodes Number of labels Number of relationships Number of relationship types

Large Baseline 19,416,764 6 69,088,838 7
Applying All 4 Rules 85,547,397 8 186,291,356 12

Table 8
The IMDb application: DB hits and execution time (in ms) for different queries and Graph databases.

24%. As in the IMDb experiments, we performed paired t-tests for both DB hits and execution time. While none of the differences
were statistically significant (p-value > 0.05), there were some improvements, especially in the time of query execution. Note that
the Northwind database is relatively small (∼10,000 nodes); we assume that a larger database would show much more significant
improvement. Since none of the measures were improved significantly, we did not calculate the Hedges’s g.

4.4.4. Discussion of the results
First, in both evaluations, we worked with a small set of queries. We assume that the more queries affected by the rules, the

more significant the impact would be, since more specifically tailored changes will be applied.
Second, in the first experiment, while execution time improved significantly, the number of DB hits was improved only to a

limited extent. This is probably due to the way the data is stored in neo4j system. For example, in Neo4j, the properties of a node
are stored as a linked list, while a node stores a pointer to its first property.14 In such cases, to access a node’s property, a traversal
of the linked list is required. More DB hits will be required if the sought property is at the end of the list. Therefore, new queries
that required more traversal on properties did not improve the number of DB Hits. However, the time improved as the required
actions for the new design were less time-consuming.

Third, we assume that the reason for the significant improvement of execution time also lies in the way data are stored in neo4j:
Neo4j and other Graph databases use an index called index-free-adjacency. As the name implies, each node directly references its
adjacent nodes. This makes traversing neighboring nodes quite easy and timesaving. Therefore, changes to the database that require
query traversing on neighboring nodes (instead of properties, for example) improved the response time.

4.5. Graph database scalability analysis

In order to test the method in a big-data environment, we used IMDb, public datasets.15 The files were transformed into CSV
files and then loaded to Neo4J with the same settings as in the experiment in Section 4.4. As the files were very large, we used
Neo4J capabilities for periodic commits and iterations. Since we used the datasets that are open to the public, some data was not
included, such as goofs, quotes, and trivia. We decided to generate data regarding quotes in order to make the data aligned with
the requirements.

We created two databases: the original and one after applying all the rules. The characteristics of the two databases appear in
Table 7.

On these two databases, we execute the relevant queries (as discussed in Section 4.4.2) and check the results for the significance
of the improvements by performing paired t-tests for both DB hits and execution time. Table 8 presents the results in the same
way shown in Section 4.4.2, in which gray-colored cells indicate queries that were changed due to one of the rules. In this case,
after further analysis, we noticed that another query would benefit from rule application — query 9, in which we used the generic
relationship.

14 https://neo4j.com/developer/kb/understanding-data-on-disk/.
15 https://www.imdb.com/interfaces/.
13
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The analysis shows that the number of DBHits was doubled, but the time was only affected by increasing in 11%. We tested if the
ules caused significant deterioration in the results with p-paired t test. We found out that no statistically significant differences exist.
e also checked if the rules caused improvement or deterioration in each of the sub-groups of queries (the ones that were affected

y the change and those which were not affected by the change) and found that in the affected queries there was a significant
mprovement in both time and DBhits (𝑝-value = 0.029 and 0.043, respectively) and in the un-affected queries the change (either

improvement or deterioration) was not significant (𝑝-value = 0.211 and 0.236).
We conclude that applying the rules to the database design improves the performance of the related queries.

. Design method for the document database and its evaluation

In the following section, we introduce the method for document database model design and its evaluation. The method is
emonstrated with the same example as in the previous section, which was introduced in Section 3.

.1. Fundamentals of document databases

A Document database logical model consists of the following constructs:

• Document and Collection: A document represents an entity in the real world. A collection consists of documents of the same
type. A collection has a name that implies its type and potential properties.

• Property: A document has properties. One or more of the properties of a document is a key, which facilitates its unique
identification. A property may be of a complex object type. The values of a property may have constraints, similar to other
logical models (e.g., Not-Null, Set).

• Embedded Relationship: A value of a property may be a document i.e., the document embeds another document.
• Referenced Relationship: A value of a property may be a reference to a key of another document.
• Cardinality constraints: Cardinality constraints restrict the number of documents that may participate in a specific type of

relationship between documents; the minimum values may be 0 or 1, while the maximum values may range from 1 to many.
In the following, we use the same notations from the previous section, with the following additions:

– 𝐶𝑎𝑟
(

𝑐𝑖, 𝑟𝑖
)

= the cardinality of a class 𝑐𝑖 in a specific relationship 𝑟𝑖
– 𝑄𝑆

(

𝑐𝑖
)

= a group of queries in which the 𝑐𝑖 class plays the role of a subject. E.g., in query 5 in Listing 1: (RETURN
Person.All FROM Watch Item, Person WHERE title = ? and rel = Actor), the subject is Person, as it is the main interest
of the query.

5.2. Transformation rules that consider the data requirements

Like the previous case of transforming a class diagram to a Graph database schema, the transformation of a class diagram to a
Document database schema is a two-phase process. First, we transform some particular constructs in the class diagram into equivalent
binary relationships to enable transforming it into a Document database design. Second, we transform the adjusted class diagram
into a Document database schema.

5.2.1. Adjusting the original class diagram
In this phase, we transform the Hierarchy relationships, Aggregation and Composition relationships, and Association classes to

equivalent binary relationships:

Hierarchy (inheritance) Relationships
As in the case of Graph databases, handling hierarchy relationships requires observing if there are hierarchy constraints in the

class diagram, which may be Complete (Total cover) or Disjoint/Overlap, and observing the queries that involve classes in the
hierarchy. When dealing with such constraints, two alternatives exist, as discussed in the section on Graph database. While both
Graph and Document rules for Hierarchy transformation share similarities, they are not the same, as can be seen in Rule D1:

Rule D1:

1. If at most one hierarchy constraint is defined (i.e., only Complete or only Disjoint), remove the sub-classes. We choose this
strategy since either there are objects that do not belong to one of the sub-classes, or an object may belong to many sub-classes.

2. If both Complete and Disjoint constraints are defined, the relevant queries should be examined:

a. If there exists a query that references the super-class and no other classes in the ‘‘from’’ part of the query (i.e., no
relationship is required in the query), then remove the sub-classes, as in the previous case.

b. If no such query exists, then remove the super-class. This is because all objects belong to one sub-class only, and there
is no query that requires the super-class. Therefore, there is no need to maintain the super-class.

In the IMDb-like application, the hierarchy where Episode, Movie and Series are sub-classes of WatchItem, will be transformed
based on Rule D1.2.a. Since no other WatchItem type exists, and watch items cannot overlap, we conclude that the hierarchy is
Complete and Disjoint. Lastly, there exists a query in Listing1 that references the super-class and no other class in the ‘‘from’’ part
of the query. Therefore, as rule D1.2.a states, we will remove the sub-classes from the class diagram.

( )
Formal definition: ∃ 𝑐1,… , 𝑐𝑛 ≺𝑖 𝑐𝑠𝑢𝑝𝑒𝑟
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Fig. 7. One-to-One examples.

1. type(≺𝑖) = () or (disjoint) or (complete) → 𝐶𝑙 = 𝐶𝑙−
(

𝑐1,… , 𝑐𝑛
)

𝑎𝑛𝑑 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

= 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

∪∀𝑖𝐴
(

𝑐𝑖
)

𝑎𝑛𝑑 𝑅 = 𝑅−∀𝑖𝑅
(

𝑐𝑖, 𝐶𝑗
)

+
𝑅
(

𝑐𝑠𝑢𝑝𝑒𝑟, 𝐶𝑗
)

, 𝐶𝑗 = 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜
(

𝑐1,… , 𝑐𝑛
)

2. type(≺𝑖) = (disjoint, complete), and ∃𝑐𝑠𝑢𝑝𝑒𝑟 ∈ 𝑞𝑖 → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐1,… , 𝑐𝑛
)

𝑎𝑛𝑑 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

= 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

+ 𝐴
((

𝑐1,… , 𝑐𝑛
))

𝑎𝑛𝑑 𝑅 =
𝑅 − 𝑅

((

𝑐1,… , 𝑐𝑛
)

, 𝐶𝑗
)

+ 𝑅(𝑐𝑠𝑢𝑝𝑒𝑟, 𝐶𝑗 ), 𝐶𝑗 = 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜
(

𝑐1,… , 𝑐𝑛
)

3. type(≺𝑖) = (disjoint, complete), and ∄𝑐𝑠𝑢𝑝𝑒𝑟 ∈ 𝑞𝑖 → 𝐶𝑙 = 𝐶𝑙−
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

𝑎𝑛𝑑 𝐴
((

𝑐1,… , 𝑐𝑛
))

= 𝐴
(

𝑐𝑠𝑢𝑝𝑒𝑟
)

+𝐴
((

𝑐1,… , 𝑐𝑛
))

𝑎𝑛𝑑 𝑅 =
𝑅 − 𝑅

(

𝑐𝑠𝑢𝑝𝑒𝑟, 𝐶𝑗
)

+ 𝑅
((

𝑐1,… , 𝑐𝑛
)

, 𝐶𝑗
)

, 𝐶𝑗 = 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑐𝑠𝑢𝑝𝑒𝑟

Aggregation and Composition Relationships
The mapping of aggregation and composition relationships is done exactly as in the case of the Graph database design. Thus, no

new rule formulation is required.

Association classes
As opposed to a graph database, in which relationships are first-class citizens, in document databases we need to emphasize the

relationships. Thus, an association class is mapped to an ‘‘ordinary’’ class with two composite relationships to each of the involved
classes, and no new rule formulation is required.

5.3. Transforming the adjusted class diagram to a document databases schema

At this stage, we obtained an adjusted class diagram that consists solely of classes and binary relationships. This diagram can
easily be mapped to the Document database schema, where generally, each class may be mapped to a collection of documents
or be embedded within another collection (that is, become an embedded property of a document) – depending on the types of
relationships and their cardinalities. Hence, the main issue is deciding when a relationship between classes is mapped to reference
properties of the documents defined from the involved classes or embedded documents. It all depends on the relationship types and
their cardinalities. In the formal definitions, we will demonstrate cases of embedding only since reference relationships are simple
to transform as they only require the addition of a reference attribute on both sides of the relationship.

5.3.1. Mapping one-to-one relationships
According to Imam et al. [5], based on experiments that they have performed, the authors concluded that one-to-one relationships

have better performance when transformed to embedded properties of the involved documents. However, they did not discuss how
and if such embedding is possible. A description of the possible embeddings of one-to-one relationships can be found in the concept
lattices of Varga et al. [14]. These lattices describe possible embeddings based on the minimum cardinality, whether it is 0 or 1.
Based on that, we distinguish between the following possible cases — see examples in Fig. 7:

a. In case the minimum cardinality of a class is 0, we cannot embed another class within it, as it would result in data loss.
Therefore, in cases when both ends of the relationship is 0, it is not possible to embed the relationship. In cases when we
only have one end with a minimum 0, we can embed the 0- sided class within the 1-end. For example, in Fig. 7, a Person may
have a Passport, while a Passport must belong to one Person. If we will embed the Person class as a property of the Passport
document, the data about all persons who do not have a passport will be lost.

b. In case the minimum constraint of a class is 1 we can embed another class within it. In cases when the minimum of both
sides of the relationship is 1, embedding is possible yet requires further analysis. For example, in the relationships between
Person and Ticket (the second example in Fig. 7), we must choose the best possible embedding between the two possible
options. This can be based on the read queries. In the said case, we choose to embed the less frequently queried class into
the more frequently queried class to enable getting all information in one read. In this example, we assume that we need
to read more frequently the Person document (such as the room details, payment details, ticket details, etc.), as opposed to
ticket details; this leads to embedding the Ticket class within the Person document.

Based on the above, we define the following rule:

Rule D2:
In One-to-One relationships, we observe the minimum cardinality constraints:

a. If in both classes the minimum is 0, then embedding is impossible, and therefore a two-way reference property should be
defined.
15
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Fig. 8. One-to-Many examples.

b. If one of the classes has a minimum 0, while the other has a minimum 1, then we embed the ‘‘may be’’ document (where
the minimum is 0) within the ‘‘must be’’ document (where the minimum is 1).

c. If in both classes the minimum is 1, embedding is possible in both directions. In such cases, we analyze the frequency of the
reads queries of the two classes and embed the less frequently read class within the more frequently read class.

Formal definition: 𝑐1, 𝑐2 ∈ 𝑟𝑖

1. 𝐶𝑎𝑟
(

𝑐1, 𝑟1
)

= (0, 1) 𝑎𝑛𝑑 𝐶𝑎𝑟
(

𝑐2, 𝑟1
)

= (1, 1) → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐1
)

𝑎𝑛𝑑 𝐴
(

𝑐2
)

= 𝐴
(

𝑐2
)

+ 𝑐1
2. 𝐶𝑎𝑟

(

𝑐1, 𝑟1
)

= (1, 1) 𝑎𝑛𝑑 𝐶𝑎𝑟
(

𝑐2, 𝑟1
)

= (1, 1) 𝑎𝑛𝑑 #𝑄
(

𝑐1
)

< #𝑄(𝑐2) → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐1
)

𝑎𝑛𝑑 𝐴
(

𝑐2
)

= 𝐴
(

𝑐2
)

+ 𝑐1
3. 𝐶𝑎𝑟

(

𝑐1, 𝑟1
)

= (1, 1) 𝑎𝑛𝑑 𝐶𝑎𝑟
(

𝑐2, 𝑟1
)

= (1, 1) 𝑎𝑛𝑑 #𝑄
(

𝑐1
)

> #𝑄(𝑐2) → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐2
)

𝑎𝑛𝑑 𝐴
(

𝑐1
)

= 𝐴
(

𝑐1
)

+ 𝑐2

5.3.2. Mapping one-to-many relationship
In the case of one-to-many relationship, Imam et al. [5] distinguished between three types of ‘‘many’’: Few (up to 7 documents,

denoted F), Many (up to 5000 documents, denoted M), and Squillion (more than 500,000 documents, denoted S). We focus on Few
and Many since Squillion may appear in rare cases. In their experiments, 1-to-F relationships performed better when embedding,
while 1-to-M relationships performed better when referencing. The authors distinguished between read and write operations. In a
read operation, the difference in performance between embedding and referencing was small and not stated if statistically significant.

Due to these experiments and the MongoDB recommendation16 that suggests that we should reduce the number of operations
and get all required data in one read, we recommend embedding one-to-many relationships as well. Like the case of one-to-one
relationship, embedding is possible only when the minimum cardinality of the class is 1 (and not 0) to avoid data loss. Herrero
et al. [17] suggest that in such cases the class at the 1-side of the relationship be embedded within the document of the many-
side of the relationship. This is probably due to possible data duplication, in which the one-side will be embedded in each of the
documents of the many-side. We defined this in previous work [21] as multi-embedding, i.e., the embedding of a class in different
classes and contexts. We claim that in such relationships embedding is possible in both directions.

In Fig. 8, we present examples of two one-to-many relationships (taken from the class diagram in Fig. 1). In both examples, we
prefer to embed the class at the many-side within the class on the 1-side of the relationship — due to the possible queries. In our
example, we will probably have more queries regarding a WatchItem and its related knowledge items, aka quotes, trivia-items, etc.,
and fewer queries regarding a KnowledgeItem. Thus, we will embed KnowledgeItem within WatchItem. This is also the case with Series
and Episodes. But reverse embedding is also possible, as shown in the following rule.

Rule D3:
For each class we define 3 counters:

i. how many times a class appears as the subject of read queries - (𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡)
ii. how many queries exist for both classes together - (𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑗𝑜𝑖𝑛𝑡−𝑞𝑢𝑒𝑟𝑖𝑒𝑠)

iii. how many times the class appears as the subject of queries when queried together - (𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑖𝑛−𝑗𝑜𝑖𝑛𝑡−𝑞𝑢𝑒𝑟𝑖𝑒𝑠).

1. In case when two classes are queried together (i.e., 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑗𝑜𝑖𝑛𝑡−𝑞𝑢𝑒𝑟𝑖𝑒𝑠 > 0), embedding will occur based on
𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑖𝑛−𝑗𝑜𝑖𝑛𝑡−𝑞𝑢𝑒𝑟𝑖𝑒𝑠 of both classes, in the following manner: we embed the class with the smaller
𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑖𝑛−𝑗𝑜𝑖𝑛𝑡−𝑞𝑢𝑒𝑟𝑖𝑒𝑠, i.e., appears fewer times as the subject when queried together (we will name the said class
𝒄𝒔𝒎𝒂𝒍𝒍) into the class with the larger counter, i.e., appears more times as the subject when queried together (we will name
the said class 𝒄𝒍𝒂𝒓𝒈𝒆), if possible and the minimum cardinality is 1.
However, we will also check 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡 - the number of queries in which 𝑐𝑠𝑚𝑎𝑙𝑙 is generally a subject of query. If
𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡 for 𝑐𝑠𝑚𝑎𝑙𝑙 is significantly larger than 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑗𝑜𝑖𝑛𝑡−𝑞𝑢𝑒𝑟𝑖𝑒𝑠 (in other words, if 𝑐𝑠𝑚𝑎𝑙𝑙 is the subject of many queries ),
we will not embed the said relationship and create a reference relationship, as 𝑐𝑠𝑚𝑎𝑙𝑙 is required as subject for many other
queries.

2. If not, embed based on 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡: embed the class with the smaller 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡 into the class with the larger 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑢𝑏𝑗𝑒𝑐𝑡,
if possible (i.e., minimum cardinality is 1).

3. If embedding was not performed, create a two-way reference relationship.

Formal definition: 𝑐1, 𝑐2 ∈ 𝑟𝑖.∃𝑄
(

𝑐1, 𝑐2
)

= 𝐺, 𝑙𝑒𝑡𝐺𝑐1 = 𝑄𝑆
(

𝑐1
)

⊆ 𝐺 𝑎𝑛𝑑 𝑙𝑒𝑡 𝐺𝑐2 = 𝑄𝑆
(

𝑐2
)

⊆ 𝐺.

1. 𝐺𝑐1 < 𝐺𝑐2 𝑎𝑛𝑑 𝑄𝑆
(

𝑐1
)

≤ 𝑄𝑆
(

𝑐2
)

𝑎𝑛𝑑 𝐶𝑎𝑟
(

𝑐2, 𝑟𝑐1 ,𝑐2
)

= (1, 𝑛) → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐1
)

𝑎𝑛𝑑 𝐴
(

𝑐2
)

= 𝐴
(

𝑐2
)

+ 𝑐1
2. 𝑄

(

𝑐1, 𝑐2
)

= 0 𝑎𝑛𝑑 𝑄𝑆
(

𝑐1
)

< 𝑄𝑆
(

𝑐2
)

𝑎𝑛𝑑 𝐶𝑎𝑟
(

𝑐2, 𝑟𝑐1 ,𝑐2
)

= (1, 𝑛) → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐1
)

𝑎𝑛𝑑 𝐴
(

𝑐2
)

= 𝐴
(

𝑐2
)

+ 𝑐1

16 https://docs.mongodb.com/manual/tutorial/model-embedded-one-to-many-relationships-between-documents/.
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Fig. 9. Document database diagram for the IMDb application after applying the transformation rules.

.3.3. Mapping many-to-many relationship
Based on their experiments, Herrero et al. [17] suggest not to embed many-to-many relationships. The results of their experiments

learly showed that both writing and reading times are largely reduced when many-to-many relationships are defined as reference
elationships. Due to these results, we do not recommend embedding such relationships but rather to define two-way reference
roperties.

.3.4. Mapping association classes
Recall that an association class is a class that refers to a relationship between two classes. Therefore, we need to check the

elationship based on the cardinalities and convert it accordingly. In case that one participating class is defined to be embedded
ithin the other participating class, then the association class will also be embedded in the same manner. In case embedding cannot
e defined between the classes that participate in the association, we will create a new document collection for the said association
lass and create two-way reference relationships to the adjacent classes. In case a direct relationship is required between the classes,
e may create one as well.

ule D4:
We observe the relationship on which the association class is defined:

1. If the relationship is transformed into a reference relationship in one of the previous steps, a new class will be created to
represent the association class. Its content will be a unique ID, the defined properties, and a reference to the keys of the
adjacent classes. In the adjacent classes, a reference to the new association class will be created.

2. If the relationship is transformed into an embedded relationship in one of the previous steps, this class will be embedded in
the same manner, in the same embedded class.

ormal representation: 𝑙𝑒𝑡𝑟𝑖(𝑐1, 𝑐2), 𝑐3 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑟𝑖

1. 𝑖𝑓𝑐1 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑖𝑛 𝑐2 → 𝐶𝑙 = 𝐶𝑙 −
(

𝑐3
)

𝑎𝑛𝑑 𝐴
(

𝑐2
)

= 𝐴
(

𝑐2
)

+ 𝑐3
2. 𝑒𝑙𝑠𝑒 → 𝐶𝑙 = 𝐶𝑙 + 𝑐3, 𝐴

(

𝑐3
)

= 𝐴
(

𝑐3
)

+ 𝑖𝑑, 𝐴
(

𝑐2
)

, 𝐴
(

𝑐3
)

= 𝐴
(

𝑐2
)

, 𝐴
(

𝑐3
)

+ 𝑖𝑑

Fig. 9 demonstrates the recommended Document database schema of the IMDb application. The document shapes denote a
collection of documents with all the document properties. The arrows are included for readability purposes only and denote the
17
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reference relationships, in addition to the properties added due to the relationships. Examples of such properties are Actors,
Directors, and Producers, which are properties within the WatchItem document. In a WatchItem document, we also embed the
KnowledgeItem –which does not exist outside the scope of a WatchItem as a collection of its own.

5.4. Further transformation rules considering the functional requirements

As in the Graph database design method, consideration of functional requirements may result in transformation rules that will
improve the Document database schema obtained. Thus, we will use the same rules that were defined in the previous section:

• Adding generic relationships in addition to several specific relationships between documents.
• Adding relationships that address sequences between items that construct a sequence; and
• Adding implicit relationship.

As described in the previous section, the rules will be applied based on the queries defined in the requirements elicitation phase.
The application of these rules is as discussed in the section on Graph database design, with the adaptation to Document databases
determining the relationship type will be based on the added relationships’ cardinalities, with the relevant cardinalities’ rules that
were defined previously.

5.5. Evaluation of the document database designed with considering functional requirements

In the previous case, we evaluated the performance of Graph databases designed with the consideration of functional require-
ments compared to databases designed without them. In the experimental evaluation of the Document databases designed, we
followed the similar procedure and the same applications as before. In the following, we describe the experiments and their results.
All relevant materials are available in an open Dropbox folder.17

.5.1. Experiment hypothesis and variables and technical set-up.
As in the previous experiments, we hypothesize that when applying the transformation rules that we defined and considering

he data and functional requirements, the performance of the Document database will improve compared to a simple Document
atabase with reference relationships only as a baseline. Since, in the case of document databases, we wish to check the impact of
he relationship type suggested by the method, we created two databases, identical in their relationships’ content while differing
n the relationships’ types, and did not create one database for each functional rule. Therefore, we set the following statistical
ypothesis to be tested:

𝐻0 ∶𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐹𝑎𝑐𝑡𝑜𝑟
𝐵𝐿 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐹𝑎𝑐𝑡𝑜𝑟

𝑀𝑒𝑡ℎ𝑜𝑑

BL stands for baseline system, i.e., with reference relationships only, Method refers to the proposed set of rules, and factor refers
o the various measures.

The evaluation was carried out using a MongoDB Document database (MongoDB Compass 1.28.1), as it is the leading Document
atabase provider nowadays, installed over a virtual machine with 8 GB RAM, 250 GB disk size, and Windows-OS. We measured the
uery execution time, and the number of query stages: in MongoDB, complex queries are written as a pipeline that contains different
tages, which are executed one at a time. Stages increase the query writing complexity and the execution time. As MongoDB does
ot provide information regarding DB hits, we did not include this measure in this experiment.

.5.2. Evaluation of the IMDb application
For the IMDb application, we used the same data we used for the Graph database experiment. We transformed the CSV files into

SON files using Python code, one for each collection needed either by the database created by applying the method, or by what we
efined as the baseline. Table 9 presents the data included in the collections of documents, for both the baseline and the Method
atabases. (Again, we use the term BL for the databases created using reference relationships only). As opposed to Graph database
xperiments, where applying the rules creates more labels (for either nodes or relationships), in this experiment the transformation
ules applied with this method created fewer collections since, in this case, some collections that exist in the baseline database were
ransformed into embedded documents in other collections (for example, KnowledgeItem within WatchItem). The average size of a
ocument in a collection also varies.

In both databases, we executed the same eight queries from Listing 1. The queries were written in MongoDB, via MongoDB
ompass, a UI for MongoDB, either by a simple query (which can be addressed as a pipeline with one stage) or by a pipeline with
everal stages. After writing a pipeline that returns correct results, we used the ‘‘explain’’ command18 to get the pipeline’s execution
tatistics.

esults and Analysis
Table 10 presents the results of the experiment with the IMDb application.
The results indicate significant improvements: Applying the method reduces the number of stages in the pipeline by 32% and the

xecution time by 83%. We examined the significance of the differences by performing paired t-test for both measures. We found

17 https://wwwwww.dropbox.com/sh/uzu1dnnsj3u6m8d/AABMfxTpBfEaQb6yk5gnHW6ca?dl=0.
18 https://docs.mongodb.com/manual/reference/explain-results/.
18

https://wwwwww.dropbox.com/sh/uzu1dnnsj3u6m8d/AABMfxTpBfEaQb6yk5gnHW6ca?dl=0
https://docs.mongodb.com/manual/reference/explain-results/
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Table 9
Statistics of collection in MongoDB.

Collection # of documents Avg. document size

Baseline database

Genre 21 2 kB
Goofs 7661 320.9 B
KnowledgeItem 38 342 62.6 B
Person 1907 258 B
Quotes 11 913 403.7 B
Roles 10 273 81.9 B
Trivia 18 768 309.1 B
WatchItem 1030 770.2 B

Method database

Genre 21 2 kB
Person 1907 198.8 B
Roles 10 273 81.9 B
WatchItem 1030 12.6 kB

Table 10
The IMDb application: Time in ms and # stages on the two Document databases.

Q2 Q3 Q4 Q5 Q6 Q7 Q9 Q10 Sum

Baseline database Time 31 73 12 2 3 5 3 287 416
Stages 5 8 6 3 1 8 7 11 49

Method database Time 7 26 12 2 3 3 4 13 70
Stages 1 4 6 3 1 4 7 7 33

Table 11
Statistics of collection statistics in MongoDB.

Collection # of documents Avg. document size

Baseline database

Category 8 2.9 kB
Customers 91 361.6 B
Details 2155 96.7 B
Employee 9 1.7 kB
Order 830 419.4 B
Product 77 663.2 B
Region 4 192.0 B
Shipper 3 2.4 kB
Supplier 29 340.2 B
Territory 53 85.9 B

Method database

Category 8 24.7 kB
Customers 91 361.6 B
Employee 9 1.7 kB
Order 830 561.9 B
Product 77 2.1 kB
Region 4 192.0 B
Shipper 3 2.4 kB
Supplier 29 340.2 B
Territory 53 85.9 B

that the difference in the number of stages in the pipelines is indeed significant (𝑝-value = 0.016). The execution time decreased
but is not statistically significant (𝑝-value = 0.118). To assess the effect size of the design over the difference in the number of the
query stages, we calculated the Hedges’s g for a small number of samples (<20). We found out that the application of the method
as a medium effect (0.634), i.e., the difference in execution time is significant and matters.

.5.3. Evaluation of the Northwind database
The experiment with the Northwind application was carried out in the same way as with the IMDb application. The difference

n the number of collections between the baseline and the method databases is smaller, as shown in Table 11. In both databases,
ll ten queries of Listing 2 were defined in MongoDB Compass.

esults and Analysis
As in the IMDb application, we see an improvement in both measures, even though the differences in the number of collections

re smaller (see Table 12). However, in this application, we utilized the multi-embedding feature, a concept we explained in previous
19
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Table 12
The Northwind application: Time in ms and # stages on the two Document databases.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Sum

Baseline database Time 189 4 183 ≪1 ≪1 8 59 ≪1 3 5 35
Stages 5 1 7 1 1 5 7 2 4 2 31

Method database Time 14 ≪1 26 ≪1 ≪1 11 37 ≪1 4 3 95
Stages 4 1 6 1 1 4 6 2 4 2 451

Table 13
Summary of the ‘‘big-data’’ IMDb document databases.

Collection # of documents Avg. document size

Baseline database

Genre 28 740.73 kB
KnowledgeItem 101K 86.00 B
Person 1M 121.00 B
Quotes 101K 72.00 B
Roles 1M 88.00 B
WatchItem 1.8M 159.00 B

Method database

Genre 28 740.73 kB
Person 1M 124.00 B
Roles 1M 88.00 B
WatchItem 1.8M 160.00 B

work [21]. Multi-embedding describes a document that is embedded in several documents, possibly in different contexts, as in the
case of the ‘‘Order-details’’ class, which was embedded in different collections based on the functional requirements. This assisted
in achieving improvements for both the time of execution and the number of stages. Performing a paired t-test indicates that the
difference in the number of stages in the pipeline is significant (𝑝-value = 0.018), with small effect (𝑔 = 0.161). Yet, the time
difference is only close to being statistically significant (𝑝-value = 0.068).

5.5.4. Discussion
First, as mentioned in the Graph database evaluation, it is crucial to stress that in both applications we worked with a small set

of queries; we may assume that with more queries, the more significant the impact would be.
Second, while in both applications the time of execution did not introduces statistically significant improvements, we can see

that individual changes are indeed statistically significant. For example, the execution time of Query 1 in the Northwind database
decreased from 189 ms to 14 ms after applying the rules.

Lastly, as the difference in the number of stages of the pipelines is statistically significant, we may conclude that the queries are
simpler and easier to write. This might be reflected in the time that it may take a user to write the queries, which was not measured
in this evaluation, yet is an important factor.

5.6. Document database scalability analysis

As in the graph database scalability analysis, we used IMDb, public datasets.19 The CSV files were transformed into JSON files
and then loaded to MongoDB with the same settings as in the experiment in Section 5.5.

We created two databases: the original and one using only referenced relationships. The characteristics of the two databases
appear in Table 13.

Again, on the two large databases we execute the relevant queries either as simple query, or as a pipeline (as discussed in
Section 5.5.2) and check the results for the significance of the improvements by performing paired t-tests for the number of pipeline
stages, and time of execution in milliseconds. Tables 13 14 presents the results in the same way shown in Section 4.4.2. In this case,
after further analysis, we noticed that another query would benefit from rule application — query 9 in which we used the generic
relationship.

Analysis on the data shows that both time and number of stages are improved with respect to the baseline database. We evaluated
these improvements for statical significance with paired t-test. As in the case of smaller IMDb database evaluation in Section 5.5.2, we
found that the difference in the number of stages in the pipelines is indeed significant (𝑝-value = 0.016). In contrast to the evaluation
of the smaller database, in the large database the 𝑝-value for the time measure was very close to being below the threshold for statical
significance, with it being = 0.058. This evaluation further confirms our hypothesis, as even though the data was significantly larger
than the evaluation in Section 5.5.2, the difference in querying time grew and got close to statistical significance.

19 https://www.imdb.com/interfaces/.
20

https://www.imdb.com/interfaces/
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Table 14
The IMDb application: DB hits and execution time (in ms) for different queries and document databases.

Q2 Q3 Q4 Q5 Q6 Q7 Q9 Q10 Sum

Baseline database Time 12 431 15 941 14 408 5157 2000 22 921 7514 14 046 94 418
Stages 5 8 7 3 1 8 7 11 50

Method database Time 2554 12 100 18 665 5060 1622 10 449 7214 8590 66 254
Stages 1 4 7 3 1 4 7 7 34

6. Threats to validity

The results of the experiments should be taken with caution, considering the following threats to validity.

• Small number of queries: The experiments included only eight queries for the IMDb application, and ten queries for the
Northwind application. In the case of Graph database design and the IMDb application, only half of the selected queries turned
out to be relevant to the transformation rules. More queries that are relevant to the rules may be needed to increase the validity
of the results. However, the experiment’s results facilitate an understanding of the importance of considering queries in the
design process and their potential impact on the database performance, both in Graph and Document databases. In the future,
further evaluations using more queries may strengthen the validity of our results.

• Specific DBMSs used: We performed the experiments with one Graph database - Neo4j, and one Document database - MongoDB.
However, this seems to be a minor limitation as Neo4j is the leading Graph database provider, and MongoDB is the leading
Document database provider, according to DB-engines ranking.

• Data size: While the IMDb application includes a relatively large amount of data, current applications may store a large amount
of data, which may impact the effects of the proposed rules. However, since the rules significantly improved the performance
of the database, we may assume that it will be even more significant with more data.

• User-based evaluation: while our evaluations examined database performance, it might be important to also examine the
users’ opinions of the proposed methods. By users, we mean database designers who will apply the methods. It is important
to examine how easy it is to learn the methods and apply the transformation rules.

7. Summary

Designing NoSQL databases consists of two stages. The first stage allows the selection of the proper database technologies for
certain application based on the data, functional, and non-functional requirements [22]. The second stage refers to the design

f a certain NoSQL database, based on the same set of requirements. In this paper, we refer to the second stage and present two
ethods for designing database schemas of two NoSQL database management systems -Graph databases and Documents databases.
e based the design methods on the users’ requirements of the sought systems: data-related requirements, which are expressed

s UML class diagrams, and functional requirements, which are expressed as queries. Both methods receive the same inputs, and
ach method consists of the following steps: first, the initial class diagram is changed/adjusted so that certain of its constructs are
apped to equivalent constructs to enable easier mapping of the class diagram to the target database schema. Then, the adjusted

lass diagram is mapped to a schema of the target NoSQL database, using certain transformation rules. In the next step, the functional
equirements, namely the queries that will be used by the users of the system to retrieve or update the databases, are considered.
ccording to the types of the queries and their frequency of use, certain parts of the target database schemas may be changed to
reate database schemas that are more efficient in terms of execution time. We have expressed the various rules of transformation
ormally and demonstrated them using examples taken from a certain application. Then we conducted evaluations of the database
chemas that consider the functional requirements compared to the database schemas that do not consider these requirements.
he results of the evaluations demonstrated significant improvement: Graph databases that were designed with the consideration
f functional requirements significantly outperformed the database that was designed without these considerations. In Document
atabases that were designed according to the proposed rules, the queries were significantly less complex, and their execution times
ere also improved.

In further evaluations, we plan to include more queries and types of queries to further validate the proposed transformation rules.
hile the rules are agnostic to types of queries, we intend to examine whether the type of the query (i.e., select, insert, update,

elete) affects the performance. For example, Mior et al. [18] also referred to update and insert queries in the design process and
valuated the design impact for them as well. Other types of experiments can be found in [23–25] which compare databases with
espect to different workloads (i.e., write workload, read workload, and combined). We also plan to conduct user evaluations to find
ut how easy it is to learn and apply the design methods, and how easy it is to formulate and write queries for database schema
esigned according to the proposed methods.

Finally, our ongoing work includes implementing both design methods as a single application.20 This application will enable users
o apply the methods without the need to be familiar with the theories and rules behind them. We believe that such application
ill foster wide adoption of the methods, especially in small software development organizations, e.g., start-ups. Such application
ill also support further evaluations of the design methods.

20 https://rps.ise.bgu.ac.il/njsw27.
21

https://rps.ise.bgu.ac.il/njsw27
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