
Data & Knowledge Engineering 142 (2022) 102089

r
d
w
D
d
d

h
R
A
0

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier.com/locate/datak

A workload-driven method for designing aggregate-oriented NoSQL
databases
Liu Chen a,b, Ali Davoudian c, Mengchi Liu d,∗

a School of Computer Science, Wuhan University, Wuhan, Hubei, China
b School of Computer Science, Carleton University, Ottawa, Ontario, Canada
c IT Branch, Canada Revenue Agency, Ottawa, Ontario, Canada
d School of Computer Science, South China Normal University, Guangzhou, Guangdong, China

A R T I C L E I N F O

Keywords:
NoSQL database schemas
Database design
Workload-driven
Design trade-offs

A B S T R A C T

Due to the scalability and availability problems with traditional relational database systems,
a variety of NoSQL stores have emerged over the last decade to deal with big data. How
data are structured in a NoSQL store has a large impact on the query and update performance
and the storage usage. Thus, different from the traditional database design, not only the data
structure but also the data access patterns need to be considered in the design of NoSQL
database schemas. In this paper, we present a general workload-driven method for designing
key-value, wide-column, and document NoSQL database schemas. We first present a generic
logical model Query Path Graph (QPG) that can represent the data structures of the UML class
diagram. We also define mappings from the SQL-based query patterns to QPG and from QPG
to aggregate-oriented NoSQL schemas. We use a cost model to measure the query and update
performance and optimize the QPG schemas. We evaluate the proposed method with several
typical case studies by simulating workloads on databases with different schema designs. The
results demonstrate that our method preserves the generality and the quality of the design.

1. Introduction

Emerging big data systems [1–3] aim at managing voluminous data spread between multiple servers and ensuring the low
esponse time of queries. Such requirements for managing and querying big data have revealed the limitations of relational
atabases [4,5]. A new kind of non-relational database management systems, named NoSQL stores, have been developed to deal
ith such limitations [6–8]. They increase scalability and availability by loosening the ACID (Atomicity, Consistency, Isolation and
urability) constraints [9,10] and providing less restrictive properties, such as eventual consistency [11,12]. NoSQL stores utilize
ifferent data models for different purposes, including (among others) key-value, wide-column and document models. Despite their
ifferences, the three data models are aggregate-oriented [7]. In more detail, they organize data as units of related key-value pairs in

a nested way. Such a nested data unit represents data that are accessed (read/write) together in one operation [10,13]. Hence, they
can facilitate costly join operations by embedding data [14,15]. This means denormalizing 1:N or M:N relationships by clustering
related entities, which results in data duplication and violates the traditional database design philosophy.

To tap into the benefits of data nesting or denormalization in designing the schemas of aggregate-oriented NoSQL databases,
designers should not only consider what data will be stored in the database but also how such data will be accessed [15]. Despite
existing well-established design methods of traditional database schemas, where even some are workload-driven [16–19], they do
not fit NoSQL stores. This is mostly because they aim to achieve other targets such as ACID properties [20].

∗ Corresponding author.
E-mail addresses: dollychan@whu.edu.cn (L. Chen), ali.davoudian@cra-arc.gc.ca (A. Davoudian), liumengchi@scnu.edu.cn (M. Liu).
ttps://doi.org/10.1016/j.datak.2022.102089
eceived 2 November 2020; Received in revised form 28 July 2022; Accepted 5 October 2022
vailable online 15 October 2022
169-023X/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.datak.2022.102089
https://www.elsevier.com/locate/datak
http://www.elsevier.com/locate/datak
http://crossmark.crossref.org/dialog/?doi=10.1016/j.datak.2022.102089&domain=pdf
mailto:dollychan@whu.edu.cn
mailto:ali.davoudian@cra-arc.gc.ca
mailto:liumengchi@scnu.edu.cn
https://doi.org/10.1016/j.datak.2022.102089

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

t
N
w
o
s
e
d
s
N
s
t

s
r
c
q
o
s
g
C
u
o
o

C
N

2

k
M

2

t
E

–
–
–
–
–
–

B
e
t

2

s
i

k
s
a
o

There is no well-defined methods for NoSQL database design due to their heterogeneity [21]. Data modeling techniques need
o reflect different data access, different data consistency and durability requirements, different data model and query capability of
oSQL models. Several generic metamodels [22,23] have been proposed to represent both the relational model and NoSQL models
ith the mapping rules between the intermediate model and database models provided. However, they did not cover the design
f NoSQL databases. Several methods [24–31,31–33] have been proposed for the design of aggregate-oriented NoSQL database
chemas in the last several years. Most of methods [25–27,29–31] focus on a specific NoSQL data model, which results in extra
fforts for designers who work with different NoSQL data models and need to change between design methods. For example, a
esigner who is either developing a multi-model NoSQL database [34], or migrating an old NoSQL schema to a new one [35] has to
pecify the same conceptual schema and query workload in different notations. On the other hand, methods that support multiple
oSQL data models do not consider how data will be accessed and updated [28,32,36]. Also, to gain a good trades-off between

torage usage and query performance, a cost model is required to select a target schema in good quality, otherwise, developers need
o make choices.

To deal with the above limitations, we present a workload-driven method for designing aggregate-oriented NoSQL database
chemas. Our main contributions are as follows: (1) a generic logical model for aggregate-oriented NoSQL stores, (2) a set of mapping
ules that guide a logical data modeling process with respect to the specific features of different NoSQL data models, as well as the
onceptual data model and data access patterns, (3) a cost model to optimize the schema design by making trade-offs between the
uery performance and storage overhead or consistency maintenance and (4) a tool that automates the generation of aggregate-
riented database schemas according to the proposed method. It generates some scripts which instantiate the resulted database
chemas, with respect to targeted NoSQL stores. We evaluate our approach with case-studies used in the NoSQL literature and
enerate database schemas for the popular representatives of key-value, wide-column and document stores, i.e., Oracle NoSQL [37],
assandra [38] and MongoDB [39] respectively. As how data are structured in a NoSQL database has a large impact on query and
pdate performance, we take state-of-the-art methods [26,27] as benchmarks and compare the generated database schema with the
nes they produce. The experiments verify the quality of the generated schemas and the validity of the cost model. In some cases,
ur method performs even better.

The rest of the paper is organized as follows. Section 2 provides a running example and some background on the Oracle NoSQL,
assandra and MongoDB data models. Related works are discussed in Section 3. In Section 4, we detail the different phases in our
oSQL design process. We evaluate the method in Section 5. Finally, we conclude the paper in Section 6.

. NoSQL database models

In this section, we provide a running example to illustrate various concepts that appeared in this paper. We also introduce
ey-value, wide-column and document data models, and their popular representatives: Oracle NoSQL [37], Cassandra [38] and
ongoDB, as well as the formal definitions of their corresponding database schemas.

.1. Running example

We use the sample database for a real e-commerce system from de Lima and Mello [27]. Fig. 1 shows the conceptual schema of
his system in the UML class diagram notations. In this online store, customers can request orders consisting of different products.
ach order has payment information and the carrier that delivers it. A product belongs to a category and has a supplier.

The following are query patterns used in this online shopping application:

𝐐𝟏. Given an order id, return the order and related customer, items and products.
𝐐𝟐. Given an order id, return the order and related customer and payments.
𝐐𝟑. Given a customer id, return all orders and related carriers.
𝐐𝟒. Given a customer id, return all orders and related payments.
𝐐𝟓. Given a product id, return all related items and orders.
𝐐𝟔. Given a supplier id, return the supplier and all related products including their categories.

esides the query patterns, inserting/updating operations over single class or relationship are considered as write patterns. For
xample, writes on a customer are adding or modifying its attributes, and writes on a relationship 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 are creating or deleting
he connection between the primary key of a customer and the primary key of an order.

.2. Key-value stores

Basic key-value stores organize data as a simple collection of Key-Value (KV) pairs, where the Value part is uniquely identified by a
imple indexed Key part. Such schema-less stores encode values as byte arrays (e.g., BLOB), where their serialization/deserialization
s left to the client application. Thus, indexing and querying based on the Value part are not supported by such systems.

Oracle NoSQL is an advanced KV store where the Key part is structured as the combination of a major key and an optional minor
ey separated by the hyphen (‘–’). Both keys can be simple or composite with a sequence of components, where the components are
eparated by the forward-slash (‘/’). The Value part can be either schema-less as a byte array or schema-full using Table API [40]. In
distributed system, KV pairs are spread evenly across partitions through hashing their major keys. Applications can take advantage
f major keys to achieve data locality for all KV pairs that share the same major key. More precisely, the proper design of major
2

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

I
s
o

m
t
M
s

a
e
a
a
b

Fig. 1. Conceptual schema of an e-commerce platform.

Fig. 2. (a) a KV logical schema that satisfies the query 𝑄6 in our running example; and (b) some instances of the schema.

keys results in applying a single atomic operation with ACID guarantees on multiple KV pairs that share the same major key, and
the even distribution of KV pairs across partitions. Also, KV pairs that share the same major key are sorted in ascending order of the
value of the first component in the sequence of minor key components. An Oracle NoSQL database schema is a set of KV schemas,
defined as follows.

Definition 1. A KV schema is a sequence of components divided into the major key, the minor key and the value part, denoted by
𝑆(𝑐1, 𝑐2,… , 𝑐𝑛), where 𝑆 is the schema name, and each component 𝑐𝑖 is associated with a type 𝑡𝑖 and a role 𝑟𝑖, 𝑡𝑖 is either a primitive
NT, FLOAT, TEXT or DATE, or a collection of primitives constructed with a set ({}), a list ([]), or a map1 (<>) constructor, and 𝑟𝑖
pecifies that the component is a part of either the major key (MAJOR), the minor key (MINOR), or values (V). There are at least
ne MAJOR and one V components.

Oracle NoSQL provides simple atomic operations to access and modify individual KV pairs including put(key, value) to add or
odify a pair and get(Key) to retrieve a value corresponding to the key. It also provides an atomic multiGet(parentKey) operation

o return multiple sorted KV pairs having the same parentKey. Note that parentKey is a subsequence of the major key components.
oreover, it offers an execute operation to execute multiple put operations in an atomic and efficient way (provided that the keys

pecified in these operations all share the same major key).
For example, Fig. 2(a) shows a KV schema named SPC, and Fig. 2(b) shows some instances of the schema where Supplier_id,

s the major key, along with Product_id, as the minor key, together ensure the uniqueness of each pair. The major key Supplier_id
nsures that all products provided by a supplier are hosted in the same partition. The minor key Product_id ensures that all products
ssociated with the same supplier are sorted based on their ids. As shown in the figure, the first instance is composed of “2”/–/“123”
s its Key, and a byte array of the associated product and category as the Value. With the above schema design, the query 𝑄6 can
e answered by a single read request get(Supplier_id).

1 It is a container of key-value pairs.
3

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

o

k
r

c
c
T
T

2

C
c
a
f
s
a
p
d

D
p
b
u
c

b

Fig. 3. (a) A CF logical schema that satisfies the queries 𝑄6 in our running example; and (b) the corresponding instance.

2.3. Wide-column stores

In wide-column stores, data are organized in tables with flexible schemas. A table is a collection of rows, where each row contains
a flexible number of columns, and each column is associated with a name and a value. Each row is uniquely identified by a row
key. Correlated columns are grouped in a Column Family (CF) and then saved together.

In some wide-column stores such as Google BigTable [41] and HBase [42], rows are sorted by the row keys and related data
are stored in contiguous rows. A row key can include multiple values separated by a delimiter. In other wide-column stores such
as Cassandra, a row key is comprised of a mandatory partition key and an optional clustering key. Both keys can be simple as one
column or composite as a sequence of columns. Cassandra hashes the value of the partition key in order to determine which node
to store the corresponding rows, which is different from the row key based range partitioning used by Google Bigtable or HBase.
In this way, rows with the same partition key are stored together to increase the locality of accesses. The clustering key is used to
sort rows inside each partition. In this paper, we use Cassandra as the target wide-column store.

The wide-column database schema is a set of CF schemas, defined as follows.

Definition 2. A CF schema is a sequence of components divided into the partition key, the clustering key and ordinary components,
denoted by 𝑆(𝑐1, 𝑐2,… , 𝑐𝑛), where 𝑆 is the schema name, and each component 𝑐𝑖 corresponds to a type 𝑡𝑖 and a role 𝑟𝑖, 𝑡𝑖 is either
a primitive INT, FLOAT, TEXT or DATE, or a collection of constructed types using set “{}”, list “[]”, or map “<>” constructors on
primitives; and 𝑟𝑖 is either a component of the Partition key specified by P, the Clustering key specified by C [+|−] for ascending
r descending order, or an Ordinary column specified by O. There are at least one P and one O components.

Data access operations are performed on single CF. Given the primary key that consists of both the partition key and the clustering
ey, a unique row can be fetched or written. Given the partition key and optional predicates on clustering key columns, multiple
ows can be fetched. Additionally, the rows found can be ordered based on the clustering key.

For example, Fig. 3(a) and (b) show a CF logical schema named SPC designed for query 𝑄6 in our running example, and the
orresponding instance, respectively. Here, Supplier_id, as a single component of the partition key, along with Product_id, as the
lustering key, constitute the primary key of the column family. Each row stores a product and the related supplier and category.
he selection of Supplier_id as the partition key ensures that all products associated with a supplier are stored in the same partition.
hus, all data needed by query 𝑄6 can be fetched in one look-up with the given partition key Supplier_id of the CF 𝑆𝑃𝐶.

.4. Document stores

Document stores are extended key-value stores in which the value is represented as a document. They organize data as Document
ollections (DCs). A Document Collection (DC) is identified by its name and consists of a set of documents representing the same
ategory of information. A document has a set of properties (or key-value pairs) that can be either primitive (e.g. integer, string) or
n embedded document. As document stores know the format of documents, they allow efficient retrievals via indices and search
unctions over the keys and values of properties. Documents in MongoDB are stored in BSON format [43], which is a JSON-like
tructure. It allows the structure of a DC schema to be defined via a JSON schema [44]. A document collection can be partitioned,
nd documents are distributed to shards based on the shard key, which is one or more document properties. MongoDB adopts range
artitioning based on the original value or the hashed value of the shard key. A MongoDB database schema is a set of DC schemas,
efined as follows.

efinition 3. A DC schema is a set of hierarchical properties, denoted by 𝑆(𝑝1, 𝑝2,… , 𝑝𝑛), where 𝑆 is the schema name, and each
roperty 𝑝𝑖 corresponds to a type 𝑡𝑖 and a role 𝑟𝑖, 𝑡𝑖 is either a primitive INT, FLOAT, TEXT or DATE, an embedded document specified
y D, a reference to a document specified by *n, where n is the name of the document collection, or a collection of constructed type
sing set “{}”, list “[]”, and map “<>” constructors on either primitives, documents or references to documents; and 𝑟𝑖 is either a
omponent of the shard key specified by K, or a regular property specified by NULL.

Data access operations are usually over individual documents, which are units of data distribution and data manipulation. The
asic operations provided by MongoDB are as follows: 𝑖𝑛𝑠𝑒𝑟𝑡(𝑐𝑜𝑙, 𝑑𝑜𝑐) adds a document 𝑑𝑜𝑐 into collection 𝑐𝑜𝑙; and 𝑓𝑖𝑛𝑑(𝑐𝑜𝑙, 𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟)
4

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089
Fig. 4. Two DC schemas that satisfy 𝑄6 in our running example, by either (a) embedded documents and (b) sample document of (a) or (c) referenced documents.

retrieves from collection 𝑐𝑜𝑙 all documents matching the 𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 by performing a collection scan. The simplest selector is the empty
document {}, which matches every document so that all documents in 𝑐𝑜𝑙 are retrieved. The selector follows the hierarchical
structure of the document, and embedded documents can be accessed by specifying paths, for example, ‘‘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠.𝑝𝑟𝑜𝑑𝑢𝑐𝑡_𝑖𝑑’’ can
be used to access the products embedded in the supplier of the sample document in Fig. 4(b).

Fig. 4(a) and (b) show a logical schema and a sample for the DC schema named Collection:Supplier that embeds products and
associated categories with each supplier in our running example, where Supplier_id is the shard key. This allows an efficient retrieval
of information in query 𝑄6 in Fig. 4(a) by using 𝑓𝑖𝑛𝑑(𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟, {𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟_𝑖𝑑 ∶?}) without using the costly join operations. More
precisely, each time a supplier is retrieved, data about its associated products and related categories are also returned, which avoids
having to perform joins with data contained in another document collection. On the other hand, as Fig. 4(c) shows, we may prefer to
join suppliers, products and categories rather than embedding because of the trade-off between the query and update performance.

3. Related works

In this section, we briefly describe the existing works that address the design of NoSQL database schemas. All related works are
summarized in Table 1.

NoSQL stores are known as schema-less when storing data, but it requires the schema in order to process the data; that is,
‘‘schema on read’’. Reverse engineering methods [48–52] are proposed to extract schemas from the physical NoSQL databases.
Abdelhedi et al. [49,50] first extract the physical model from MongoDB and then generate the conceptual model in the UML class
diagram. Molina et al. [51,52] propose a data model to represent the variants of properties belonging to an entity type that can be
extracted from a document database, and then generate the schema required by the Object-Document Mappers to convert objects
into document databases for object-oriented applications.

Some works [25,27,29,30] focus on specific NoSQL stores. Li [29] proposes one of the very first work on the schema design of
NoSQL databases. It provides a set of heuristics, whereby the relational schema is mapped into the HBase database schema [42].
Chebotko et al. [25] propose a workload-driven design method for transforming an Entity-Relationship (ER) model into a database
schema in Cassandra. This mapping is based on a set of rules regarding the application workflow describing query or data access
patterns. As this mapping generates a CF for each query, it might end up with a high level of denormalization that, in turn, increases
the performance of read queries. However, as the cost of consistency maintenance is increased, the performance of write queries
might be decreased. UMLtoGraphDB [46] proposes a metamodel for Graph databases and supports transforming the UML class
diagram into the graph model. It also uses Object Constraint Language (OCL) to define business rules, queries and invariants and
provides mappings from OCL constraints to graph query language Gremlin. However, the OCL constraints are not considered when
generating the graph model. de Lima and Mello [27] propose a similar design method, but focusing on MongoDB. It converts an
Extended-Entity-Relationship (EER) model into a logical model to represent collections of documents. This transformation is based
on a set of rules regarding the workload information of estimated query frequencies and volume of data, in order to avoid data
redundancy. Jia et al. [30] propose model transformation and data migration methods from relational database to MongoDB. It
takes the query and data statistics extracted from the relational database into consideration, and supports automatic transformation
of relational database in ER model to documents in MongoDB. Documents are embedded if a relationship is labeled with ‘‘Frequent
Join’’ tag, and the corresponding entity types are not labeled with ‘‘Frequent Update’’, ‘‘Frequent Insert’’ or ‘‘Big Size’’ tags.

Some works focus on generic logical metamodels so that transformations between multiple database models can be supported
with the mapping rules provided [22,23,28,32,36,53]. SQLtoKeyNoSQL [22] uses a hierarchical canonical model as an intermediate
model between relational schema and key-based NoSQL data models (i.e., KV, CF and DC). U-Schema [23] is a unified metamodel
to cover all data model concepts of the relational schema and four NoSQL logical schemas (i.e., KV, CF, DC, and graph).
SQLtoKeyNoSQL [22] and U-schema [23] do not cover a conceptual model.

UMLtoNoSQL [32,53] presents an approach to automatically translate conceptual models expressed in UML class diagrams
to several NoSQL database models including Cassandra (CF), MongoDB (DC) and Neo4j (graph). It proposes a generic logical

metamodel, which consists of a set of tables and a set of binary relationships between tables. Tables and relationships correspond

5

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

t
t
a
r
f
p
d

e
t
c
d
A
f

a
t

a
t
f
P
d
m
r
o

4

m

Table 1
Database schema design processes for aggregate-oriented NoSQL stores.

Conceptual
schema

Logical schema Supported
data models

Queries Workload information Process
automation

Li [29] ✗ Relational W ✗ ✗ ✗

Chebotko et al. [25] ER In-house notation for
CFs

W ERQL [45] ✗ ✓

UMLtoGraphDB [46] UML A metamodel for
GraphDB

G OCL constraints ✗ ✓

de Lima and Mello [27] EER In-house notation for
documents

D XML-based [47] Estimated query
frequencies & data volume

✓

Jia et al. [30] ER Relational D SQL Frequent join & big size &
frequent modify/insert

✓

SQLtoKeyNoSQL [22] ✗ Hierarchical canonical
model

R,K,W,D ✗ ✗ ✓

Candel et al. [23] ✗ U-Schema R,K,W,D,G ✗ ✗ ✓

UMLtoNoSQL [32] UML Generic model for
NoSQL

W,D,G ✗ ✗ ✓

ModelDrivenGuide [36] UML Physical independent
metamodel

R,K,W,D,G ✗ ✗ ✗

Atzeni et al. [28] UML NoAM K,W,D ✗ ✗ ✗

Mortadelo [33] UML-like Generic data
metamodel

W,D SQL-based Highly update ✓

Mior et al. [26] ER ✗ W SQL-based Estimated query
frequencies & data volume

✓

DBSR [31] ER Directed acyclic graph D Binary join ✗ ✓

Our method UML Query path graph K,W,D SQL-based Estimated query/update
frequencies & data volume

✓

Key-value (K), Wide-column (W), Document (D), Graph (G), Relational (R).

o classes and relationships in the UML class diagram. Every table is then mapped to a column family/document/graph node in
he physical model. Several mapping rules for relationships are provided and candidate solutions for mapping a relationship are
ll generated. ModelDrivenGuide [36] proposes a physical independent method for mapping a UML class diagram to both the
elational and NoSQL models (i.e., KV, CF, DC and graph). It uses a common logical metamodel to integrate all the concepts in
ive physical models, and provides the transformation and refinement rules between and inside metamodels. A set of heuristics is
rovided to remove ineffective solutions. UMLtoNoSQL and ModelDrivenGuide are workload-agnostic so that they do not generate
atabase schemas that can efficiently implement any particular workload.

Atzeni et al. [28] propose a logical model called NoSQL Abstract Model (NoAM) that organizes data in a set of collections, and
ach collection is a set of blocks identified by block keys. A block has more than one entry, and each entry is a key-value pair where
he value can be scalar or another block. It groups related entities into aggregates based on the data access patterns, scalability and
onsistency requirement. Aggregates are then transformed into NoAM blocks by a number of guidelines. However, the process to
etermine the aggregates from a UML class diagram to NoAM blocks lacks formalizations and algorithms to achieve automation.
lso, the NoAM block is an abstraction of NoSQL constructs such as CFs or DCs, and it may be problematic in identifying important

eatures of the target data model, such as the partition and clustering keys of a CF schema.
Mortadelo [33] proposes a Generic Data Metamodel (GDM) for conceptual model and two NoSQL data models (i.e., CF and DC)

s well as the query workload. Highly Used (HU) entity types are used to control the denormalization levels of entities. However,
here is no cost model used to evaluation the validity for normalizing HU entities.

Some works [26,31] focus on schema evaluation among all possible solutions to select a suitable target physical schema based on
cost model. Mior et al. [26] propose a tool, called NoSQL Schema Evaluator (NoSE), which takes into account all alternative plans

o generate a wide-column database schema. It maps a given ER model along with the workload information of estimated query
requencies and volume of data into all candidate plans and selects the one offering the best performance through a Binary Integer
rogramming (BIP) approach [54]. DBSR [31] takes the conceptual model and read workload as input, and generates a suggested
ocument schema and the corresponding query plan recommendations. It takes a bottom-up approach; that is, each entity in ER
odel is firstly mapped to a document, then all possible optimizations are iterated, meanwhile either embedded documents or

eferenced documents are built for relationships. However, it only considers the read patterns of binary joins, and other query
perations and update patterns are not covered.

. Our approach

Fig. 5 shows how our method is used to design aggregate-oriented NoSQL database schemas. We define a generic logical NoSQL

odel called Query Path Graph (QPG) that can reflect the data structure, data access pattern as well as the query capabilities,

6

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089
Fig. 5. An overview of our method for designing NoSQL database schemas.

partitioning and scalability features of aggregate-oriented NoSQL stores. Our method first generates an initial QPG schema from
the conceptual model represented by a UML class diagram and a set of query patterns. Based on class cardinalities, relationship
multiplicities, and query/update frequencies, we use a cost model to optimize the QPG, which makes a trade-off between query and
update costs. Finally, the optimized QPG is mapped into the KV, CF and DC schemas. The details are explained in the following
sections.

4.1. Conceptual schema

In order to create a NoSQL database schema, as discussed in the earlier works [25–28], a conceptual schema is usually used to
define a succinct overview of the data requirements and provide detailed descriptions of the entities, relationships, and constraints
[55]. The conceptual schema reflects the application requirement and workflow, and describes the domain of interests. We represent
this schema using the most fundamental and widely used UML class diagram with the following features.

• A class has a name and a number of attributes, and the primary key of the class consists of one or more attributes.
• A relationship has a name and a number of attributes, as well as multiplicities indicating how many objects of one class can

be associated with objects of another class, which are represented as 1, *, 0..1, 1..* or 0..*, where 1 and * indicate 1 or more
respectively and the rest represent the ranges.

Fig. 1 shows the conceptual schema that has eight classes: Customer, Order, Item, Product, Category, Supplier, Payment and Carrier, as
well as their attributes labeled [𝑃𝐾] to indicate they are part of the primary key, and relationships with multiplicities and attributes.

4.2. Workload modeling

An application workload is a set of query/update patterns, represented as 𝑊 =  ∪  , where  is a set of query patterns
and  = 𝐶 ∪ 𝑅 is a set of update patterns consisting of a set of classes and relationships. Similar to GMAP [56] with a SQL-based
query language independent of database schemas, a SQL-based language with the following simple syntax is used to represent query
patterns over the UML class diagram:

SELECT 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

FROM 𝑞𝑢𝑒𝑟𝑦 𝑝𝑎𝑡ℎ (, 𝑞𝑢𝑒𝑟𝑦 𝑝𝑎𝑡ℎ)*
WHERE 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 {= | < | <= | > | >=} 𝑣𝑎𝑙𝑢𝑒

[AND ...]
[ORDER BY 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒[(ASC)]|[(DESC)] [, . . .]]

where the FROM clause specifies query paths with classes and relationships, the SELECT clause specifies the projection of attributes
of one or more classes, the WHERE clause specifies one or more equality and/or inequality conditions over the classes, and the
optional ORDER BY clause specifies the attributes used to order the results. Note that all kinds of binary relationships in the UML
class diagram can be used in the query paths to represent the data needed by a query pattern, and the classes and relationships used
in the query paths form a subgraph of the UML class diagram. Aggregate-oriented NoSQL stores support simple queries and allow
data to be aggregated in a hierarchical structure as introduced in Section 2. We assume that the query paths form an acyclic graph,
as the existence of a cycle would result in infinite loops when nesting data.

The following statement shows the SQL-based query for 𝑄6 in the running example, which finds supplier, product and category
details with a given specific supplier:

SELECT Supplier.id, Supplier.name, Supplier.contacts, Product.id,
Product.price,Product.description,Category.id,Category.description

FROM Supplier.furnishes.Product.catalogues.Category
WHERE Supplier.id = ?;

The query uses objects in classes 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 and 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 as well as the relationships between them and returns the results
that match the given 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟.𝑖𝑑. Fig. 6 shows the query paths of the query patterns presented in Section 2.1. Note that query patterns
𝑄2 and 𝑄4 use the union type 𝑃𝑎𝑦𝑚𝑒𝑛𝑡. Since the query paths indicate classes and corresponding relationships required by the query,

relationships of special types such as generalization or union type are treated as regular one-to-one binary relationships.

7

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089
Fig. 6. The query paths of query patterns of the running example in Section 2.1.

4.3. Query path graph

A conceptual schema specifies what data structures the database is composed of. But it is not enough to design a NoSQL
database schema as how data are accessed is not considered [25–27]. We define a generic NoSQL logical model called Query
Path Graph (QPG). The goal of QPG is to represent both the data structures and the data access patterns by aggregation trees, and
each aggregation tree can be mapped to a NoSQL schema (i.e. KV, CF or DC) in the end. The definitions of Query Path Graph
(QPG), Aggregation Tree and Execution Plan are given as follows.

Definition 4. Given a UML class diagram 𝐷 = (𝐶,𝑅), where 𝐶 = {𝑐1,… , 𝑐𝑛} is a set of classes and 𝑅 = {(𝑐𝑖, 𝑐𝑗)|𝑐𝑖, 𝑐𝑗 ∈ 𝐶} is a set of
relationships. A relationship 𝑟 = (𝑐𝑖, 𝑐𝑗) represents the mutual connection between class 𝑐𝑖 and 𝑐𝑗 . Both class and relationship have
a name and a set of attributes. A Query Path Graph (QPG) is defined as a labeled directed multigraph 𝐺 = (𝑁,𝐸,𝐿), where

(1) Every class in 𝐶 is a node in 𝑁 . Besides having name and attributes, each attribute may have a set of Scalar Attribute
(SA) specifications of four kinds: Equality Attribute (EA), Inequality Attribute (IA), Ordering Attribute (OA) and Projection
Attribute (PA). Each SA specification is a pair of SA type and a set of aggregation labels, which indicates the functionalities
of the attribute in aggregation trees defined in Definition 5. Also, a node can be assigned as the Access Point [𝐴𝑃] of one or
more aggregation trees.

(2) 𝐸 ⊆ 𝑁 × 𝑁 is a set of directed edges. Each directed edge 𝑒 = (𝑛𝑖, 𝑛𝑗) ∈ 𝐸 corresponds to a relationship 𝑟 = (𝑐𝑖, 𝑐𝑗) ∈ 𝑅.
Besides having name, attributes and multiplicities on relationships, an edge is also associated with a set of aggregation labels
indicating one or more aggregation trees the edge belongs to, see Definition 5. Similar to attributes of QPG nodes, an attribute
of QPG edges has a set of SA specifications as well.

(3) 𝐿 is a set of aggregation labels and each of them indicates an aggregation tree 𝐺(𝑙), with 𝑙 ∈ 𝐿.

Definition 5. An aggregation tree 𝐺(𝑙) = (𝑁 ′, 𝐸′, {𝑙}) is a sub-graph of 𝐺 = (𝑁,𝐸,𝐿), where 𝑙 ∈ 𝐿; 𝐸′ ⊆ 𝐸 and for each 𝑒 ∈ 𝐸′, the
set of aggregation labels associated with 𝑒 contains 𝑙; and 𝑁 ′ ⊆ 𝑁 is the union of all nodes of edges in 𝐸′. The root of the tree is
the only node in 𝑁 ′ that does not have any incoming edge.

Fig. 7(a) shows an example of the QPG schema, which consists of eight nodes, ten directed edges and a set of aggregation labels
indicating six aggregation trees. The aggregation tree labeled 6 consists of nodes 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 and Category, and edges furnishes
and catalogues with node Supplier as the root. As an edge may participate in more than one aggregation tree, there is a set of labels
associated with an edge. The edge 𝑐𝑜𝑚𝑚𝑖𝑡𝑠 is associated with {2, 4} and belongs to two aggregation trees. Accordingly, attributes of
nodes and edges are also involved in one or more aggregation trees. The 𝑆𝐴 specification {[𝑃𝐴 ∶ {1, 6}], [𝐸𝐴 ∶ {5}]} on attribute
𝑖𝑑 of node 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 indicates that in aggregation tree labeled 5, 𝑖𝑑 is used for the equality search; and in aggregation trees labeled
1 and 6 respectively, 𝑖𝑑 is the attribute to be projected. More details are explained in Section 4.4.

Definition 6. Given a workload 𝑊 , a QPG schema 𝐺 = (𝑁,𝐸,𝐿) and (𝐿) the powerset of 𝐿, the execution plan 𝛺 for the workload
𝑊 on the QPG schema 𝐺 is a set of mapping from 𝑊 to (𝐿).

Fig. 7(b) shows the execution plan 𝛺 for all query and update patterns based on the given QPG schema, where the first six
mappings are for query patterns and the rest for update patterns on each class/relationship. Each query/update pattern is mapped
to a set of aggregation labels. For example, 𝑄1 → {1} indicates that query pattern 𝑄1 is answered by the aggregation tree labeled
1; and 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 → {1, 2, 3, 4} indicates that updates on objects of class 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 need to access four aggregation trees labeled 1, 2,
3 and 4 respectively.
8

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089
Fig. 7. The initial QPG schema and the execution plan generated for the running example in Fig. 1.

4.4. Mapping Query Patterns to QPG schemas

Given a UML class diagram 𝐷 = (𝐶,𝑅) and an application workload 𝑊 =  ∪ , first the initial QPG schema 𝐺 = (𝑁,𝐸,𝐿) and
the corresponding execution plan 𝛺 is generated as follows.

1. Mapping UML classes to QPG nodes.
For each class 𝑐𝑖 ∈ 𝐶, a node 𝑛𝑖 with all the attributes and keys in 𝑐𝑖 is added to 𝑁 . As Fig. 7 shows, the generated QPG schema

has eight nodes as the classes in the UML class diagram.
2. Assigning a QPG node as the Access Point (AP) for each query pattern 𝑄𝑘 ∈ .
NoSQL stores usually support simple queries in which all related data aggregated within an entry point can be fetched by one

read; that is, classes and relationships accessed by the query pattern 𝑄𝑘 are connected and grouped by the attributes used in the
equality search of 𝑄𝑘. Thus, a node 𝑛 is determined as the AP for 𝑄𝑘 when one or more attributes of the corresponding class 𝑐 ∈ 𝐶
are used as equality predicates of 𝑄𝑘. A node can be assigned as the access point for several query patterns, for example Customer
is the access point for 𝑄3 and 𝑄4 in Fig. 7. If multiple classes have equality attributes, the one with the least total number of
duplication of classes and relationships is chosen as the AP, see Section 4.6.

3. Mapping UML relationships to directed QPG edges.
For each query pattern 𝑄𝑘 ∈ , starting from its 𝐴𝑃 node determined in step 2, add the edges that correspond to the relationships

in the query path of 𝑄𝑘 to 𝐸, and label them with the aggregation label 𝑘. If a directed edge already exists, append the aggregation
label 𝑘 to the existing set of aggregation labels. The aggregation tree labeled 𝑘 is the same as the query path of 𝑄𝑘 at this stage
of initialization. Thus, add 𝑄𝑘 → {𝑘} to the execution plan 𝛺. Note that the aggregation label can be any literal and the indices
of query patterns are used here for simplicity. For example, the query path of 𝑄3 is 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟.𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠.𝑂𝑟𝑑𝑒𝑟.𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑠.𝐶𝑎𝑟𝑟𝑖𝑒𝑟, and
the directed edge 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 from 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 to 𝑂𝑟𝑑𝑒𝑟 and the directed edge 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑠 from 𝑂𝑟𝑑𝑒𝑟 to 𝐶𝑎𝑟𝑟𝑖𝑒𝑟 are added to the QPG with
node 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 as the 𝐴𝑃 . Accordingly, these two edges are labeled 3 and the mapping 𝑄3 → {3} is added to 𝛺. Note that there are
two edges named as requests, since they are in different directions in different aggregation trees.

4. Determining the attribute functionality in 𝐺.
For each query pattern 𝑄𝑘 ∈ , add or merge SA specification pairs [𝐸𝐴, {𝑘}], [𝐼𝐴, {𝑘}], [𝑃𝐴, {𝑘}] or [𝑂𝐴, {𝑘}] to each attribute

of nodes and edges based on which clause of 𝑄𝑘 the attribute is in. For example, every attribute in Fig. 7 has a set of SA specifications
representing its functionality in the corresponding query patterns.

5. Initializing the execution plan 𝛺 for each query/update pattern in 𝑊 .
In step 3 above, the execution plan for query patterns is initialized. For each node 𝑛 ∈ 𝑁 , add 𝑛 → 𝑝 to 𝛺, where 𝑝 is the union of

the sets of aggregation labels in SA specifications on all non primary key attributes of 𝑛 generated in 4. Note that when the primary
key attribute is the only scalar attribute in an aggregation tree, the corresponding class is normalized and updates on objects of
this class do not need to access this aggregation. For example, the update operations on objects of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 need to access four
aggregations labeled 1, 2, 3 and 4, represented as 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 → {1, 2, 3, 4} in 𝛺. For each relationship 𝑟 ∈ 𝑅, add 𝑟 → 𝑞 to 𝛺, where
𝑞 is the union of the sets of aggregation labels associated with all edges in 𝐸 that have the same name as 𝑟 regardless of the edge
directions. For example, the update operations on relationship requests need to access four aggregation trees that have two edges

named requests in different directions, represented as 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 → {1, 2, 3, 4} in 𝛺.

9

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

4

4

m
f
a

Fig. 8. KV, CF, DC schemas generated from the aggregation tree 𝐺(1) in Fig. 7.

.5. Mapping QPG schemas to NoSQL schemas

Given a QPG schema 𝐺 = (𝑁,𝐸,𝐿), each aggregation tree 𝐺(𝑙), with 𝑙 ∈ 𝐿, is mapped to a KV, CF and DC schema respectively.
The following is a list of functions on the QPG schema 𝐺 = (𝑁,𝐸,𝐿):

• 𝑎𝑐𝑐𝑒𝑠𝑠𝑃 𝑜𝑖𝑛𝑡(𝑙): return the root node of the aggregation tree 𝐺(𝑙).
• 𝑠𝑐𝑎𝑙𝑎𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑛, 𝑙): return a list of the scalar attributes of node 𝑛 in the aggregation tree 𝐺(𝑙).
• 𝑘𝑒𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑛): return a list of the primary key attributes of node 𝑛.
• 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛, 𝑙): return a list of the children of node 𝑛 in the aggregation tree 𝐺(𝑙).
• 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦(𝑒): return the corresponding multiplicity of the directed edge 𝑒 = (𝑛𝑖, 𝑛𝑗) on 𝑛𝑗 ’s side.
• 𝑠𝑐𝑎𝑙𝑎𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑒, 𝑙): return a list of the scalar attributes of edge 𝑒 in the aggregation tree 𝐺(𝑙).
• 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙): return a list of all attributes whose SA specification contains 𝐸𝐴 ∶ {𝑙}.
• 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙): return a list of all attributes whose SA specification contains 𝐼𝐴 ∶ {𝑙}.
• 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙): return a list of all attributes whose SA specification contains 𝑂𝐴 ∶ {𝑙}.
• 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙): return a list of all attributes whose SA specification contains 𝑃𝐴 ∶ {𝑙}.

.5.1. Mapping aggregation trees to CF schemas
Given an aggregation tree 𝐺(𝑙), the algorithm 𝐴𝑇 𝑡𝑜𝐶𝐹 on page 19 generates the CF schema. Note that 𝐴𝑇 𝑡𝑜𝐶𝐹 is a recursive

ethod that traverses the aggregation tree 𝐺(𝑙) starting from the root 𝑎𝑐𝑐𝑒𝑠𝑠𝑃 𝑜𝑖𝑛𝑡(𝑙). Fig. 8 shows the CF schema 𝑆1 generated
or the aggregation tree 𝐺(1) in Fig. 7, where the equality attribute 𝑂𝑟𝑑𝑒𝑟_𝑖𝑑 is set as the partition key (P). If there are inequality
ttributes or ordering attributes, they will be set as the clustering keys (C) of CF 𝑆1. 𝐼𝑡𝑒𝑚_𝑖𝑑 is set as the clustering key (C) based

on the multiplicities of the corresponding relationship, so that each row of CF 𝑆1 is unique.

4.5.2. Mapping aggregation trees to KV schemas
Mapping an aggregation tree to a KV schema is similar to that of CF schemas. Fig. 8 shows the generated KV schema 𝑆1 for the

aggregation tree 𝐺(1), where the partition key P in the CF 𝑆1 is the major key in KV; and the clustering key C is the minor key
accordingly. Thus, the cost to map an aggregation tree to KV schemas is the same as that to CF schemas.

4.5.3. Mapping aggregation trees to DC schemas
Given an aggregation tree 𝐺(𝑙), the algorithm 𝐴𝑇 𝑡𝑜𝐷𝐶 on page 20 traverses the tree from the root 𝑎𝑐𝑐𝑒𝑠𝑠𝑃 𝑜𝑖𝑛𝑡(𝑙) and generates

the DC schema. Fig. 8 shows the generated DC schema Collection:Order for the aggregation tree 𝐺(1), where the equality attributes
are set as the shard key (K) components. Node 𝐼𝑡𝑒𝑚 is mapped as an array of embedded documents in 𝑆1. If the multiplicity of a
child node is one, the properties of the child node are directly attached to the parent document, instead of adding one more layer
when accessing the properties, such as the nodes 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 in Fig. 8. If a leaf node has only its primary key attributes
in the aggregation tree, it is mapped to a referenced documents.

4.6. Cost modeling

NoSQL stores provide high availability and scalability by horizontal partition of the database and (to some extent) evenly
distributing data units over physical servers. The increased storage usage by data denormalization can be handled by scaling out.
Thus, storage constraint is not the main concern. Therefore, we use query/update cost to further optimize the specific NoSQL
database schema. Note that the update cost is related to the storage usage as it depends on the number of copies.
10

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

O
f

e
f

Algorithm 1. ATtoCF

Input: A QPG schema 𝐺, an aggregation label 𝑙, a node 𝑁 and its parent 𝑇 , the corresponding evolving CF schema 𝑆𝑙
utput: 𝑆𝑙 is evolved regarding 𝑁 ’s scalar attributes
or each 𝐴 ∈ 𝑠𝑐𝑎𝑙𝑎𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑁, 𝑙) ∪ 𝑠𝑐𝑎𝑙𝑎𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠((𝑇 ,𝑁), 𝑙) do

// Attributes labeled as equality attributes are set as partition keys.
if 𝐴 ∈ 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙) then

Add 𝐴 as a 𝑃 component into 𝑆𝑙;
end
// Attributes labeled as inequality or ordering attributes are set as clustering keys.
else if 𝐴 ∈ 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙) and 𝐴 ∉ 𝑆𝑙 then

Add 𝐴 as a 𝐶 component into 𝑆𝑙;
end
else if 𝐴 ∈ 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙) and 𝐴 ∉ 𝑆𝑙 then

Add 𝐴 as a 𝐶 component into 𝑆𝑙 with the corresponding <+>/<-> order;
end
// Key attributes of node 𝑁 are set as clustering keys if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦((𝑇 ,𝑁)) =’*’, otherwise, as ordinary

columns.
else if 𝐴 ∈ 𝑘𝑒𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑁) and 𝐴 ∉ 𝑆𝑙 then

if (𝑇 = ∅) or (𝑇 ≠ ∅ and 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦((𝑇 ,𝑁)) =’*’) then
Add 𝐴 as a 𝐶 component into 𝑆𝑙;

end
end
if 𝐴 ∈ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙) and 𝐴 ∉ 𝑆𝑙 then

Add 𝐴 as a 𝑂 component into 𝑆𝑙;
end

nd
or each 𝑥 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁, 𝑙) do

𝐴𝑇 𝑡𝑜𝐶𝐹 (𝐺, 𝑙, 𝑥,𝑁, 𝑆𝑙);
end

Given a UML class diagram 𝐷 = (𝐶,𝑅) and an application workload 𝑊 =  ∪ , we introduce two functions to measure the

workload cost:

(1) 𝑐𝑜𝑢𝑛𝑡(𝑐𝑖, 𝑐𝑗), where (𝑐𝑖, 𝑐𝑗) ∈ 𝑅, is the average number of connections that an object in class 𝑐𝑖 has with objects in class 𝑐𝑗 . For

example, 𝑐𝑜𝑢𝑛𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟, 𝑂𝑟𝑑𝑒𝑟) = 34 and 𝑐𝑜𝑢𝑛𝑡(𝑂𝑟𝑑𝑒𝑟, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) = 1 in Fig. 7. Multiplicities of the corresponding relationships

in 𝑅 are taken as the default values of the function.

(2) 𝑓 (𝑤𝑖), where 𝑤𝑖 ∈ 𝑊 , is the expected frequency for a query or update pattern in the application workload. We assume that

query patterns have overall higher frequencies than update patterns, and 𝑓 (𝑤𝑖) helps to detect a few outstanding classes or

relationships for QPG schema optimizations.

The cost of a query or update pattern is measured using the number of read or write commands needed by the target NoSQL store

to accomplish the workload. The cost of a workload 𝑊 =  ∪ applied to the QPG schema 𝐺 = (𝑁,𝐸,𝐿) is defined as follows:

𝑐𝑜𝑠𝑡(𝐺) =
∑

𝑖

∑

𝑗
(𝑐𝑟(𝑖, 𝑙𝑗) ∗ 𝑓 (𝑖)) +

∑

𝑖

∑

𝑗
(𝑐𝑤(𝑖, 𝑙𝑗) ∗ 𝑓 (𝑖)) (1)

where 𝑐𝑟(𝑖, 𝑙𝑗) is the number of reads needed by the aggregation tree 𝐺(𝑙𝑗) to answer query 𝑖; and 𝑐𝑤(𝑖, 𝑙𝑗) is the number of

copies the object/relationship of 𝑖 has in the aggregation tree 𝐺(𝑙𝑗) that will be written. 𝑐𝑟(𝑖, 𝑙𝑗) = 0 and 𝑐𝑤(𝑖, 𝑙𝑗) = 0 if the

aggregation tree labeled 𝑙𝑗 is not in the execution plan of 𝑖 and 𝑖 respectively. The calculations of 𝑐𝑟(𝑖, 𝑙𝑗) and 𝑐𝑤(𝑖, 𝑙𝑗) are

introduced in the following sections.

Our approach starts with a set of optimal aggregation trees for all query patterns as shown in Section 4.4, which achieves the

best data locality and query efficiency. Thus, every query pattern 𝑘 can be answered by one look-up on the aggregation tree

𝐺(𝑘) and 𝑐𝑟(𝑘, 𝑘) is 1 initially. On the other hand, each aggregation tree in QPG schema indicates an aggregation in the target

NoSQL database, and the number of copies of objects and relationships varies based on the target NoSQL store used as shown
11

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

O
I
f

e

i
m
b


𝐺

w
o
f
d
e
t
c
a
w

4

U

Algorithm 2. ATtoDC

Input: A QPG schema 𝐺, an aggregation label 𝑙, a node 𝑁 and its parent 𝑇 , and 𝑆𝑇 as a hierarchical schema of 𝑇
utput: 𝑆𝑇 is evolved regarding 𝑁 ’s scalar attributes

nitialize 𝑆𝑁 as a schema of 𝑁 ;
or each 𝐴 ∈ 𝑠𝑐𝑎𝑙𝑎𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑁, 𝑙) ∪ 𝑠𝑐𝑎𝑙𝑎𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠((𝑇 ,𝑁), 𝑙) do

Add 𝐴 as a property into 𝑆𝑁 ;
if 𝐴 ∈ 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙) then

Set 𝐴 as a 𝐾 component;
end

end
for each 𝑥 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁, 𝑙) do

𝐴𝑇 𝑡𝑜𝐷𝐶(𝐺, 𝑙, 𝑥,𝑁, 𝑆𝑁);
end
if 𝑇 ≠ ∅ then

if 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁, 𝑙) = ∅ and 𝑠𝑐𝑎𝑙𝑎𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑁, 𝑙) = 𝑘𝑒𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑁) then
// N is a leaf node and its primary keys are the only scalar attributes in aggregation tree G(l).
if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦((𝑇 ,𝑁)) =’*’ then

Add 𝑁 as an array of referenced documents {∗ 𝑆𝑁} into 𝑆𝑇 ;
end
else

Add 𝑁 as a referenced document ∗ 𝑆𝑁 property into 𝑆𝑇 ;
end

end
else

if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦((𝑇 ,𝑁)) =’*’ then
Add 𝑁 as an array of embedded documents {𝐷} into 𝑆𝑇 ;

end
else

Add all properties of 𝑆𝑁 into 𝑆𝑇 ;// Instead of adding an extra layer to the structure of 𝑆𝑇

end
end

nd

n Section 4.5. A column family unnests the aggregation tree into a flattened table so that the data of an object are copied in
ultiple rows in a column family. A document keeps the same hierarchical structures as the aggregation tree, and one object can

e copied in one or more documents in the same document collection. Therefore, for an aggregation tree 𝐺(𝑙𝑗) = (𝑁 ′, 𝐸′, {𝑙𝑗}),
assume there is a path from its root 𝑛1 to a node 𝑛𝑖 in 𝑁 ′, represented as (𝑛1 → ... → 𝑛𝑖), and the rest edges in 𝐸′ are represented as
′(𝑖) = 𝐸′ − {(𝑛𝑘−1, 𝑛𝑘)|1 < 𝑘 ≤ 𝑖}, 𝑐𝑤(𝑛𝑖, 𝑙𝑗) and 𝑐𝑤((𝑛𝑖, 𝑛𝑖+1), 𝑙𝑗) are the costs to update node 𝑛𝑖 and edge (𝑛𝑖, 𝑛𝑖+1) in aggregation tree
(𝑙𝑗) for a column family and a document collection defined as follows respectively:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑐𝑤(𝑛𝑖, 𝑙𝑗) = 𝛱
1<𝑘≤𝑖

𝑐𝑜𝑢𝑛𝑡(𝑛𝑘, 𝑛𝑘−1) ∗ 𝛱
𝑒∈ ′(𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑒), (𝐶𝐹)

𝑐𝑤((𝑛𝑖, 𝑛𝑖+1), 𝑙𝑗) = 𝛱
1<𝑘≤𝑖

𝑐𝑜𝑢𝑛𝑡(𝑛𝑘, 𝑛𝑘−1) ∗ 𝛱
𝑒∈ ′(𝑖+1)

𝑐𝑜𝑢𝑛𝑡(𝑒), (𝐶𝐹)

𝑐𝑤(𝑛𝑖, 𝑙𝑗) = 𝛱
1<𝑘≤𝑖

𝑐𝑜𝑢𝑛𝑡(𝑛𝑘, 𝑛𝑘−1), (𝐷𝐶)

𝑐𝑤((𝑛𝑖, 𝑛𝑖+1), 𝑙𝑗) = 𝛱
1<𝑘≤𝑖

𝑐𝑜𝑢𝑛𝑡(𝑛𝑘, 𝑛𝑘−1), (𝐷𝐶)

(2)

here 𝑐𝑜𝑢𝑛𝑡(𝑛𝑘, 𝑛𝑘−1) = 1, if 𝑘 = 1. Fig. 9 illustrates the calculations of 𝑐𝑤 with an example aggregation tree rooted 𝑛1 connecting
ther nodes by five edges such that 𝑐𝑜𝑢𝑛𝑡(𝑛2, 𝑛1) = 𝑎, 𝑐𝑜𝑢𝑛𝑡(𝑛1, 𝑛2) = 𝑏, etc. The number of copies of a node or an edge for a column
amily relates to the counts of all the other edges, for example 𝑐𝑤(𝑛3, 𝑙) = 𝑐 ∗ 𝑏 ∗ 𝑓 ∗ ℎ ∗ 𝑛; that is, the number of copies of node 𝑛3
epends on all the five edges in the aggregation tree. Similarly, the number of copies of edge (𝑛3, 𝑛5) depends on all the other four
dges. On the other hand, the number of copies of a node or an edge for a document collection only depends on the counts of edges
owards the root of the aggregation tree for example 𝑐𝑤(𝑛5, 𝑙) = 𝑔 ∗ 𝑐, and the repetitions of connections relate to the copies of the
orresponding objects for example 𝑐𝑤((𝑛3, 𝑛5), 𝑙) = 𝑐𝑤(𝑛3, 𝑙) = 𝑐. As shown in Section 4.5, the same strategies are taken for mapping
n aggregation tree to a KV schema and a CF schema. Thus, the calculation of update cost for key-value stores is the same as for
ide-column stores and as well as the optimization strategies.

.7. Schema optimization

Query performance on the initial QPG schema generated in Section 4.4 is optimal as it just focuses on the query workload.
pdate performance can be improved by normalization at cost of query performance. If the increased query cost is amended by
12

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

t
w
𝐺
c

△
u

4

o
t
t
A
a
t

Fig. 9. Write cost calculation examples over a CF and a DC from an aggregation tree 𝐺(𝑙) respectively.

Fig. 10. Illustrations of normalization patterns on the aggregation tree in Fig. 9.

he decreased update cost, the total cost is decreased and the schema is optimized according to Eq. (1). Note that even though
e do not actively control the storage usage, data size decreased as optimizing update performance. Given an aggregation tree
(𝑙) = (𝑁,𝐸, {𝑙}) rooted 𝑛1 ∈ 𝑁 that is split to two subtrees 𝐺(𝑙1) = (𝑁1, 𝐸1, {𝑙1}) rooted 𝑛1 and 𝐺(𝑙2) = (𝑁2, 𝐸2, {𝑙2}) rooted 𝑛2, the
hange of cost is calculated as follows:

△𝑐𝑜𝑠𝑡 =𝑐𝑜𝑠𝑡(𝐺(𝑙1)) + 𝑐𝑜𝑠𝑡(𝐺(𝑙2)) − 𝑐𝑜𝑠𝑡(𝐺(𝑙))

=
∑

𝑖
((𝑐𝑟(𝑖, 𝑙1) + 𝑐𝑟(𝑖, 𝑙2) − 𝑐𝑟(𝑖, 𝑙)) ∗ 𝑓 (𝑖))+

∑

𝑖
((𝑐𝑤(𝑖, 𝑙1) + 𝑐𝑤(𝑖, 𝑙2) − 𝑐𝑤(𝑖, 𝑙)) ∗ 𝑓 (𝑖))

(3)

𝑐𝑜𝑠𝑡 calculates the increased query cost of all queries whose execution plan has the aggregation tree labeled 𝑙 and the decreased
pdate cost when nodes and edges in 𝐺(𝑙) are moved to smaller aggregation trees. If △𝑐𝑜𝑠𝑡 < 0, the total system cost is decreased.

.7.1. Normalization
Normalizing an aggregation tree is to split it into two subtrees. Fig. 10 shows four patterns to split the aggregation tree in Fig. 9

n node 𝑛3, and the new query/update costs for a column family and a document collection after normalization. In each pattern,
he aggregation tree 𝐺(𝑙) rooted 𝑛1 is split to two sub aggregation trees 𝐺(𝑙1) rooted 𝑛1 and 𝐺(𝑙2) rooted 𝑛3. In order to achieve
he same query capability as the original aggregation tree 𝐺(𝑙), additional reads are needed on the new subtrees to join the results.
s the figure shows, given a specific object of 𝑛1 in 𝐺(𝑙1), 𝑑 different objects of 𝑛3 are accessed. Thus, 𝑑 reads are needed on the
ggregation tree 𝐺(𝑙2); that is, 𝑐𝑟(𝑄𝑘, 𝑙) is the number of reads that query 𝑄𝑘 needs on the aggregation tree 𝐺(𝑙), and after splitting
he tree on 𝑛3 we can get the new query cost as 𝑐𝑟(𝑄𝑘, 𝑙1) = 𝑐𝑟(𝑄𝑘, 𝑙) and 𝑐𝑟(𝑄𝑘, 𝑙2) = 𝑑 ∗ 𝑐𝑟(𝑄𝑘, 𝑙1). Therefore, given the aggregation

tree 𝐺(𝑙) = (𝑁 ′, 𝐸′, {𝑙}) with a path from the root 𝑛1 to node 𝑛𝑖, represented as (𝑛1 → ... → 𝑛𝑖), the query cost of 𝑄𝑘 on the new sub
aggregation trees 𝐺(𝑙1) rooted 𝑛1 and 𝐺(𝑙2) rooted 𝑛𝑖 are defined as follows:

𝑐𝑟(𝑄𝑘, 𝑙1) = 𝑐𝑟(𝑄𝑘, 𝑙)

𝑐𝑟(𝑄𝑘, 𝑙2) = 𝑐𝑟(𝑄𝑘, 𝑙) ∗ 𝛱
1<𝑗≤𝑖

𝑐𝑜𝑢𝑛𝑡(𝑛𝑗−1, 𝑛𝑗) (4)
13

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089
Fig. 11. Examples of normalizing the aggregation tree 𝐺(1) in Fig. 7.

Normalizing Nodes. Normalizing a node 𝑛 from an aggregation tree 𝐺(𝑙) moves all scalar attributes of node 𝑛 in 𝐺(𝑙) to a new
aggregation tree. As a result, the new aggregation tree has a single node of 𝑛 and only the primary key of node 𝑛 is kept in 𝐺(𝑙). For
example, all scalar attributes of 𝑛3 in 𝐺(𝑙) are moved to 𝐺(𝑙2) and only the primary key of 𝑛3 is kept in 𝐺(𝑙1) as shown in Fig. 10(a).
Update cost of node 𝑛3 is decreased from 𝑐𝑤(𝑛3, 𝑙) to 1, represented as 𝑐𝑤(𝑛3, 𝑙1) = 0 and 𝑐𝑤(𝑛3, 𝑙2) = 1. Update costs of other nodes
and edges remain the same as in the original aggregation tree, represented as 𝑐𝑤(𝑢𝑖, 𝑙1) = 𝑐𝑤(𝑢𝑖, 𝑙), where 𝑢𝑖 ≠ 𝑛3.

Normalizing Edges. Normalizing an edge 𝑒 = (𝑛𝑖, 𝑛𝑗) in an aggregation tree 𝐺(𝑙) moves the edge 𝑒 and the corresponding subtree
of 𝑛𝑗 to a new aggregation tree. Fig. 10(b) and (c) show that one of the two out-going edges of node 𝑛3 is split from the original
aggregation tree 𝐺(𝑙). Since the execution plan of a query using 𝐺(𝑙) needs to read 𝐺(𝑙1) first and then 𝐺(𝑙2), the scalar attributes of
node 𝑛3 are kept in 𝐺(𝑙1) and only the primary key of 𝑛3 is used in 𝐺(𝑙2).

Fig. 10(d) shows how to normalize node 𝑛3 and its two out-going edges together. When mapping 𝐺(𝑙) to a column family,
update costs of nodes and edges in 𝐺(𝑙1) and 𝐺(𝑙2) in Fig. 10(b), (c) and (d) are different; but when mapping 𝐺(𝑙) to a document
collection, their costs are the same. Thus, when targeting document stores, every time a node and all its out-going edges, called a
normalization unit, is normalized together; and when targeting wide-column stores, a normalization unit is either an edge or a node.
A normalization unit determines the pattern to split an aggregation tree to two subtrees at a time. Therefore, in each iteration to
optimize an aggregation tree, the △𝑐𝑜𝑠𝑡 values for all candidate normalization units are calculated first according to Eq. (3) and
the normalization unit with the minimal value is chosen and applied. The optimization process ends when there is no normalization
unit whose △𝑐𝑜𝑠𝑡 < 0. Fig. 11 shows how to normalize the aggregation tree 𝐺(1) in Fig. 7 for a column family and a document
collection respectively. Note that updating the aggregation tree just adds or deletes the corresponding aggregation labels, and every
time splitting an aggregation tree adds a new label to the subtree containing the normalization unit whereas the label for the original
tree remains the same to achieve the efficiency of the algorithm. For example, an aggregation tree labeled 1_1 is added to normalize
edge 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 in Fig. 11(b), and label 1_2 to normalize node Product. There is no normalization patterns for document collections
that out-going edges of the same node are split to different subtrees. For example, nodes Customer and Product are split to two
aggregation trees labeled 1_1 and 1_2 respectively in Fig. 11(c). Also, the execution plans for the related query and update patterns
are updated accordingly.

4.7.2. Merging aggregation trees
Aggregation trees may share common nodes and edges. Therefore, they can be merged to reduce the duplication and improve

the system performance if the costs of related query patterns are not increased. We define compatible aggregation trees that can be
merged as follows.

Definition 7. Two aggregation trees 𝐺(𝑙1) and 𝐺(𝑙2) are compatible for merging into one aggregation tree 𝐺(𝑙′) iff 𝑐𝑟(𝑖, 𝑙′) ≤
𝑐𝑟(𝑖, 𝑙1), 𝑐𝑟(𝑖, 𝑙′) ≤ 𝑐𝑟(𝑖, 𝑙2), 𝑐𝑤(𝑗 , 𝑙′) ≤ 𝑐𝑤(𝑗 , 𝑙1), and 𝑐𝑤(𝑗 , 𝑙′) ≤ 𝑐𝑤(𝑗 , 𝑙2); that is, the costs of each query pattern 𝑖 and

′
update pattern 𝑗 using 𝐺(𝑙1) and 𝐺(𝑙2) are not increased when using 𝐺(𝑙).

14

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

T

D

a
q

Table 2
Case studies for the aggregate-oriented NoSQL stores.
Case study Digital library Online store Easy cheat detection RUBiS

#Classes 4 8 4 7
#Relationships 6 7 3 10
#Queries 9 6 5 20

Based on an aggregation tree, a column family and a document collection have different query capabilities and data duplication.
hus, the compatibility of two aggregation trees for wide-column stores and document stores are provided respectively.

etecting Compatible Aggregation Trees for Wide-Column Stores. First, we define an ordered set 𝐾(𝑙) for an aggregation tree
𝐺(𝑙), where 𝐾(𝑙) = 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙) ∪ 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙) ∪ 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑙). Equality, inequality and ordering attributes
re components of the partition and clustering keys of the corresponding CF schema as shown in Section 4.5, which determines the
ueries that the CF schema supports.

Two aggregation trees 𝐺(𝑙1) = (𝑁1, 𝐸1, {𝑙1}) and 𝐺(𝑙2) = (𝑁2, 𝐸2, {𝑙2}) are compatible when mapped to a CF schema iff (1) 𝐺(𝑙1)
and 𝐺(𝑙2) share the same root node; (2) 𝐾(𝑙1) ⊆ 𝐾(𝑙2) or 𝐾(𝑙1) ⊇ 𝐾(𝑙2); (3) for all unshared edges 𝑒, where 𝑒 ∈ 𝐸1 𝑎𝑛𝑑 𝑒 ∉ 𝐸2 𝑜𝑟 𝑒 ∉
𝐸1 𝑎𝑛𝑑 𝑒 ∈ 𝐸2, 𝑐𝑜𝑢𝑛𝑡(𝑒) = 1. Conditions (1) and (2) guarantee that the merged aggregation tree can answer the queries the two
original aggregation trees can answer. Condition (3) guarantees that the number of copies of nodes and edges does not increase.

Detecting Compatible Aggregation Trees for Document Stores. Different from wide-column stores, adding subtrees to another
aggregation tree does not affect the total duplication since the hierarchical structures are not changed. Thus, two aggregation trees
𝐺(𝑙1) = (𝑁1, 𝐸1, {𝑙1}) and 𝐺(𝑙2) = (𝑁2, 𝐸2, {𝑙2}) are compatible when mapped to a DC schema iff 𝐺(𝑙1) and 𝐺(𝑙2) share the same root
node.

In addition, for more than two aggregation trees, if every two of them are compatible, they are all compatible and can be merged.
Merging aggregation trees is to unify the aggregation labels of all compatible aggregation trees with the same label.

5. Implementation and evaluation

We have implemented a prototype to evaluate the mapping processes presented in this paper. It is available under a free license
in an external repository.2 As stated in the introduction, our method mainly aims to automatically generate databases for various
aggregate-oriented NoSQL stores from the same conceptual schema. In this section, we evaluate our NoSQL database design approach
from the following three perspectives: (1) QPG expressiveness; that is, the generic logical model QPG should be expressive enough
to represent semantics of the UML class diagram and the structures of aggregate-oriented NoSQL stores; (2) schema quality; that
is, as the frequencies of the query/update patterns change, the generated NoSQL schema can always achieve efficient workload
performance; (3) the required computational resources of our schema generation algorithm.

5.1. QPG expressiveness

Since QPG mimics the notation of the UML class diagram, as long as relationships connecting two classes has associated
multiplicities, the SQL-based query statement can use them in the query paths and a QPG schema that represents both the data
structures and the access patterns can be properly generated. Note that special relationships, such as generalization/specification
or union type, are treated as one-to-one relationships. Also, QPG captures the important query features, such as equality/inequality
predicates, ordering by and project operations, which can be mapped to the corresponding constructs of the NoSQL model. Therefore,
QPG can represent the query capability and data partitioning features of the target NoSQL stores.

To examine whether QPG is expressive enough to model any aggregate-oriented NoSQL database, we have modeled a set of
external case studies with QPG to verify this hypothesis. Such case studies are commonly used in NoSQL research as testbeds. In
particular, we have used four case studies: (1) a digital library used by Chebotko et al. [25], (2) an application in e-commerce
domain used by de Lima and Mello [27], (3) a cheat detection system for multiplayer games used by Mior et al. [26], and (4) the
Rice University Bidding System (RUBiS) used by Mior et al. [26] and DBSR [31] . Table 2 provides a general overview of the case
studies. As typical in NoSQL stores, despite the simplicity of case studies (e.g., small number of classes), it is intended to maintain
a good performance of simple queries over voluminous data in a big data context.

5.2. Evaluating the quality of the schemas generated

In this section, we compare the quality of the schemas generated using our method with those generated using other state-of-the-
art methods. Our method is workload-driven and generates schemas for NoSQL stores based on estimated query/update frequencies
and data multiplicities. In this respect, we selected NoSE [26] for wide-column stores and the method proposed by de Lima and
Mello [27] for document stores for comparison.

2 https://github.com/dollychan/QueryPathGraph-master.
15

https://github.com/dollychan/QueryPathGraph-master

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

a
f
t
p

t
d
t
c

t
s
s

5

s

1

Table 3
The storage usage of the five RUBiS schemas on disk.

NoSE_Bidding NoSE_10× NoSE_100× QPG_Bidding QPG_10×

Storage usage (in GB) 7.9 7.4 7.4 7.6 5.2

Fig. 12. Total response time of three RUBiS workloads using five different schemas.

The experiments ran on a cluster of three Linux servers with Intel(R) Xeon (R) CPU E5-2630 v2 @2.60 GHz. The NoSQL stores
re deployed on two servers, and the other is the application server that handles the join operations and possible filter operations
or queries on NoSE schemas. The wide-column databases are stored in the two-node Cassandra cluster versioned 3.11.11, and
he document databases in the two-node MongoDB cluster versioned 5.0.6. NoSQL databases are evenly distributed using hash
artitioner and only one copy of the data is stored to reduce the effects of the replications.

To compare our method with the state-of-art works on NoSQL stores, we first generate a fake relational database and then
ransform it to NoSQL databases with different schemas. In this way, it is guaranteed that the NoSQL databases structured with
ifferent schemas have the same amount of information, and the performance of the same query/update request on them can reflect
he quality of the schemas. Then the application server assigns values to the parameters of the query/update patterns based on the
orresponding frequencies and executes the same workload over all tested NoSQL databases.

Note that secondary indexes are not considered by the state-of-art works. MongoDB supports querying on the non-key properties,
hus the update requests can be executed successfully without secondary indexes. Cassandra maintains secondary indexes as separate
tand-alone tables [57], which is similar to the extra CFs so-called support queries used by NoSE. Thus, for simplicity we use
econdary indexes for the CF schemas generated by both NoSE and our method to access the columns on a non-key value.

.2.1. Case study - RUBiS on Cassandra
Rice University Bidding System (RUBiS) [58] is a Web application benchmark originally backed by a relational database which

imulates an online auction website. Same as NoSE, we considered four workloads: Browsing workload, Bidding workload, Update
10× workload, and Update 100× workload. Each workload contains a set of query and update patterns and each pattern has a
relative frequency. Browsing workload is read-only and has only query patterns. Bidding workload contains 20 query patterns and
5 update patterns, and each pattern is weighted according to the relative frequencies used by NoSE. Update 10× and Update 100×

workloads are based on Bidding workload with frequencies of all update patterns increased 10 times and 100 times respectively.
We generated the CF schemas for each workloads: QPG_Browsing, QPG_Bidding, QPG_10× and QPG_100×, and compared them with
the corresponding schemas generated by NoSE: NoSE_Browsing, NoSE_Bidding, NoSE_10× and NoSE_100×. For read-only Browsing
workload, our method and NoSE generate the same schema. Also, schema QPG_10× and QPG_100× turn out to be same by our
algorithms. Thus, we mainly compared the query/update performance of the five different schemas, which are NoSE_Bidding,
NoSE_10×, NoSE_100×, QPG_Bidding, and QPG_10×.

We used the same dataset as NoSE.3 Data are mapped to column families of the aforementioned five different schemas from the
same relational database. Table 3 presents the storage usage for the five different Cassandra schemas on disk. When aggregation
trees are normalized, not only the update costs are decreased but also the storage usage. Thus, the data size of schema QPG_10× is
smaller than QPG_Bidding.

Fig. 12(a), (b) and (c) show the total response time of running the instances of Bidding workload, Update 10× workload and
Update 100× workload on the five schemas respectively. We can conclude from the experiment that the schemas generated by our
method have an overall better performance than the ones generated by NoSE. Fig. 13 shows the average response time for each
query and update pattern using the aforementioned five schemas generated by NoSE and our method. Our method and NoSE have
comparable performance for most of the query and update patterns. The differences between schemas generated by NoSE and our
method mainly in the following cases.

(1) Data are normalized by our method, but not by NoSE as shown in Fig. 13 by 𝑄4 and 𝑄16. Our method improves the update
costs for Users and Items at cost of the query performance of 𝑄4 and 𝑄16 respectively.

3 https://github.com/michaelmior/NoSE.
16

https://github.com/michaelmior/NoSE

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089
Fig. 13. Average response time of RUBiS query/update patterns using five schemas..

(2) Data are normalized by NoSE, but not by our method as shown in Fig. 13 by 𝑄6. The related column families for 𝑄6 in
schema NoSE_10× and NoSE_100× normalize class Items compared with that in schema NoSE_Bidding, which largely increases
the query response time. As the experiment shows, the improvement of update performance by normalizing class Items is not
comparable to the decrease of query performance.

(3) To process the query patterns 𝑄17 and 𝑄19, NoSE uses an extra 𝐹 𝑖𝑙𝑡𝑒𝑟 step after reading data from column families to
handle the inequality predicates. As the experiment shows, the 𝐹 𝑖𝑙𝑡𝑒𝑟 process affects query performance especially when
the inequality predicates is relatively selective, which means large number of unnecessary rows are read.

Also, compared with schema QPG_Bidding, schema QPG_10× normalizes Items in the related CF for 𝑄18, and Fig. 12(b) and (c) shows
this normalization adapts to the workload change as the frequencies of updates increase. In conclusion, our method focuses on the
overall system performance, rather than maximizing the performance of individual operation, and the validity of our cost model is
verified by comparing the differences in schemas generated by our method and NoSE.

5.2.2. Case study - Online store on MongoDB
This case study is used to compare our method with the one proposed by de Lima and Mello [27]. The conceptual model

of Online Store and 6 query patterns are shown in Section 2.1. We take the relative frequencies of query patterns {𝑄1:15, 𝑄2:9,
𝑄3:4.5, 𝑄4:3, 𝑄5:1, 𝑄6:1} as de Lima’s. The schema generated by de Lima and Mello is redundancy-free, which means the update
performance is optimal. We assume the update patterns in the workload are on single class and each has a relative frequency 1,
which forms the 𝐵𝑎𝑠𝑖𝑐 workload with the query patterns. Similar to the case study of RUBiS, the update frequencies are increased
10 times and 100 times to construct 𝑈𝑝𝑑𝑎𝑡𝑒 10× workload and 𝑈𝑝𝑑𝑎𝑡𝑒 100× workload respectively. It turns out that the schemas
generated by our method for the three workloads are the same based on our cost model.

We used the same dataset as de Lima and Mello, which consists of 32,418 customers, 1,113,951 orders, 1,789,082 items, 900
products, 61 categories, 1,113,951 payments, 165 supplier and 16 carriers. Same as the case study of RUBiS, data are originally
stored in a shared relational database and then mapped to schemas generated by de Lima’s and our method. The schema generated
by de Lima and Mello is 201 MB on disk compared to 534 MB for the schema generated by our method.

Fig. 15 shows the average response time for each query and update pattern using the schemas generated by de Lima’s and our
method. As it shows, our method performs practically the same as de Lima’s for 𝑄3 and 𝑄4 as the execution plans of these queries
are similar using the two schemas. Our method performs much better on 𝑄1, 𝑄2 and 𝑄5. For queries 𝑄1 and 𝑄2 that access a specific
order, the schema generated by de Lima and Mello nests all related orders in a customer so that the target document of order is
searched among documents of customers, which is time-consuming compared with the schema generated by our method that reads
a document rooted the order. For query 𝑄5 that access all orders having a specific product, the number of documents read by our
method is much less than de Lima’s since the related documents are aggregated by our method. As a result, the overall update
performance of our schema is worse than de Lima’s. Fig. 14 shows the response time of executing the three workload instances on
the two schemas. As it shows, when the frequencies of update patterns increase, the performance of the schema generated by our
method becomes worse as the update commands takes up 70% and 95% of the requests in the whole workload.

We have also done the experiments to compare the DC schema generated by our method with the one in the normalized form
for RUBiS, and the CF schema generated by our method with the normalized one for OnlineStore. The results show that our method
generates better schemas for all read-intensive workloads. The details of the prototype system and the experiments are given in
Appendix.
17

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

I
T

6

d
t
q
m
p
i

Fig. 14. Total response time of three OnlineStore workloads using two schemas.

Fig. 15. Average response time of OnlineStore query/update patterns using two schemas.

5.3. Computational resources

This section discusses the computational complexity of our automatic generation process. Given a UML class diagram 𝐷 = (𝐶,𝑅)
and a workload 𝑊 =  ∪ , our method consists of three steps to generate the NoSQL schemas.

(1) Generate an initial QPG schema where each query pattern is mapped to an aggregation tree. Each query pattern consist of
at most |𝐶| classes and |𝑅| relationships. The time complexity of this step is ((|𝐶| + |𝑅|) × ||);

(2) Optimize the schemas where aggregation trees are normalized and merged. Each aggregation tree consists of at most |𝐶|

nodes and |𝑅| edges as there is no cycle in the tree. When targeting key-value and wide-column stores, at most (|𝑅|+ |𝐶|−1)
iterations are needed as every node and edge of an aggregation tree may be normalized; and at most (|𝐶| − 1) iterations are
needed when targeting document stores as all non-root nodes are checked. Thus, the complexity of the normalization process
is ((|𝑅| + |𝐶| − 1) × ||) or ((|𝐶| − 1) × ||). After normalization, each original aggregation tree may be partitioned to at
most |𝑅| + |𝐶| aggregation trees when targeting key-value and wide-column stores, and at most |𝐶| aggregation trees when
targeting document stores. Every two of the aggregation trees are compared to check if they are compatible and compatible
aggregation trees are merged. Thus, the complexity of the merging process is (((|𝑅|+ |𝐶|) × ||)2) or (((|𝐶|) × ||)2). Based
on the merging rules, all aggregation trees for key-value and wide-column stores may not be merged due to incompatible
query capabilities, and at most |𝐶| aggregation trees would be generated for document stores;

(3) Map each aggregation tree to a target NoSQL schema. The complexity of this step is ((|𝑅| + |𝐶|) × ||) or (|𝐶|).

n normal scenarios, both the values |𝐶|, |𝑅| and |𝑄| are expected to be low, and the complexity of the above steps is polynomial.
he times are about a few seconds to generate database schemas in the aforementioned case studies.

. Conclusion

This paper has presented a novel workload-driven method for designing the schemas for different aggregate-oriented NoSQL
atabases from the same conceptual schema. A generic logical NoSQL model called Query Path Graph (QPG) is used to represent
he data structure as the UML class diagram. Mapping rules are defined to transform the query patterns represented as SQL-based
ueries into aggregation trees in the QPG model. Also, mappings between the QPG model and three aggregate-oriented NoSQL data
odels (i.e., KV, CF and DC) are defined, which reflects the features of the data model, query capability, and the strategy of data
artitioning and scalability of the NoSQL stores. In addition, a cost model is used to improve the quality of the QPG schema as
t makes a trade-off between the query and update costs, which in the end optimizes the generated NoSQL schemas. We have
18

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089
implemented a prototype system for our method. The quality of the generated schemas and the validity of our cost model are
evaluated and verified by comparing our method with other state-of-art workload-driven NoSQL schema generation methods.

Instead of the class-level update patterns, we would like to improve the cost model to measure the update costs on the attribute-
level so that fine-granular schema optimization strategies can be adapted. Also, we would like to introduce secondary indexes to
our cost model to improve the performance for both query and update requests.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank the anonymous reviewers for their critical reading of the article and their valuable feedback,
which has substantially helped to improve the quality and accuracy of this article. This work was partly supported by Guangzhou
Key Laboratory of Big Data and Intelligent Education (No. 201905010009) and the National Natural Science Foundation of China
(No. 61672389).

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.datak.2022.102089.

References

[1] D.J. Abadi, Data management in the cloud: Limitations and opportunities, Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
32 (1) (2009) 3–12.

[2] A. McAfee, E. Brynjolfsson, T.H. Davenport, D. Patil, D. Barton, Big data: the management revolution, Harvard business review 90 (10) (2012) 60–68.
[3] A. Davoudian, M. Liu, Big data systems: A software engineering perspective, ACM Computing Surveys (CSUR) 53 (5) (2020) 110.
[4] M. Stonebraker, SQL databases v. NoSQL databases, Communications of the ACM 53 (4) (2010) 10–11.
[5] R. Hecht, S. Jablonski, NoSQL evaluation: A use case oriented survey, in: 2011 International Conference on Cloud and Service Computing, IEEE, 2011,

pp. 336–341.
[6] R. Cattell, Scalable SQL and NoSQL data stores, ACM SIGMOD Record 39 (4) (2011) 12–27.
[7] P.J. Sadalage, M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Pearson Education, 2013.
[8] A. Davoudian, L. Chen, M. Liu, A survey on NoSQL stores, ACM Computing Surveys (CSUR) 51 (2) (2018) 40.
[9] J. Gray, P. Helland, P. O’Neil, D. Shasha, The dangers of replication and a solution, in: Proceedings of the 1996 ACM SIGMOD International Conference

on Management of Data, 1996, pp. 173–182.
[10] P. Helland, Life beyond distributed transactions: An apostate’s opinion, Queue (ISSN: 1542-7730) 14 (5) (2016) 69–98.
[11] W. Vogels, Eventually consistent, Communications of the ACM 52 (1) (2009) 40–44.
[12] A. Fekete, D. Guptab, V. Luchangcob, N. Lynchb, Eventually-serializable data services, in: Proceedings of the 15th Annual ACM Symposium on Principles

of Distributed Computing, 1996, pp. 300–309.
[13] E. Evans, Domain-Driven Design: Tacking Complexity in the Heart of Software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2003.
[14] T. Vajk, P. Fehér, K. Fekete, H. Charaf, Denormalizing data into schema-free databases, in: 2013 IEEE 4th International Conference on Cognitive

Infocommunications (CogInfoCom), IEEE, 2013, pp. 747–752.
[15] V.C. Storey, I.-Y. Song, Big data technologies and management: What conceptual modeling can do, Data & Knowledge Engineering 108 (2017) 50–67.
[16] N. Bruno, S. Chaudhuri, Constrained physical design tuning, Proceedings of the VLDB Endowment 1 (1) (2008) 4–15.
[17] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, M. Syamala, Database tuning advisor for microsoft SQL server 2005, in: Proceedings of

the 2005 ACM SIGMOD International Conference on Management of Data, 2005, pp. 930–932.
[18] S. Agrawal, E. Chu, V. Narasayya, Automatic physical design tuning: Workload as a sequence, in: Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data, 2006, pp. 683–694.
[19] D.C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, S. Fadden, DB2 design advisor: Integrated automatic physical database design,

in: Proceedings of the 13th International Conference on Very Large Data Bases (VLDB), 2004, pp. 1087–1097.
[20] T. Haerder, A. Reuter, Principles of transaction-oriented database recovery, ACM Computing Surveys (CSUR) 15 (4) (1983) 287–317.
[21] H. Vera-Olivera, R. Guo, R.C. Huacarpuma, A.P.B. Da Silva, A.M. Mariano, M. Holanda, Data modeling and NoSQL databases-a systematic mapping review,

ACM Computing Surveys (CSUR) 54 (6) (2021) 1–26.
[22] G.A. Schreiner, D. Duarte, R. dos Santos Mello, SQLtoKeyNoSQL: a layer for relational to key-based NoSQL database mapping, in: Proceedings of the 17th

International Conference on Information Integration and Web-Based Applications & Services, 2015, pp. 1–9.
[23] C.J.F. Candel, D.S. Ruiz, J.J. García-Molina, A unified metamodel for NoSQL and relational databases, Information Systems 104 (2022) 101898.
[24] X. Li, Z. Ma, H. Chen, QODM: A query-oriented data modeling approach for NoSQL databases, in: Workshop on Advanced Research and Technology in

Industry Applications (WARTIA), IEEE, 2014, pp. 338–345.
[25] A. Chebotko, A. Kashlev, S. Lu, A big data modeling methodology for Apache Cassandra, in: International Congress on Big Data, IEEE, 2015, pp. 238–245.
[26] M.J. Mior, K. Salem, A. Aboulnaga, R. Liu, NoSE: Schema design for NoSQL applications, IEEE Transactions on Knowledge and Data Engineering 29 (10)

(2017) 2275–2289.
[27] C. de Lima, R.S. Mello, On proposing and evaluating a NoSQL document database logical approach, International Journal of Web Information Systems 12

(4) (2016) 398–417.
[28] P. Atzeni, F. Bugiotti, L. Cabibbo, R. Torlone, Data modeling in the NoSQL world, Computer Standards & Interfaces 67 (2020) 103149.
[29] C. Li, Transforming relational database into HBase: A case study, in: International Conference on Software Engineering and Service Sciences, IEEE, 2010,

pp. 683–687.
[30] T. Jia, X. Zhao, Z. Wang, D. Gong, G. Ding, Model transformation and data migration from relational database to MongoDB, in: International Congress

on Big Data, IEEE, 2016, pp. 60–67.
19

https://doi.org/10.1016/j.datak.2022.102089
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb1
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb1
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb1
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb2
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb3
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb4
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb5
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb5
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb5
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb6
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb7
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb8
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb9
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb9
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb9
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb10
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb11
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb12
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb12
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb12
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb13
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb14
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb14
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb14
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb15
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb16
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb17
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb17
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb17
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb18
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb18
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb18
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb19
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb19
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb19
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb20
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb21
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb21
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb21
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb22
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb22
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb22
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb23
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb24
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb24
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb24
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb25
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb26
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb26
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb26
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb27
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb27
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb27
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb28
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb29
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb29
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb29
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb30
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb30
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb30

L. Chen, A. Davoudian and M. Liu Data & Knowledge Engineering 142 (2022) 102089

L
C
m

A
f
C

M
S
1
p
c

[31] V. Reniers, D. Van Landuyt, A. Rafique, W. Joosen, A workload-driven document database schema recommender (DBSR), in: International Conference on
Conceptual Modeling, Springer, 2020, pp. 471–484.

[32] F. Abdelhédi, A.A. Brahim, F. Atigui, G. Zurfluh, UMLtoNoSQL: Automatic transformation of conceptual schema to NoSQL databases, in: 14th International
Conference on Computer Systems and Applications (AICCSA), IEEE, 2017, pp. 272–279.

[33] A. de la Vega, D. García-Saiz, C. Blanco, M. Zorrilla, P. Sánchez, Mortadelo: Automatic generation of NoSQL stores from platform-independent data models,
Future Generation Computer Systems 105 (2020) 455–474.

[34] J. Lu, I. Holubová, Multi-model databases: A new journey to handle the variety of data, ACM Computing Surveys (CSUR) 52 (3) (2019) 1–38.
[35] U. Störl, M. Klettke, S. Scherzinger, NoSQL schema evolution and data migration: State-of-the-art and opportunities, in: Proceedings of the 22nd International

Conference on Extending Database Technology (EDBT), 2020, pp. 655–658.
[36] J. Mali, F. Atigui, A. Azough, N. Travers, ModelDrivenGuide: An approach for implementing NoSQL schemas, in: International Conference on Database

and Expert Systems Applications, Springer, 2020, pp. 141–151.
[37] Oracle Inc, Oracle NoSQL database ([Online]). URL https://www.oracle.com/database/technologies/related/nosql.html.
[38] A. Inc, What is Cassandra? ([Online]). URL http://cassandra.apache.org/.
[39] MongoDB Inc, The database for modern applications ([Online]). URL https://mongodb.org/.
[40] Oracle Inc, Interface TableAPI ([Online]). URL https://docs.oracle.com/database/nosql-12.1.3.5/javadoc/oracle/kv/table/TableAPI.html.
[41] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes, R.E. Gruber, Bigtable: A distributed storage system for

structured data, ACM Transactions on Computer Systems (TOCS) 26 (2) (2008) 1–26.
[42] Apache Inc, Welcome to Apache HBase ([Online]). URL https://hbase.apache.org/.
[43] MongoDB Inc, BSON ([Online]). URL http://bsonspec.org/.
[44] JSON Organization, JSON Schema ([Online]). URL https://json-schema.org/.
[45] M. Lawley, R.W. Topor, A query language for EER schemas, in: Australasian Database Conference, 1994, pp. 292–304.
[46] G. Daniel, G. Sunyé, J. Cabot, UMLtoGraphDB: mapping conceptual schemas to graph databases, in: International Conference on Conceptual Modeling,

Springer, 2016, pp. 430–444.
[47] R. Schroeder, D. Duarte, R.S. Mello, A workload-aware approach for optimizing the XML schema design trade-off, in: 13th International Conference on

Information Integration and Web-Based Applications and Services, 2011, pp. 12–19.
[48] J. Akoka, I. Comyn-Wattiau, Roundtrip engineering of nosql databases, Enterprise Modelling and Information Systems Architectures (EMISAJ) 13 (2018)

281–292.
[49] A.A. Brahim, R.T. Ferhat, G. Zurfluh, Model driven extraction of NoSQL databases schema: Case of MongoDB, in: KDIR, 2019, pp. 145–154.
[50] F. Abdelhedi, A.A. Brahim, R.T. Ferhat, G. Zurfluh, Reverse engineering approach for NoSQL databases, in: International Conference on Big Data Analytics

and Knowledge Discovery, Springer, 2020, pp. 60–69.
[51] D.S. Ruiz, S.F. Morales, J.G. Molina, Inferring versioned schemas from NoSQL databases and its applications, in: International Conference on Conceptual

Modeling, Springer, 2015, pp. 467–480.
[52] A.H. Chillón, D.S. Ruiz, J.G. Molina, S.F. Morales, A model-driven approach to generate schemas for object-document mappers, IEEE Access 7 (2019)

59126–59142.
[53] F. Abdelhedi, A.A. Brahim, F. Atigui, G. Zurfluh, MDA-based approach for NoSQL databases modelling, in: International Conference on Big Data Analytics

and Knowledge Discovery, Springer, 2017, pp. 88–102.
[54] W. Winston, Introduction to Mathematical Programming: Applications and Algorithms, Duxbury, (2002), Duxbury, 2002.
[55] T. Halpin, T. Morgan, Information Modeling and Relational Databases, Morgan Kaufmann, 2010.
[56] O.G. Tsatalos, M.H. Solomon, Y.E. Ioannidis, The GMAP: A versatile tool for physical data independence, Int. J. Very Large Data Bases (VLDB) 5 (2)

(1996) 101–118.
[57] M.A. Qader, S. Cheng, V. Hristidis, A comparative study of secondary indexing techniques in LSM-based NoSQL databases, in: Proceedings of the 2018

International Conference on Management of Data, 2018, pp. 551–566.
[58] E. Cecchet, J. Marguerite, W. Zwaenepoel, Performance and scalability of EJB applications, ACM SIGPLAN Notices 37 (11) (2002) 246–261.

iu Chen is a Ph.D Candidate in the Cotutelle program between the School of Computer Science at Wuhan University and the School of Computer Science at
arleton University. She received her bachelor’s. degree in software engineering from Wuhan University in 2011. Her research interests include NoSQL data
odeling and stream data processing.

li Davoudian is a Cloud Infrastructure Engineer at Canada Revenue Agency (CRA). He received his bachelor’s and master’s degrees in software engineering
rom Isfahan University and Amirkabir University of Technology in 2004 and 2007 respectively, and Ph.D. degree from the School of Computer Science at
arleton University in 2021. His research interests include NoSQL data modeling and big data analytics.

engchi Liu is a professor in the School of Computer Science at South China Normal University. He received his Bachelor’s and Master’s degrees in Computer
oftware from Wuhan University in China in 1983 and 1986 respectively, and Master’s and Ph.D. degrees in Computer Science from the University of Calgary in
990 and 1992 respectively. His research interests include data models, database systems, and big data management and analytics. He has published over 160
apers in various international journals and conferences, and served as program committee and organizing committee member for a number of international
onferences and a reviewer for 15 distinguished international journals.
20

http://refhub.elsevier.com/S0169-023X(22)00080-5/sb31
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb31
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb31
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb32
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb32
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb32
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb33
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb33
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb33
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb34
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb35
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb35
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb35
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb36
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb36
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb36
https://www.oracle.com/database/technologies/related/nosql.html
http://cassandra.apache.org/
https://mongodb.org/
https://docs.oracle.com/database/nosql-12.1.3.5/javadoc/oracle/kv/table/TableAPI.html
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb41
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb41
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb41
https://hbase.apache.org/
http://bsonspec.org/
https://json-schema.org/
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb45
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb46
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb46
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb46
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb47
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb47
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb47
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb48
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb48
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb48
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb49
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb50
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb50
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb50
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb51
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb51
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb51
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb52
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb52
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb52
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb53
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb53
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb53
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb54
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb55
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb56
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb56
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb56
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb57
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb57
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb57
http://refhub.elsevier.com/S0169-023X(22)00080-5/sb58

	A workload-driven method for designing aggregate-oriented NoSQL databases
	Introduction
	NoSQL Database Models
	Running Example
	Key-Value Stores
	Wide-Column Stores
	Document Stores

	Related works
	Our Approach
	Conceptual Schema
	Workload Modeling
	Query Path Graph
	Mapping Query Patterns to QPG Schemas
	Mapping QPG Schemas to NoSQL Schemas
	Mapping Aggregation Trees to CF Schemas
	Mapping Aggregation Trees to KV Schemas
	Mapping Aggregation Trees to DC Schemas

	Cost Modeling
	Schema Optimization
	Normalization
	Merging Aggregation Trees

	Implementation and Evaluation
	QPG Expressiveness
	Evaluating the Quality of the Schemas Generated
	Case Study - RUBiS on Cassandra
	Case Study - Online Store on MongoDB

	Computational Resources

	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A. Supplementary data
	References

