
PROGRAMACIÓN EN C++

Transparencias del libro Starting out with C++ : early objects, Tony Gaddis, Judy Walters, Godfrey Muganda



Chapter 1:  Introduction to Computers and 
Programming



Topics
1.1 Why Program?
1.2 Computer Systems: Hardware and 

Software
1.3 Programs and Programming Languages
1.4 What Is a Program Made of?
1.5 Input, Processing, and Output
1.6 The Programming Process

1-3



1.1 Why Program?
Computer – programmable machine designed to 

follow instructions
Program/Software – instructions in computer 

memory to make it do something
Programmer – person who writes instructions 

(programs) to make computer perform a task

SO, without programmers, no programs; without 
programs, the computer cannot do anything

1-4



1.2 Computer Systems: Hardware and 
Software

Hardware – Physical components of a 
computer

Main Hardware Component Categories 

1. Central Processing Unit (CPU)
2. Main memory (RAM)
3. Secondary storage devices
4. Input Devices
5. Output Devices

1-5



Main Hardware Component Categories

1-6



Central Processing Unit (CPU)
CPU – Hardware 

component that runs 
programs

Includes 
• Control Unit

– Retrieves and decodes 
program instructions

– Coordinates computer 
operations

• Arithmetic & Logic Unit 
(ALU)
– Performs mathematical 

operations

1-7



The CPU's Role in Running a Program

Cycle through: 
• Fetch: get the next program instruction 

from main memory

• Decode: interpret the instruction and 
generate a signal

• Execute: route the signal to the 
appropriate component to perform an 
operation

1-8



Main Memory
• Holds both program instructions and data

• Volatile – erased when program 
terminates or computer is turned off

• Also called Random Access Memory 
(RAM)

1-9



Main Memory Organization
• Bit

– Smallest piece of memory
– Stands for binary digit
– Has values 0 (off) or 1 (on)

• Byte
– Is 8 consecutive bits
– Has an address

• Word
– Usually 4 consecutive bytes

1-10

0 1 1 0 0 1 1 1

8 bits

1 byte



Secondary Storage

• Non-volatile - data retained when 
program is not running or computer is 
turned off

• Comes in a variety of media
– magnetic: floppy or hard disk drive, 

internal or external
– optical: CD or DVD drive
– flash: USB flash drive

1-11



Input Devices

• Used to send information to the 
computer from outside

• Many devices can provide input
– keyboard, mouse, microphone, scanner, 

digital camera, disk drive, CD/DVD drive, 
USB flash drive

1-12



Output Devices

• Used to send information from the 
computer to the outside

• Many devices can be used for output
– Computer screen, printer, speakers, disk 

drive, CD/DVD recorder, USB flash drive

1-13



Software Programs That Run on a 
Computer

• System software
– programs that manage the computer hardware and the 

programs that run on the computer
– Operating Systems

• Controls operation of computer
• Manages connected devices
• Runs programs

– Utility Programs
• Support programs that enhance computer operations
• Examples: anti-virus software, data backup, data compression

– Software development tools
• Used by programmers to create software
• Examples: compilers, integrated development environments 

(IDEs)

1-14



1.3 Programs and Programming 
Languages

• Program
a set of instructions directing a computer to 
perform a task

• Programming Language
a language used to write programs

1-15



Algorithm

Algorithm:  a set of steps to perform a task 
or to solve a problem

Order is important.  Steps must be 
performed sequentially

1-16



Programs and Programming Languages

Types of languages
– Low-level: used for communication with 

computer hardware directly.  

– High-level: closer to human language

1-17



From a High-level Program to an 
Executable File

a) Create file containing the program with a 
text editor.

b) Run preprocessor to convert source file 
directives to source code program 
statements.

c) Run compiler to convert source program 
statements into machine instructions.

1-18



From a High-level Program to an 
Executable File

d) Run linker to connect hardware-specific 
library code to machine instructions, 
producing an executable file.

Steps b) through d) are often performed by a 
single command or button click.

Errors occuring at any step will prevent
execution of the following steps.

1-19



From a High-level Program to an 
Executable File

1-20



1.4 What Is a Program Made Of?

Common elements in programming 
languages:

– Key Words
– Programmer-Defined Identifiers
– Operators
– Punctuation
– Syntax

1-21



Example Program
#include <iostream>
using namespace std;

int main() 
{

double num1 = 5, 
num2, sum;

num2 = 12;

sum = num1 + num2;
cout << "The sum is " << sum;
return 0;

}
1-22



Key Words
• Also known as reserved words

• Have a special meaning in C++

• Can not be used for another purpose

• Written using lowercase letters

• Examples in program (shown in green): 
using namespace std;
int main()

1-23



Programmer-Defined Identifiers
• Names made up by the programmer

• Not part of the C++ language

• Used to represent various things, such as 
variables (memory locations)

• Example in program (shown in green): 
double num1

1-24



Operators
• Used to perform operations on data

• Many types of operators 
– Arithmetic:     +, -, *, /
– Assignment:   =

• Examples in program (shown in green):
num2 = 12;
sum = num1 + num2;

1-25



Punctuation
• Characters that mark the end of a 

statement, or that separate items in a list
• Example in program (shown in green):

double num1 = 5, 
num2, sum;

num2 = 12;

1-26



Lines vs. Statements

In a source file,
A line is all of the characters entered before a 

carriage return.  
Blank lines improve the readability of a 

program.
Here are four sample lines.  Line 3 is blank:

1. double num1 = 5, num2, sum;
2. num2 = 12;
3.
4. sum = num1 + num2;

1-27



Lines vs. Statements
In a source file,

A statement is an instruction to the computer to 
perform an action.  

A statement may contain keywords, operators, 
programmer-defined identifiers, and 
punctuation.  

A statement may fit on one line, or it may 
occupy multiple lines.

Here is a single statement that uses two lines:
double num1 = 5, 

num2, sum;

1-28



Variables
• A variable is a named location in computer memory (in 

RAM)

• It holds a piece of data.  The data that it holds may 
change while the program is running.

• The name of the variable should reflect its purpose

• It must be defined before it can be used.  Variable 
definitions indicate the variable name and the type of 
data that it can hold.

• Example variable definition:

double num1;

1-29



1.5 Input, Processing, and Output

Three steps that many programs perform 
1) Gather input data

- from keyboard
- from files on disk drives

2) Process the input data
3) Display the results as output

- send it to the screen or a printer
- write it to a file 

1-30



1.6 The Programming Process

1. Define what the program is to do.
2. Visualize the program running on the 

computer.
3. Use design tools to create a model of the 

program.
Hierarchy charts, flowcharts, pseudocode, etc.

4. Check the model for logical errors.
5. Write the program source code.
6. Compile the source code.

1-31



The Programming Process (cont.)
7. Correct any errors found during compilation.

8. Link the program to create an executable file.

9. Run the program using test data for input.

10. Correct any errors found while running the 
program.

Repeat steps 4 - 10 as many times as necessary.

11. Validate the results of the program.
Does the program do what was defined in step 1?

1-32



Chapter 2: Introduction to C++



Topics
2.1 The Parts of a C++ Program
2.2 The cout Object
2.3 The #include Directive
2.4 Standard and Prestandard C++
2.5 Variables, Literals, and the Assignment

Statement
2.6 Identifiers
2.7 Integer Data Types
2.8 Floating-Point Data Types

2-34



Topics (continued)

2.9  The char Data Type
2.10 The C++ string Class
2.11 The bool Data Type
2.12 Determining the Size of a Data Type
2.13 More on Variable Assignments and

Initialization
2.14 Scope
2.15 Arithmetic Operators
2.16 Comments

2-35



2.1 The Parts of a C++ Program

// sample C++ program
#include <iostream>
using namespace std;
int main() 
{

cout << "Hello, there!";
return 0;

}

2-36

comment

preprocessor directive

which namespace to use

beginning of function named main

beginning of block for main

output statement

send 0 back to operating system

end of block for main



2.1 The Parts of a C++ Program

2-37

Statement Purpose
// sample C++ program comment
#include <iostream> preprocessor directive
using namespace std; which namespace to use
int main() beginning of function named main
{ beginning of block for main

cout << "Hello, there!"; output statement
return 0; send 0 back to the operating system

} end of block for main



Special Characters

2-38

Character Name Description
// Double Slash Begins a comment

# Pound Sign Begins preprocessor directive

< > Open, Close Brackets Encloses filename used in 
#include directive

( ) Open, Close Parentheses Used when naming function

{ } Open, Close Braces Encloses a group of statements

" " Open, Close Quote Marks Encloses string of characters

; Semicolon Ends a programming statement



Important Details

• C++ is case-sensitive.  Uppercase and 
lowercase characters are different 
characters.  ‘Main’ is not the same as 
‘main’.

• Every { must have a corresponding }, and 
vice-versa.

2-39



2.2 The cout Object

• Displays information on computer screen
• Use << to send information to cout 

cout << "Hello, there!";

• Can use << to send multiple items to cout 
cout << "Hello, " << "there!";

Or 
cout << "Hello, ";
cout << "there!";

2-40



Starting a New Line

• To get multiple lines of output on screen 
- Use endl
cout << "Hello, there!" << endl;

- Use \n in an output string
cout << "Hello, there!\n";

2-41



Escape Sequences – More Control Over 
Output

2-42



2.3 The #include Directive

• Inserts the contents of another file into the 
program

• Is a preprocessor directive
– Not part of the C++ language
– Not seen by compiler

• Example:
#include <iostream>

2-43

No ; goes 
here



2.4 Standard and Prestandard C++

Prestandard (Older-style) C++ programs 
• Use .h at end of header files 
#include <iostream.h>

• Do not use using namespace convention
• May not use return 0; at the end of function 
main

• May not compile with a standard C++ compiler

2-44



2.5 Variables, Literals, and the 
Assignment Statement

• Variable
– Has a name and a type of data it can hold      

char letter;

– Is used to reference a location in memory where a 
value can be stored

– Must be defined before it can be used
– The value that is stored can be changed, i.e., it can 

“vary”

2-45

variable 
namedata type



Variables

– If a new value is stored in the variable, it 
replaces the previous value

– The previous value is overwritten and can no 
longer be retrieved
int age;
age = 17;     // age is 17
cout << age;  // Displays 17
age = 18;     // Now age is 18
cout << age;  // Displays 18 

2-46



Assignment Statement

• Uses the = operator
• Has a single variable on the left side and a 

value on the right side
• Copies the value on the right into the 

variable on the left 
item = 12;

2-47



Constants

Literal
– Data item whose value does not change 

during program execution

– Is also called a constant

'A'      // character constant
"Hello"  // string literal
12       // integer constant
3.14     // floating-point constant

2-48



2.6 Identifiers

• Programmer-chosen names to represent parts of the 
program, such as variables  

• Name should indicate the use of the identifier

• Cannot use C++ key words as identifiers

• Must begin with alphabetic character or _, followed 
by alphabetic, numeric, or _ .  Alphabetic characters 
may be upper- or lowercase

2-49



Multi-word Variable Names

• Descriptive variable names may include multiple words

• Two conventions to use in naming variables:
– Capitalize all but first letter of first word.  Run words together:

quantityOnOrder

totalSales

– Use the underscore _ character as a space:
quantity_on_order

total_sales

• Use one convention consistently throughout program

2-50



Valid and Invalid Identifiers

2-51

IDENTIFIER VALID? REASON IF INVALID
totalSales Yes

total_Sales Yes

total.Sales No Cannot contain period

4thQtrSales No Cannot begin with digit

totalSale$ No Cannot contain $



2.7 Integer Data Types

• Designed to hold whole (non-decimal) 
numbers

• Can be signed or unsigned
12     -6     +3

• Available in different sizes (i.e., number of 
bytes): short, int, and long

• Size of short ≤ size of int ≤ size of long

2-52



Signed vs. Unsigned Integers

• C++ allocates one bit for the sign of the 
number.  The rest of the bits are for data.

• If your program will never need negative 
numbers, you can declare variables to be 
unsigned.  All bits in unsigned numbers 
are used for data.

• A variable is signed unless the unsigned
keyword is used.

2-53



Defining Variables

• Variables of the same type can be defined
- In separate statements

int length;
int width;

- In the same statement
int length, 

width;

• Variables of different types must be defined 
in separate statements

2-54



Integral Constants

• To store an integer constant in a long 
memory location, put ‘L’ at the end of the 
number:   1234L

• Constants that begin with ‘0’ (zero) are 
octal, or base 8:   075

• Constants that begin with ‘0x’ are 
hexadecimal, or base 16:    0x75A

2-55



2.8 Floating-Point Data Types

• Designed to hold real numbers
12.45      -3.8

• Stored in a form similar to scientific notation
• Numbers are all signed
• Available in different sizes (number of bytes): 
float, double, and long double

• Size of float ≤ size of double
≤ size of long double

2-56



Floating-point Constants

• Can be represented in
- Fixed point (decimal) notation: 
31.4159 0.0000625

- E notation:
3.14159E1 6.25e-5

• Are double by default
• Can be forced to be float   3.14159F or 

long double   0.0000625L

2-57



Assigning Floating-point Values to 
Integer Variables

If a floating-point value is assigned to an 
integer variable
– The fractional part will be truncated (i.e., 

“chopped off” and discarded)
– The value is not rounded
int rainfall = 3.88;    
cout << rainfall;  // Displays 3

2-58



2.9 The char Data Type

• Used to hold single characters or very small 
integer values

• Usually occupies 1 byte of memory
• A numeric code representing the character 

is stored in memory 

2-59

SOURCE CODE                        MEMORY 

char letter = 'C'; letter

67



Character Literal

• A character literal is a single character

• When referenced in a program, it is 
enclosed in single quotation marks:

cout << 'Y' << endl;

• The quotation marks are not part of the 
literal, and are not displayed

2-60



String Literals

• Can be stored as a series of characters in 
consecutive memory locations 

"Hello"
• Stored with the null terminator, \0, 

automatically placed at the end

• Is comprised of characters between the " "

2-61

H e l l o \0



A character or a string literal?

• A character literal is a single character, 
enclosed in single quotes:

'C'

• A string literal is a sequence of characters 
enclosed in double quotes:

"Hello, there!"

• A single character in double quotes is a 
string literal, not a character literal:

"C"

2-62



2.10 The C++ string Class

• Must #include <string> to create and 
use string objects

• Can define string variables in programs
string name;

• Can assign values to string variables with the 
assignment operator

name = "George";

• Can display them with cout
cout << "My name is " << name;

2-63



2.11 The bool Data Type

• Represents values that are true or false

• bool values are stored as integers

• false is represented by 0, true by 1 
bool allDone = true;
bool finished = false;

2-64

allDone  finished

1 0



2.12 Determining the Size of a Data Type

The sizeof operator gives the size in 
number of bytes of any data type or variable

double amount;
cout << "A float is stored in "

<< sizeof(float) << " bytes\n";
cout << "Variable amount is stored in "

<< sizeof(amount) << " bytes\n";

2-65



2.13 More on Variable Assignments and 
Initialization

Assigning a value to a variable
– Assigns a value to a previously created variable 
– A single variable name must appear on left side 

of the = symbol
int size;
size = 5;    // legal 
5 = size;    // not legal

2-66



Variable Assignment vs. Initialization

Initializing a variable
– Gives an initial value to a variable at the time 

it is created
– Can initialize some or all of the variables 

being defined
int length = 12;
int width = 7, height = 5, area;

2-67



2.14 Scope

• The scope of a variable is that part of the 
program where the variable may be used

• A variable cannot be used before it is defined
int num1 = 5;
cout >> num1;   // legal
cout >> num2;   // illegal 
int num2 = 12;

2-68



2.15 Arithmetic Operators

• Used for performing numeric calculations
• C++ has unary, binary, and ternary 

operators 
– unary (1 operand) -5

– binary (2 operands)    13 - 7

– ternary (3 operands)   exp1 ? exp2 : exp3

2-69



Binary Arithmetic Operators

2-70

SYMBOL OPERATION EXAMPLE ans

+ addition ans = 7 + 3; 10

- subtraction ans = 7 - 3; 4

* multiplication ans = 7 * 3; 21

/ division ans = 7 / 3; 2

% modulus ans = 7 % 3; 1



/ Operator

• C++ division operator (/)performs integer 
division if both operands are integers
cout << 13 / 5;    // displays 2
cout <<  2 / 4;    // displays 0

• If either operand is floating-point, the result 
is floating-point
cout << 13 / 5.0;  // displays 2.6
cout << 2.0 / 4;   // displays 0.5

2-71



% Operator

• C++ modulus operator (%) computes the 
remainder resulting from integer division
cout << 9 % 2;   // displays 1

• % requires integers for both operands
cout << 9 % 2.0; // error

2-72



2.16 Comments

• Are used to document parts of a program
• Are written for persons reading the source 

code of the program
– Indicate the purpose of the program
– Describe the use of variables
– Explain complex sections of code

• Are ignored by the compiler

2-73



Single-Line Comments

• Begin with // and continue to the end of line
int length = 12; // length in inches
int width = 15;  // width in inches
int area;        // calculated area

// Calculate rectangle area
area = length * width;

2-74



Multi-Line Comments

• Begin with /* and end with */
• Can span multiple lines 

/*----------------------------
Here's a multi-line comment   
----------------------------*/

• Can also be used as single-line 
comments 
int area;   /* Calculated area */

2-75



Chapter 3: Expressions and Interactivity



Topics

3.1 The cin Object

3.2 Mathematical Expressions

3.3 Data Type Conversion and Type Casting

3.4 Overflow and Underflow

3.5 Named Constants

3-77



Topics (continued)

3.6   Multiple and Combined Assignment

3.7   Formatting Output

3.8   Working with Characters and Strings 

3.9   Using C-Strings

3.10 More Mathematical Library Functions

3-78



3.1 The cin Object

• Standard input object
• Like cout, requires iostream file
• Used to read input from keyboard
• Often used with cout to display a user 

prompt first
• Data is retrieved from cin with >>
• Input data is stored in one or more 

variables 

3-79



The cin Object

• User input goes from keyboard to the input 
buffer, where it is stored as characters

• cin converts the data to the type that 
matches the variable 
int height;
cout << "How tall is the room? ";
cin  >> height;

3-80



The cin Object

• Can be used to input multiple values 
cin >> height >> width;

• Multiple values from keyboard must be 
separated by spaces or [Enter]

• Must press [Enter] after typing last value
• Multiple values need not all be of the same type
• Order is important; first value entered is stored 

in first variable, etc.

3-81



3.2 Mathematical Expressions

• An expression can be a constant, a 
variable, or a combination of constants 
and variables combined with operators

• Can create complex expressions using 
multiple mathematical operators

• Examples of mathematical expressions:
2 

height 
a + b / c

3-82



Using Mathematical Expressions

• Can be used in assignment statements, with 
cout, and in other types of statements

• Examples: 

area = 2 * PI * radius;
cout << "border is: " << (2*(l+w));

3-83

This is an 
expression

These are 
expressions



Order of Operations

• In an expression with > 1 operator, 
evaluate in this order 

( ) expressions in parentheses
- (unary negation)  in order, left to right
* / % in order, left to right
+ - in order, left to right

• In the expression 2 + 2 * 2 – 2 ,

3-84

Do first:

Do next:

Do next:

Evaluate 
1st

Evaluate 
2nd

Evaluate 
3rd

Do last:



Associativity of Operators

• - (unary negation)  associates right to left
• * / % + - all associate left to right
• parentheses ( ) can be used to override the 

order of operations 
2 + 2  *  2 – 2  = 4

(2 + 2) *  2 – 2  = 6
2 + 2  * (2 – 2) = 2

(2 + 2) * (2 – 2) = 0

3-85



Algebraic Expressions

• Multiplication requires an operator 
Area = lw is written as  Area = l * w;

• There is no exponentiation operator 
Area = s2 is written as  Area = pow(s, 2);

(note: pow requires the cmath header file)

• Parentheses may be needed to maintain order of 
operations 

is written as
m = (y2-y1)/(x2-x1);

3-86

12

12

xx
yym

−
−

=



3.3 Data Type Conversion 
and Type Casting

• Operations are performed between 
operands of the same type

• If operands do not have the same type, 
C++ will automatically convert one to be 
the type of the other

• This can impact the results of calculations

3-87



Hierarchy of Data Types

• Highest

• Lowest

• Ranked by largest number they can hold

3-88

long double
double
float
unsigned long
long
unsigned int
int



Type Coercion

• Coercion: automatic conversion of an 
operand to another data type

• Promotion: converts to a higher type

• Demotion: converts to a lower type

3-89



Coercion Rules

1) char, short, unsigned short are 
automatically promoted to int

2) When operating on values of different 
data types, the lower-ranked one is 
promoted to the type of the higher one.

3) When using the = operator, the type of 
expression on right will be converted to 
the type of variable on left

3-90



Coercion Rules – Important Notes

1) If demotion is required to use the = 
operator,

- the stored result may be incorrect if there 
is not enough space available in the 
receiving variable

- floating-point values are truncated when 
assigned to integer variables

2) Coercion affects the value used in a 
calculation.  It does not change the 
type associated with a variable.

3-91



Type Casting

• Used for manual data type conversion
• Format 

static_cast<Data Type>(Value)

• Example: 
cout << static_cast<int>(4.2); 

// Displays 4

3-92



More Type Casting Examples

char ch = 'C';
cout << ch << " is stored as "

<< static_cast<int>(ch);

gallons = static_cast<int>(area/500);

avg = static_cast<double>(sum)/count;

3-93



Older Type Cast Styles

double Volume = 21.58;
int intVol1, intVol2;
intVol1 = (int) Volume; // C-style

// cast
intVol2 = int (Volume); //Prestandard

// C++ style
// cast

C-style cast uses prefix notation
Prestandard C++ cast uses functional notation
static_cast is the current standard

3-94



3.4 Overflow and Underflow

• Occurs when assigning a value that is too 
large (overflow) or too small (underflow) to 
be held in a variable

• The variable contains a value that is 
‘wrapped around’ the set of possible values

3-95



Overflow Example

// Create a short int initialized to
// the largest value it can hold
short int num = 32767; 

cout << num;     // Displays 32767 
num = num + 1;
cout << num;     // Displays -32768

3-96



Handling Overflow and Underflow

Different systems handle the problem 
differently. They may
– display a warning / error message, or display a 

dialog box and ask what to do

– stop the program

– continue execution with the incorrect value

3-97



3.5 Named Constants

• Also called constant variables
• Variables whose content cannot be changed 

during program execution
• Used for representing constant values with 

descriptive names
const double TAX_RATE = 0.0675;
const int NUM_STATES = 50;

• Often named in uppercase letters
3-98



Benefits of Named Constants

• Makes program code more readable by 
documenting the purpose of the constant in 
the name:
const double TAX_RATE = 0.0675;
…
salesTax = purchasePrice * TAX_RATE;

• Simplifies program maintenance: 
const double TAX_RATE = 0.0725;

3-99



const vs. #define

#define
– C-style of naming constants
#define NUM_STATES 50

– Interpreted by pre-processor rather than 
compiler

– Does not occupy a memory location like a 
constant variable defined with const

– Instead, causes a text substitution to occur. In 
above example, every occurrence in program of 
NUM_STATES will be replaced by 50

3-100

no ;     
goes here



3.6 Multiple and Combined Assignment

• The assignment operator (=) can be used 
multiple times in an expression
x = y = z = 5;

• Associates right to left
x = (y = (z = 5));

3-101

Done        Done       Done
3rd 2nd 1st



Combined Assignment

• Applies an arithmetic operation to a 
variable and assigns the result as the new 
value of that variable

• Operators: += -= *= /= %=
• Also called compound operators or 

arithmetic assignment operators
• Example: 
sum += amt; is short for  sum = sum + amt;

3-102



More Examples

x += 5;  means x = x + 5;
x -= 5;  means x = x – 5;
x *= 5;  means x = x * 5;
x /= 5;  means x = x / 5;
x %= 5;  means x = x % 5;

The right hand side is evaluated before the
combined assignment operation is done.
x *= a + b; means   x = x * (a + b);

3-103



3.7 Formatting Output

• Can control how output displays for 
numeric and string data
– size
– position
– number of digits

• Requires iomanip header file

3-104



Stream Manipulators

• Used to control features of an output field

• Some affect just the next value displayed
–setw(x): Print in a field at least x spaces 

wide.  It will use more spaces if specified field 
width is not big enough.

3-105



Stream Manipulators
• Some affect values until changed again

– fixed: Use decimal notation (not E-notation) for 
floating-point values.

– setprecision(x):
• When used with fixed, print floating-point value using x

digits after the decimal.
• Without fixed, print floating-point value using x significant 

digits.

– showpoint: Always print decimal for floating-point 
values.  

– left, right: left-, right justification of value

3-106



Manipulator Examples

const float e = 2.718;
float price = 18.0; Displays
cout << setw(8) << e << endl; ^^^2.718
cout << left << setw(8) << e

<< endl; 2.718^^^
cout << setprecision(2); 
cout << e << endl; 2.7
cout << fixed << e << endl; 2.72
cout << setw(6) << price; ^18.00

3-107



3.8 Working with Characters and Strings

• char: holds a single character

• string: holds a sequence of characters

• Both can be used in assignment statements

• Both can be displayed with cout and <<

3-108



String Input

Reading in a string object
string str;

cin >> str; // Reads in a string 
// with no blanks 

getline(cin, str); // Reads in a string
// that may contain 
// blanks

3-109



Character Input

Reading in a character:
char ch;

cin >> ch; // Reads in any non-blank char
cin.get(ch); // Reads in any char
ch = cin.get;// Reads in any char
cin.ignore();// Skips over next char in

// the input buffer

3-110



String Operators

= Assigns a value to a string
string words;
words = "Tasty ";

+ Joins two strings together
string s1 = "hot", s2 = "dog";
string food = s1 + s2; // food = "hotdog"

+= Concatenates a string onto the end of another one
words += food; // words now = "Tasty hotdog"

3-111



string Member Functions
• length() – the number of characters in a string

string firstPrez="George Washington";
int size=firstPrez.length(); // size is 17

• assign() – put repeated characters in a string.  
Can be used for formatting output.

string equals;
equals.assign(80,'=');
…
cout << equals << endl;
cout << "Total: " << total << endl;

3-112



3.9 Using C-Strings
• C-string is stored as an array of characters
• Programmer must indicate maximum number of 

characters at definition
const int SIZE = 5;
char temp[SIZE] = "Hot";

• NULL character (\0) is placed after final 
character to mark the end of the string

• Programmer must make sure array is big enough 
for desired use; temp can hold up to 4 
characters plus the \0.

3-113

H   o   t  \0



C-String Input
• Reading in a C-string 
const int SIZE = 10;
char Cstr[SIZE];
cin >> Cstr; // Reads in a C-string with no 

// blanks. Will write past the 
// end of the array if input string 
// is too long. 

cin.getline(Cstr, 10);
// Reads in a C-string that may 
// contain blanks. Ensures that <= 9
// chars are read in.

• Can also use setw() and width() to control input field 
widths

3-114



C-String Initialization vs. Assignment

• A C-string can be initialized at the time of its 
creation, just like a string object
const int SIZE = 10;

char month[SIZE] = "April";

• However, a C-string cannot later be assigned a 
value using the = operator; you must use the 
strcpy() function
char month[SIZE];
month = "August"         // wrong!
strcpy(month, "August"); //correct

3-115



C-String and Keyboard Input

• Must use cin.getline()to put keyboard input 
into a C-string 

• Note that cin.getline() ≠ getline()
• Must indicate the target C-string and maximum 

number of characters to read:
const int SIZE = 25;
char name[SIZE];
cout << "What's your name? ";
cin.getline(name, SIZE);

3-116



3.10 More Mathematical Library 
Functions

• These require cmath header file
• Take double arguments and return a 
double

• Commonly used functions

3-117

abs Absolute value
sin Sine 
cos Cosine
tan Tangent
sqrt Square root
log Natural (e) log
pow Raise to a power



More Mathematical Library Functions

These require cstdlib header file
• rand

– Returns a random number between 0 and the 
largest int the computer holds

– Will yield the same sequence of numbers each 
time the program is run

• srand(x)
– Initializes random number generator with 
unsigned int x. x is the “seed value”.

– Should be called at most once in a program

3-118



More on Random Numbers

• Use time() to generate different seed values 
each time that a program runs:
#include <ctime> //needed for time()
…
unsigned seed = time(0);
srand(seed);

• Random numbers can be scaled to a range:
int max=6;
int num;
num = rand() % max + 1;

3-119



Chapter 4:  Making Decisions



Topics

4.1 Relational Operators
4.2 The if Statement
4.3 The if/else Statement
4.4 The if/else if Statement
4.5 Menu-Driven Programs
4.6 Nested if Statements
4.7 Logical Operators

4-121



Topics (continued)

4.8   Validating User Input
4.9   More About Block and Scope
4.10 More About Characters and Strings
4.11 The Conditional Operator
4.12 The switch Statement
4.13 Enumerated Data Types

4-122



4.1 Relational Operators

• Used to compare numeric values to 
determine relative order

• Operators:

4-123

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to
!= Not equal to



Relational Expressions

• Relational expressions are Boolean 
(i.e., evaluate to true or false)

• Examples:
12 > 5 is true
7 <= 5 is false

if x is 10, then 
x == 10 is true, 
x <= 8 is false,
x != 8 is true, and 
x == 8 is false

4-124



Relational Expressions

• Can be assigned to a variable 
bool result = (x <= y);

• Assigns 0 for false, 1 for true

• Do not confuse = (assignment) and == 
(equal to)

4-125



4.2 The if Statement

• Supports the use of a decision structure
• Allows statements to be conditionally 

executed or skipped over
• Models the way we mentally evaluate 

situations 
“If it is cold outside,

wear a coat and wear a hat.”

4-126



Format of the if Statement

if (condition)
{
statement1;
statement2;

…
statementn;

}
The block inside the braces is called the body 
of the if statement. If there is only 1 statement 
in the body, the { } may be omitted.

4-127

No                    
; goes here

; goes here



How the if Statement Works

• If (condition) is true, then the  
statement(s) in the body are executed.

• If (condition) is false, then the 
statement(s) are skipped.

4-128



if Statement Flow of Control

4-129

condition

1 or more
statements

true false



Example if Statements

if (score >= 60)
cout << "You passed." << endl;

if (score >= 90)
{

grade = 'A';
cout << "Wonderful job!" << endl;

}

4-130



if Statement Notes

• if is a keyword.  It must be lowercase

• (condition)must be in (  )

• Do not place ; after (condition)

• Don't forget the { } around a multi-statement 
body

4-131



if Statement Style Recommendations

• Place each statement; on a separate 
line after (condition)

• Indent each statement in the body

• When using {  and } around the body, put { 
and } on lines by themselves

4-132



What is true and false?

• An expression whose value is 0 is 
considered false.

• An expression whose value is non-zero is 
considered true.

• An expression need not be a comparison –
it can be a single variable or a 
mathematical expression.  

4-133



Flag

• A variable that signals a condition
• Usually implemented as a bool
• Meaning:

– true: the condition exists
– false: the condition does not exist

• The flag value can be both set and tested 
with if statements

4-134



Flag Example

Example:
bool validMonths = true;

…
if (months < 0)

validMonths = false;
…

if (validMonths)
moPayment = total / months;

4-135



Integer Flags

• Integer variables can be used as flags
• Remember that 0 means false, any other 

value means true
int allDone = 0;  // set to false

…
if (count > MAX_STUDENTS)

allDone = 1;  // set to true
…

if (allDone)
cout << "Task finished";

4-136



4.3 The if/else Statement

• Allows a choice between statements 
depending on whether (condition) is true
or false

• Format:      if (condition)
{   

statement set 1; 
}
else
{

statement set 2; 
}

4-137



How the if/else Works

• If (condition) is true, statement
set 1 is executed and statement set 2
is skipped.

• If (condition) is false, statement
set 1 is skipped and statement set 2
is executed.

4-138



if/else Flow of Control

4-139

condition

statement 
set 1

true false

statement
set 2



Example if/else Statements
if (score >= 60)

cout << "You passed.\n";
else
cout << "You did not pass.\n";

if (intRate > 0)
{  interest = loanAmt * intRate;

cout << interest;
}
else

cout << "You owe no interest.\n";

4-140



Comparisons with floating-point numbers

• It is difficult to test for equality when 
working with floating point numbers.

• It is better to use 
– greater than, less than tests, or 
– test to see if value is very close to a given 

value

4-141



4.4 The if/else if Statement

• Chain of if statements that test in order 
until one is found to be true

• Also models thought processes 
“If it is raining, take an umbrella, 
else, if it is windy, take a hat, 
else, if it is sunny, take sunglasses.”

4-142



if/else if Format

if (condition 1)
{ statement set 1; 
}
else if (condition 2)
{ statement set 2;
}  

…
else if (condition n)
{ statement set n; 
}   

4-143



Using a Trailing else

• Used with if/else if statement when all 
of the conditions are false

• Provides a default statement or action that 
is performed when none of the conditions is 
true 

• Can be used to catch invalid values or 
handle other exceptional situations

4-144



Example if/else if with Trailing else

if (age >= 21)
cout << "Adult";

else if (age >= 13)
cout << "Teen";

else if (age >= 2)
cout << "Child";

else
cout << "Baby";

4-145



4.5 Menu-Driven Program

• Menu: list of choices presented to the user 
on the computer screen

• Menu-driven program: program execution 
controlled by user selecting from a list of 
actions

• Menu can be implemented using 
if/else if statements

4-146



Menu-driven Program Organization

• Display list of numbered or lettered choices 
for actions. 

• Input user’s selection of number or letter
• Test user selection in (condition)

– if a match, then execute code to carry out 
desired action

– if not, then test with next (condition)

4-147



4.6 Nested if Statements

• An if statement that is part of the if or 
else part of another if statement

• Can be used to evaluate > 1 data item or 
condition
if (score < 100)
{

if (score > 90)
grade = 'A';

}

4-148



Notes on Coding Nested ifs

• An else matches the nearest previous if
that does not have an else
if (score < 100)

if (score > 90)
grade = 'A';

else ...  // goes with second if,
// not first one

• Proper indentation aids comprehension

4-149



4.7 Logical Operators

Used to create relational expressions from 
other relational expressions

4-150

Operator Meaning Explanation

&& AND New relational expression is true if both 
expressions are true

|| OR New relational expression is true if either 
expression is true

! NOT
Reverses the value of an expression; true 
expression becomes false, false 
expression becomes true



Logical Operator Examples

int x = 12, y = 5, z = -4;
•

(x > y) && (y > z) true

(x > y) && (z > y) false

(x <= z) || (y == z) false

(x <= z) || (y != z) true

!(x >= z) false

4-151



Logical Precedence

Highest !
&&

Lowest ||

Example:
(2 < 3) || (5 > 6) && (7 > 8)

is true because AND is evaluated before OR

4-152



More on Precedence

Example:

8 < 2 + 7 || 5 == 6     is true

4-153

logical operatorsLowest
relational operators
arithmetic operatorsHighest



Checking Numeric Ranges with 
Logical Operators

• Used to test if a value is within a range
if (grade >= 0 && grade <= 100)

cout << "Valid grade";
• Can also test if a value lies outside a range

if (grade <= 0 || grade >= 100)
cout << "Invalid grade";

• Cannot use mathematical notation
if (0 <= grade <= 100) //Doesn’t

//work!

4-154



4.8 Validating User Input

• Input validation: inspecting input data to 
determine if it is acceptable

• Want to avoid accepting bad input
• Can perform various tests

– Range 
– Reasonableness 
– Valid menu choice
– Zero as a divisor

4-155



4.9 More About Blocks and Scope

• Scope of a variable is the block in which it 
is defined, from the point of definition to the 
end of the block

• Variables are usually defined at the 
beginning of a function

• They may instead be defined close to the 
place where they are first used

4-156



More About Blocks and Scope

• Variables defined inside { } have local or 
block scope

• When in a block that is nested inside 
another block, you can define variables 
with the same name as in the outer block.  
– When the program is executing in the inner 

block, the outer definition is not available
– This is generally not a good idea

4-157



4.10 More About Characters and Strings

• Can use relational operators with characters and 
string objects 
if (menuChoice == 'A') 
if (firstName == "Beth")

• Comparing characters is really comparing ASCII 
values of characters

• Comparing string objects is comparing the ASCII 
values of the characters in the strings.  Comparison 
is character-by-character

• Cannot compare C-style strings with relational 
operators

4-158



Testing Characters

require cctype header file

FUNCTION MEANING
isalpha true if arg. is a letter, false otherwise
isalnum true if arg. is a letter or digit, false

otherwise
isdigit true if arg. is a digit 0-9, false otherwise
islower true if arg. is lowercase letter, false

otherwise

12-159



Character Testing

require cctype header file

FUNCTION MEANING
isprint true if arg. is a printable character, false

otherwise
ispunct true if arg. is a punctuation character, 

false otherwise
isupper true if arg. is an uppercase letter, false

otherwise
isspace true if arg. is a whitespace character, false

otherwise

12-160



4.11 The Conditional Operator

• Can use to create short if/else
statements

• Format: expr ? expr : expr;

4-161



4.12 The switch Statement

• Used to select among statements from 
several alternatives

• May sometimes be used instead of 
if/else if statements

4-162



switch Statement Format

switch (IntExpression)
{                   
case exp1: statement set 1;
case exp2: statement set 2;
...
case expn: statement set n;
default:   statement set n+1;

}

4-163



switch Statement Requirements

1) IntExpression must be a char or an 
integer variable or an expression that 
evaluates to an integer value

2) exp1 through expn must be constant 
integer type expressions and must be 
unique in the switch statement

3) default is optional but recommended

4-164



How the switch Statement Works

1) IntExpression is evaluated

2) The value of intExpression is compared 
against exp1 through expn. 

3) If IntExpression matches value expi, the 
program branches to the statement(s) following 
expi and continues to the end of the switch

4) If no matching value is found, the program 
branches to the statement after default:

4-165



The break Statement

• Used to stop execution in the current block
• Also used to exit a switch statement

• Useful to execute a single case statement 
without executing statements following it

4-166



Example switch Statement

switch (gender)
{                   

case 'f': cout << "female";
break;

case 'm': cout << "male";
break;

default : cout << "invalid gender";
}

4-167



Using switch with a Menu

switch statement is a natural choice for 
menu-driven program
– display menu
– get user input
– use user input as IntExpression in switch

statement
– use menu choices as exp to test against in the 
case statements

4-168



4.13 Enumerated Data Types

• Data type created by programmer
• Contains a set of named constant integers
• Format:
enum name {val1, val2, … valn};

• Examples:
enum Fruit {apple, grape, orange};

enum Days {Mon, Tue, Wed, Thur, Fri};

4-169



Enumerated Data Type Variables

• To define variables, use the enumerated 
data type name
Fruit snack;
Days workDay, vacationDay;

• Variable may contain any valid value for the 
data type
snack = orange;     // no quotes
if (workDay == Wed) // none here

4-170



Enumerated Data Type Values

• Enumerated data type values are 
associated with integers, starting at 0
enum Fruit {apple, grape, orange};

• Can override default association
enum Fruit {apple = 2, grape = 4, 

orange = 5}

4-171

0 1 2



Enumerated Data Type Notes

• Enumerated data types improve the 
readability of a program

• Enumerated variables can not be used with 
input statements, such as cin

• Will not display the name associated with 
the value of an enumerated data type if 
used with cout

4-172



Chapter 5:  Looping



Topics

5.1 Introduction to Loops: The while Loop
5.2 Using the while loop for Input Validation
5.3 The Increment and Decrement Operators
5.4 Counters
5.5 The do-while loop
5.6 The for loop
5.7 Keeping a Running Total

5-174



Topics (continued)

5.8 Sentinels
5.9 Deciding Which Loop to Use
5.10 Nested Loops
5.11 Breaking Out of a Loop
5.12 Using Files for Data Storage
5.13 Creating Good Test Data

5-175



5.1 Introduction to Loops: 
The while Loop

• Loop: part of program that may execute > 1 
time (i.e., it repeats)

• while loop format:
while (condition)
{  statement(s);
}

• The {} can be omitted if there is only one 
statement in the body of the loop

5-176

No ; here



How the while Loop Works

while (condition)
{ statement(s);
}

condition is evaluated
– if it is true, the statement(s) are executed, 

and then condition is evaluated again
– if it is false, the loop is exited

An iteration is an execution of the loop body
5-177



while Loop Flow of Control

5-178

true

statement(s)

false
condition



while Loop Example

int val = 5;
while (val >= 0)
{   cout << val << "  ";

val = val - 1;
}

• produces output:
5  4  3  2  1  0

5-179



while Loop is a Pretest Loop

• while is a pretest loop (condition is evaluated 
before the loop executes)

• If the condition is initially false, the statement(s) in 
the body of the loop are never executed

• If the condition is initially true, the statement(s) in 
the body will continue to be executed until the 
condition becomes false

5-180



Exiting the Loop

• The loop must contain code to allow 
condition to eventually become false
so the loop can be exited

• Otherwise, you have an infinite loop (i.e., a 
loop that does not stop)

• Example infinite loop:
x = 5;
while (x > 0)    // infinite loop because

cout << x;    // x is always > 0

5-181



Common Loop Errors
• Don’t put ; immediately after (condition)
• Don’t forget the { } :

int numEntries = 1;
while (numEntries <=3)

cout << "Still working … ";
numEntries++; // not in the loop body

• Don’t use = when you mean to use ==
while (numEntries = 3)  // always true
{

cout << "Still working … ";
numEntries++; 

}

5-182



while Loop Programming Style

• Loop body statements should be indented

• Align { and } with the loop header and place 
them on lines by themselves

Note: The conventions above make the 
program more understandable by someone 
who is reading it.  They have no effect on how 
the the program compiles or executes. 

5-183



5.2 Using the while Loop for Input 
Validation

Loops are an appropriate structure for
validating user input data
1. Prompt for and read in the data.
2. Use a while loop to test if data is valid.
3. Enter the loop only if data is not valid.
4. Inside the loop, display error message and 

prompt the user to re-enter the data. 
5. The loop will not be exited until the user 

enters valid data.

5-184



Input Validation Loop Example

cout << "Enter a number (1-100) and"
<< " I will guess it. ";

cin  >> number;

while (number < 1 || number > 100)
{  cout << "Number must be between 1 and 100."

<< " Re-enter your number. ";
cin  >> number;

}
// Code to use the valid number goes here.

5-185



5.3 The Increment and Decrement 
Operators

• Increment – increase value in variable
++ adds one to a variable
val++; is the same as val = val + 1;

• Decrement – reduce value in variable
-- subtracts one from a variable
val--; is the same as val = val – 1;

• can be used in prefix mode (before) or 
postfix mode (after) a variable

5-186



Prefix Mode

• ++val and --val increment or decrement 
the variable, then return the new value of 
the variable. 

• It is this returned new value of the variable 
that is used in any other operations within 
the same statement 

5-187



Prefix Mode Example
int x = 1, y = 1;

x = ++y;        // y is incremented to 2
// Then 2 is assigned to x

cout << x 
<< "  " << y; // Displays 2  2

x = --y;        // y is decremented to 1
// Then 1 is assigned to x

cout << x
<< "  " << y; // Displays 1 1  

5-188



Postfix Mode

• val++ and val-- return the old value of 
the variable, then increment or decrement 
the variable

• It is this returned old value of the variable 
that is used in any other operations within 
the same statement 

5-189



Postfix Mode Example
int x = 1, y = 1;

x = y++;        // y++ returns a 1
// The 1 is assigned to x
// and y is incremented to 2

cout << x 
<< "  " << y; // Displays 1  2

x = y--;        // y-- returns a 2
// The 2 is assigned to x
// and y is decremented to 1

cout << x
<< "  " << y; // Displays 2 1

5-190



Increment & Decrement Notes

• Can be used in arithmetic expressions
result = num1++ + --num2;

• Must be applied to something that has a 
location in memory. Cannot have 
result = (num1 + num2)++; // Illegal

• Can be used in relational expressions 
if (++num > limit)

• Pre- and post-operations will cause different 
comparisons 

5-191



5.4 Counters

• Counter: variable that is incremented or 
decremented each time a loop repeats

• Can be used to control execution of the 
loop (loop control variable)

• Must be initialized before entering loop

• May be incremented/decremented either 
inside the loop or in the loop test

5-192



Letting the User Control the Loop

• Program can be written so that user input 
determines loop repetition

• Can be used when program processes a list 
of items, and user knows the number of 
items

• User is prompted before loop.  Their input is 
used to control number of repetitions

5-193



User Controls the Loop Example
int num, limit;
cout << "Table of squares\n";
cout << "How high to go? ";
cin  >> limit;
cout << "\n\nnumber square\n";
num = 1;
while (num <= limit)
{  cout << setw(5) << num << setw(6)

<< num*num << endl;
num++;

}
5-194



5.5 The do-while Loop

• do-while: a post test loop (condition
is evaluated after the loop executes)

• Format:
do
{   1 or more statements;
} while (condition);

5-195

Notice the 
required ;



do-while Flow of Control

5-196

statement(s)

condition

false

true



do-while Loop Notes

• Loop always executes at least once

• Execution continues as long as 
condition is true; the loop is exited 
when condition becomes false

• { } are required, even if the body contains 
a single statement

• ; after (condition) is also required

5-197



do-while and Menu-Driven Programs

• do-while can be used in a menu-driven 
program to bring the user back to the 
menu to make another choice

• To simplify the processing of user input, 
use the toupper (‘to upper’) or tolower
(to lower’) function

5-198



Menu-Driven Program Example

do {
// code to display menu
// and perform actions
cout << "Another choice? (Y/N) ";

} while (choice =='Y'||choice =='y');

The condition could be written as
(toupper(choice) == 'Y');

or as
(tolower(choice) == 'y');

5-199



5.6 The for Loop

• Pretest loop that executes zero or more times
• Useful for counter-controlled loop

• Format:
for( initialization; test; update )
{   1 or more statements;
}

5-200

No ;  goes 
here

Required ;



for Loop Mechanics

5-201



for Loop Flow of Control

5-202

true

statement(s)

false
test

initialization 
code

update
code



for Loop Example

int sum = 0, num;

for (num = 1; num <= 10; num++)
sum += num;

cout << "Sum of numbers 1 – 10 is "
<< sum << endl;

5-203



for Loop Notes

• If test is false the first time it is evaluated, 
the body of the loop will not be executed

• The update expression can increment or 
decrement by any amount

• Variables used in the initialization section 
should not be modified in the body of the 
loop

5-204



for Loop Modifications

• Can define variables in initialization code
– Their scope is the for loop

• Initialization and update code can contain 
more than one statement
– Separate the statements with commas

• Example:
for (int sum = 0, num = 1; num <= 10; num++)

sum += num;

5-205



More for Loop Modifications
(These are NOT Recommended)

• Can omit initialization if already done
int sum = 0, num = 1;
for (; num <= 10; num++)

sum += num;

• Can omit update if done in loop
for (sum = 0, num = 1; num <= 10;)

sum += num++;

• Can omit test – may cause an infinite loop 
for (sum = 0, num = 1; ; num++)

sum += num;
• Can omit loop body if all work is done in header

5-206



5.7 Keeping a Running Total

• running total: accumulated sum of numbers 
from each repetition of loop

• accumulator: variable that holds running total
int sum = 0, num = 1; // sum is the
while (num <= 10)     // accumulator
{ sum += num;

num++;
}
cout << "Sum of numbers 1 – 10 is "

<< sum << endl;

5-207



5.8 Sentinels

• sentinel: value in a list of values that 
indicates end of the list

• Special value that cannot be confused with 
a valid value, e.g., -999 for a test score

• Used to terminate input when user may not 
know how many values will be entered

5-208



Sentinel Example

int total = 0;
cout << "Enter points earned "

<< "(or -1 to quit): ";
cin  >> points;
while (points != -1) // -1 is the sentinel
{

total += points;  
cout << "Enter points earned: ";
cin  >> points;

}

5-209



5.9 Deciding Which Loop to Use

• while: pretest loop (loop body may not 
be executed at all)

• do-while: post test loop (loop body will 
always be executed at least once)

• for: pretest loop (loop body may not be 
executed at all); has initialization and 
update code; is useful with counters or if 
precise number of repetitions is known

5-210



5.10 Nested Loops

• A nested loop is a loop inside the body of 
another loop

• Example:
for (row = 1; row <= 3; row++)
{                           

for (col = 1; col <= 3; col++)
{  

cout << row * col << endl;
}

}
5-211

outer loop

inner loop



Notes on Nested Loops

• Inner loop goes through all its repetitions 
for each repetition of outer loop

• Inner loop repetitions complete sooner than 
outer loop

• Total number of repetitions for inner loop is 
product of number of repetitions of the two 
loops.  In previous example, inner loop 
repeats 9 times

5-212



5.11 Breaking Out of a Loop

• Can use break to terminate execution of 
a loop

• Use sparingly if at all – makes code harder 
to understand

• When used in an inner loop, terminates 
that loop only and returns to the outer loop

5-213



The continue Statement

• Can use continue to go to end of loop 
and prepare for next repetition
– while and do-while loops go to test and 

repeat the loop if test condition is true
– for loop goes to update step, then tests, and 

repeats loop if test condition is true

• Use sparingly – like break, can make
program logic hard to follow

5-214



5.12 Using Files for Data Storage

• We can use a file instead of monitor screen 
for program output

• Files are stored on secondary storage media, 
such as disk

• Files allow data to be retained between 
program executions

• We can later use the file instead of a 
keyboard for program input 

3-215



File Types

• Text file – contains information encoded as 
text, such as letters, digits, and punctuation.  
Can be viewed with a text editor such as 
Notepad.

• Binary file – contains binary (0s and 1s) 
information that has not been encoded as 
text.  It cannot be viewed with a text editor.

3-216



File Access – Ways to Use 
the Data in a File

• Sequential access – read the 1st piece of 
data, read the 2nd piece of data, …, read the 
last piece of data.  To access the n-th piece 
of data, you have to retrieve the preceding n 
pieces first. 

• Random (direct) access – retrieve any piece 
of data directly, without the need to retrieve 
preceding data items.

3-217



What is Needed to Use Files

1. Include the fstream header file 
2. Define a file stream object
• ifstream for input from a file
ifstream inFile;

• ofstream for output to a file
ofstream outFile;

3-218



Open the File

3. Open the file
• Use the open member function

inFile.open("inventory.dat");
outFile.open("report.txt");

• Filename may include drive, path info.
• Output file will be created if necessary; 

existing output file will be erased first
• Input file must exist for open to work

3-219



Use the File

4. Use the file
• Can use output file object and << to send 

data to a file
outFile << "Inventory report";

• Can use input file object and >> to copy 
data from file to variables
inFile >> partNum;
inFile >> qtyInStock >> qtyOnOrder;

3-220



Close the File

5. Close the file
• Use the close member function

inFile.close();
outFile.close();

• Don’t wait for operating system to close 
files at program end

– There may be limit on number of open files
– There may be buffered output data waiting 

to be sent to a file that could be lost

3-221

Can use a file instead of keyboard for program input 



Input File – the Read Position

• Read Position – location of the next piece 
of data in an input file

• Initially set to the first byte in the file

• Advances for each data item that is read.  
Successive reads will retrieve successive 
data items.

3-222



Using  Loops to Process Files

• A loop can be used to read data from or 
write data to a file

• It is not necessary to know how much data 
is in the file or will be written to the file

• Several methods exist to test for the end of 
the file

5-223



Using the >> Operator to Test for End of 
File (EOF) on an Input File 

• The stream extraction operator (>>) returns a 
true or false value indicating if a read is 
successful

• This can be tested to find the end of file since 
the read “fails” when there is no more data

• Example:  
while (inFile >> score)

sum += score;

5-224



File Open Errors
• An error will occur if an attempt to open a file 

for input fails:
– File does not exist
– Filename is misspelled
– File exists, but is in a different place

• The file stream object is set to true if the open 
operation succeeded.  It can be tested to see 
if the file can be used:

if (inFile)
{ 

// process data from file
}  else

cout << "Error on file open\n";

5-225



User-Specified Filenames

• Program can prompt user to enter the names 
of input and/or output files.  This makes the 
program more versatile.

• Filenames can be read into string objects.  The 
C-string representation of the string object can 
then be passed to the open function:

cout << "Which input file? ";
cin >> inputFileName;
inFile.open(inputFileName.c_str()); 

5-226



5.13 Creating Good Test Data

• When testing a program, the quality of the 
test data is more important than the 
quantity. 

• Test data should show how different parts 
of the program execute

• Test data should evaluate how program 
handles:
– normal data
– data that is at the limits the valid range
– invalid data

5-227

See pr5-09.cpp



Chapter 6:  Functions



Topics

6.1 Modular Programming
6.2 Defining and Calling Functions
6.3 Function Prototypes
6.4 Sending Data into a Function
6.5 Passing Data by Value
6.6 The return Statement
6.7 Returning a Value from a Function
6.8 Returning a Boolean Value

6-229



Topics (continued)

6.9 Using Functions in a Menu-Driven Program
6.10 Local and Global Variables
6.11 Static Local Variables
6.12 Default Arguments
6.13 Using Reference Variables as Parameters
6.14 Overloading Functions
6.15 The exit() Function
6.16 Stubs and Drivers

6-230



6.1 Modular Programming

• Modular programming: breaking a program 
up into smaller, manageable functions or 
modules.  Supports the divide-and-conquer 
approach to solving a problem.

• Function: a collection of statements to 
perform a specific task

• Motivation for modular programming
– Simplifies the process of writing programs
– Improves maintainability of programs

6-231



6.2 Defining and Calling Functions

• Function call: a statement that causes a 
function to execute

• Function definition: the statements that 
make up a function

6-232



Function Definition

• Definition includes 
name: name of the function.  Function names 

follow same rules as variable names
parameter list: variables that hold the values 

passed to the function
body: statements that perform the function’s task
return type: data type of the value the function 

returns to the part of the program that called it

6-233



Function Definition

6-234



Function Header

• The function header consists of 
– the function return type
– the function name
– the function parameter list

• Example:
int main()

• Note: no ; at the end of the header

6-235



Function Return Type

• If a function returns a value, the type of 
the value must be indicated
int main()

• If a function does not return a value, its 
return type is void
void printHeading()
{

cout << "\tMonthly Sales\n";
}

6-236



Calling a Function

• To call a function, use the function name 
followed by () and ;
printHeading();

• When a function is called, the program  
executes the body of the function

• After the function terminates, execution 
resumes in the calling module at the 
point of call

6-237



Calling a Function

• main is automatically called when the 
program starts 

• main can call any number of functions
• Functions can call other functions

6-238



6.3 Function Prototypes

The compiler must know the following 
about a function before it is called
– name
– return type
– number of parameters
– data type of each parameter

6-239



Function Prototypes
Ways to notify the compiler about a 
function before a call to the function: 
– Place function definition before calling 

function’s definition
– Use a function prototype (similar to the 

heading of the function
• Heading: void printHeading()

• Prototype: void printHeading();
– Function prototype is also called a function 

declaration
6-240



Prototype Notes

• Place prototypes near top of program 
• Program must include either prototype or 

full function definition before any call to the 
function, otherwise a compiler error occurs

• When using prototypes, function definitions 
can be placed in any order in the source 
file.  Traditionally, main is placed first.

6-241



6.4 Sending Data into a Function

• Can pass values into a function at time of call
c = sqrt(a*a + b*b);

• Values passed to function are arguments
• Variables in function that hold values passed 

as arguments are parameters
• Alternate names:

– argument: actual argument, actual parameter
– parameter: formal argument, formal parameter

6-242



Parameters, Prototypes, 
and Function Headings

• For each function argument,
– the prototype must include the data type of each 

parameter in its () 
void evenOrOdd(int);      //prototype

– the heading must include a declaration, with variable 
type and name, for each parameter in its ()
void evenOrOdd(int num)   //heading

• The function call for the above function would look 
like this:  evenOrOdd(val);  //call
Note:  no data type on argument in call

6-243



Function Call Notes

• Value of argument is copied into parameter 
when the function is called

• Function can have > 1 parameter
• There must be a data type listed in the 

prototype () and an argument declaration in 
the function heading () for each parameter

• Arguments will be promoted/demoted as 
necessary to match parameters.  Be careful!

6-244



Calling Functions with Multiple Arguments

When calling a function with multiple 
arguments
– the number of arguments in the call must 

match the function prototype and definition
– the first argument will be copied into the 

first parameter, the second argument into 
the second parameter, etc.

6-245



Calling Functions with 
Multiple Arguments Illustration

displayData(height, weight);  // call

void displayData(int h, int w)// heading
{

cout << "Height = " << h << endl;
cout << "Weight = " << w << endl;

}

6-246



6.5 Passing Data by Value

• Pass by value: when an argument is 
passed to a function, a copy of its value is 
placed in the parameter

• The function cannot access the original 
argument

• Changes to the parameter in the function 
do not affect the value of the argument in 
the calling function

6-247



Passing Data to Parameters by Value

• Example:  int val = 5;
evenOrOdd(val);

• evenOrOdd can change variable num, but 
it will have no effect on variable val

6-248

5
val

argument in
calling function

5
num

parameter in
evenOrOdd function



6.6 The return Statement

• Used to end execution of a function
• Can be placed anywhere in a function

– Statements that follow the return
statement will not be executed

• Can be used to prevent abnormal 
termination of program 

• Without a return statement, the 
function ends at its last }

6-249



6.7 Returning a Value from a Function

• return statement can be used to return a 
value from the function to the module that 
made the function call

• Prototype and definition must indicate data 
type of return value (not void)

• Calling function should use return value, e.g., 
– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression

6-250



Returning a Value – the return
Statement

• Format:  return expression;
• expression may be a variable, a literal 

value, or an expression.
• expression should be of the same data 

type as the declared return type of the 
function (will be converted if not)

6-251



6.8 Returning a Boolean Value

• Function can return true or false
• Declare the return type in the function 

prototype and heading as bool
• The function body must contain return

statement(s) that return true or false
• The calling function can use the return 

value in a relational expression

6-252



Boolean return Example

bool isValid(int);        // prototype

bool isValid(int val)     // heading
{  

int min = 0, max = 100;
if (val >= min && val <= max)

return true;
else

return false;
}

if (isValid(score))       // call
…

6-253



6.9 Using Functions in a Menu-Driven 
Program

Functions can be used 
• to implement user choices from menu
• to implement general-purpose tasks

- Higher-level functions can call general-purpose 
functions 

- This minimizes the total number of functions
and speeds program development time

6-254



6.10 Local and Global Variables
• local variable: defined within a function or 

block; accessible only within the function or 
block

• Other functions and blocks can define 
variables with the same name

• When a function is called, local variables in 
the calling function are not accessible from 
within the called function

6-255



Local Variable Lifetime

• A local variable only exists while its 
defining function is executing

• Local variables are destroyed when the 
function terminates

• Data cannot be retained in local 
variables between calls to the function in 
which they are defined

6-256



Local and Global Variables

• global variable: a variable defined 
outside all functions; it is accessible to 
all functions within its scope

• Easy way to share large amounts of 
data between functions

• Scope of a global variable is from its 
point of definition to the program end

• Use sparingly

6-257



Initializing Local and Global Variables

• Local variables must be initialized by the 
programmer

• Global variables are initialized to 0
(numeric) or NULL (character) when the 
variable is defined.  These can be 
overridden with explicit initial values.

6-258



Global Variables – Why Use Sparingly?

Global variables make:

• Programs that are difficult to debug

• Functions that cannot easily be re-used in 
other programs

• Programs that are hard to understand

6-259



Global Constants

• A global constant is a named constant that 
can be used by every function in a program

• It is useful if there are unchanging values 
that are used throughout the program

• They are safer to use than global variables, 
since the value of a constant cannot be 
modified during program execution

6-260



Local and Global Variable Names

• Local variables can have same names as 
global variables

• When a function contains a local variable 
that has the same name as a global 
variable, the global variable is unavailable 
from within the function.  The local definition 
"hides" or "shadows" the global definition.

6-261



6.11 Static Local Variables

• Local variables
– Only exist while the function is executing
– Are redefined each time function is called
– Lose their contents when function terminates

• static local variables
– Are defined with key word static

static int counter;
– Are defined and initialized only the first time the 

function is executed
– Retain their contents between function calls

6-262



6.12 Default Arguments

• Values passed automatically if arguments 
are missing from the function call

• Must be a constant declared in prototype 
or header (whichever occurs first)
void evenOrOdd(int = 0);

• Multi-parameter functions may have default 
arguments for some or all parameters
int getSum(int, int=0, int=0);

6-263



Default Arguments
• If not all parameters to a function have 

default values, the ones without defaults 
must be declared first in the parameter list
int getSum(int, int=0, int=0);// OK
int getSum(int, int=0, int);  // wrong!

• When an argument is omitted from a function 
call, all arguments after it must also be 
omitted
sum = getSum(num1, num2);    // OK
sum = getSum(num1, , num3);  // wrong!

6-264



6.13 Using Reference Variables as 
Parameters

• Mechanism that allows a function to work 
with the original argument from the 
function call, not a copy of the argument

• Allows the function to modify values 
stored in the calling environment

• Provides a way for the function to ‘return’ 
more than 1 value

6-265



Reference Variables

• A reference variable is an alias for 
another variable

• It is defined with an ampersand (&) in 
the prototype and in the header
void getDimensions(int&, int&);

• Changes to a reference variable are 
made to the variable it refers to

• Use reference variables to implement 
passing parameters by reference

6-266



Pass by Reference Example

void squareIt(int &); //prototype
void squareIt(int &num)
{

num *= num;
}

int localVar = 5;
squareIt(localVar);  // localVar now

// contains 25

6-267



Reference Variable Notes

• Each reference parameter must contain &
• Argument passed to reference parameter must 

be a variable.  It cannot be an expression or a 
constant.

• Use only when appropriate, such as when the 
function must input or change the value of the 
argument passed to it

• Files (i.e., file stream objects) should be 
passed by reference

6-268



6.14 Overloading Functions

• Overloaded functions are two or more 
functions that have the same name, but different 
parameter lists

• Can be used to create functions that perform the 
same task, but take different parameter types or 
different number of  parameters

• Compiler will determine which version of the 
function to call by the argument and parameter 
list

6-269



Overloaded Functions Example
If a program has these overloaded functions,
void getDimensions(int);           // 1
void getDimensions(int, int);      // 2
void getDimensions(int, float);    // 3
void getDimensions(double, double);// 4

then the compiler will use them as follows:
int length, width; 
double base, height;
getDimensions(length);             // 1
getDimensions(length, width);      // 2
getDimensions(length, height);     // 3
getDimensions(height, base);       // 4

6-270



6.15 The exit() Function

• Terminates execution of a program
• Can be called from any function
• Can pass a value to operating system to 

indicate status of program execution
• Usually used for abnormal termination of 

program
• Requires cstdlib header file
• Use with care

6-271



exit() – Passing Values to Operating 
System

• Use an integer value to indicate program 
status

• Often, 0 means successful completion, 
non-zero indicates a failure condition

• Can use named constants defined in 
cstdlib:
– EXIT_SUCCESS and 
– EXIT_FAILURE

6-272



6.16 Stubs and Drivers

• Stub: dummy function in place of actual 
function

• Usually displays a message indicating it 
was called.  May also display parameters

• Driver: function that tests a function by 
calling it

• Stubs and drivers are useful for testing 
and debugging program logic and design

6-273



Chapter 7:  Introduction to Classes and 
Objects



Topics

7.1  Abstract Data Types
7.2  Object-Oriented Programming
7.3  Introduction to Classes
7.4  Creating and Using Objects
7.5  Defining Member Functions
7.6  Constructors
7.7  Destructors
7.8  Private Member Functions

7-275



Topics (Continued)

7.9    Passing Objects to Functions
7.10  Object Composition
7.11  Separating Class Specification,  

Implementation, and Client Code
7.12  Structures
7.14 Introduction to Object-Oriented Analysis and 

Design
7.15  Screen Control

7-276



7.1  Abstract Data Types

• Programmer-created data types that 
specify
– legal values that can be stored
– operations that can be done on the values

• The user of an abstract data type (ADT) 
does not need to know any implementation 
details (e.g., how the data is stored or how the 
operations on it are carried out)

7-277



Abstraction in Software Development

• Abstraction allows a programmer to design a 
solution to a problem and to use data items 
without concern for how the data items are 
implemented

• This has already been encountered in the book:
– To use the pow function, you need to know what 

inputs it expects and what kind of results it 
produces

– You do not need to know how it works

7-278



Abstraction and Data Types

• Abstraction: a definition that captures 
general characteristics without details
ex: An abstract triangle is a 3-sided polygon.  A 
specific triangle may be scalene, isosceles, or 
equilateral

• Data Type: defines the kind of values that 
can be stored and the operations that can 
be performed on it 

7-279



7.2  Object-Oriented Programming

• Procedural programming uses variables to 
store data, and focuses on the processes/ 
functions that occur in a program.  Data 
and functions are separate and distinct.

• Object-oriented programming is based on 
objects that encapsulate the data and the 
functions that operate on it. 

7-280



Object-Oriented Programming
Terminology

• object: software entity that combines data 
and functions that act on the data in a single 
unit

• attributes: the data items of an object, 
stored in member variables

• member functions (methods): procedures/ 
functions that act on the attributes of the 
class

7-281



More Object-Oriented Programming 
Terminology

• data hiding: restricting access to certain 
members of an object.  The intent is to 
allow only member functions to directly 
access and modify the object’s data

• encapsulation: the bundling of an 
object’s data and procedures into a single 
entity

7-282



Object Example

7-283

Member variables (attributes)
int side;

Member functions
void setSide(int s)
{  side = s;    }

int getSide()
{  return side; }

Square

Square object’s data item:  side

Square object’s functions:  setSide - set the size of the side of the 

square, getSide - return the size of the side of the square



Why Hide Data?

• Protection – Member functions provide a 
layer of protection against inadvertent or 
deliberate data corruption

• Need-to-know – A programmer can use 
the data via the provided member 
functions.  As long as the member 
functions return correct information, the 
programmer needn’t worry about 
implementation details.

7-284



7.3 Introduction to Classes

• Class: a programmer-defined data type 
used to define objects

• It is a pattern for creating objects
ex:  
string fName, lName;
creates two objects of the string class

7-285



Introduction to Classes

• Class declaration format:
class className
{

declaration;
declaration;

};

7-286

Notice the 
required ;



Access Specifiers

• Used to control access to members of the class.
• Each member is declared to be either

public: can be accessed by functions 
outside  of the class

or
private: can only be called by or accessed 

by functions that are members of 
the class

7-287



Class Example

class Square
{
private:
int side;

public:
void setSide(int s)
{ side = s; }
int getSide()
{ return side; }

};

7-288

Access 
specifiers



More on Access Specifiers

• Can be listed in any order in a class

• Can appear multiple times in a class

• If not specified, the default is private

7-289



7.4  Creating and Using Objects

• An object is an instance of a class
• It is defined just like other variables 

Square sq1, sq2;

• It can access members using dot operator 
sq1.setSide(5);
cout << sq1.getSide();

7-290



Types of Member Functions

• Acessor, get, getter function:  uses but 
does not modify a member variable

ex:  getSide

• Mutator, set, setter function:  modifies a 
member variable

ex:  setSide

7-291



7.5  Defining Member Functions

• Member functions are part of a class 
declaration

• Can place entire function definition inside 
the class declaration
or

• Can place just the prototype inside the 
class declaration and write the function 
definition after the class

7-292



Defining Member Functions Inside the 
Class Declaration

• Member functions defined inside the class 
declaration are called inline functions

• Only very short functions, like the one 
below, should be inline functions

int getSide()
{ return side; }

7-293



Inline Member Function Example

class Square
{

private:
int side;

public:
void setSide(int s)
{ side = s; }
int getSide()
{ return side; }

};

7-294

inline 
functions



Defining Member Functions After the 
Class Declaration

• Put a function prototype in the class declaration
• In the function definition, precede the function 

name with the class name and scope 
resolution operator (::)

int Square::getSide()
{

return side;
}

7-295



Conventions and a Suggestion

Conventions:
• Member variables are usually private
• Accessor and mutator functions are usually 
public

• Use ‘get’ in the name of accessor functions, ‘set’ 
in the name of mutator functions

Suggestion: calculate values to be returned in 
accessor functions when possible, to minimize 
the potential for stale data

7-296



Tradeoffs of Inline vs. Regular Member 
Functions

• When a regular function is called, control 
passes to the called function
– the compiler stores return address of call, 

allocates memory for local variables, etc.
• Code for an inline function is copied into 

the program in place of the call when the 
program is compiled
– This makes alarger executable program, but
– There is less function call overhead, and 

possibly faster execution
7-297



7.6  Constructors
• A constructor is a member function that is 

often used to initialize data members of a 
class

• Is called automatically when an object of the 
class is created

• It must be a public member function

• It must be named the same as the class 

• It must have no return type
7-298



Constructor – 2 Examples

Inline:
class Square
{
. . .
public:
Square(int s)
{ side = s; }

. . .
};

Declaration outside the 
class:
Square(int); //prototype

//in class

Square::Square(int s)
{

side = s;
}

7-299



Overloading Constructors

• A class can have more than 1 constructor
• Overloaded constructors in a class must 

have different parameter lists 
Square();

Square(int);

7-300



The Default Constructor

• Constructors can have any number of 
parameters, including none

• A default constructor is one that takes 
no arguments either due to
– No parameters or
– All parameters have default values

• If a class has any programmer-defined 
constructors, it must have a programmer-
defined default constructor

7-301



Default Constructor Example

class Square
{

private:
int side;

public:
Square()       // default 
{ side = 1; }  // constructor

// Other member 
// functions go here 

};

7-302

Has no 
parameters



Another Default Constructor Example

class Square
{

private:
int side;

public:
Square(int s = 1) // default 
{ side = s; }     // constructor

// Other member 
// functions go here 

};

7-303

Has parameter 
but it has a 
default value



Invoking a Constructor

• To create an object using the default 
constructor, use no argument list and no ()
Square square1;

• To create an object using a constructor that 
has parameters, include an argument list
Square square1(8);

7-304



7.7  Destructors

• Is a public member function automatically 
called when an object is destroyed

• The destructor name is ~className, e.g., 
~Square

• It has no return type
• It takes no arguments
• Only 1 destructor is allowed per class

(i.e., it cannot be overloaded) 

7-305



7. 8  Private Member Functions

• A private member function can only 
be called by another member function of 
the same class

• It is used for internal processing by the 
class, not for use outside of the class

7-306



7.9  Passing Objects to Functions

• A class object can be passed as an 
argument to a function

• When passed by value, function makes a 
local copy of object.  Original object in 
calling environment is unaffected by actions 
in function

• When passed by reference, function can 
use ‘set’ functions to modify the object.

7-307



7-308

Notes on Passing Objects

• Using a value parameter for an object can 
slow down a program and waste space

• Using a reference parameter speeds up 
program, but allows the function to modify 
data in the parameter



7-309

Notes on Passing Objects

• To save space and time, while protecting 
parameter data that should not be changed, 
use a const reference parameter
void showData(const Square &s)

// header
• In order to for the showData function to call 
Square member functions, those functions must 
use const in their prototype and header:

int Square::getSide() const;



7-310

Returning an Object from a Function

• A function can return an object
Square initSquare();   // prototype
s1 = initSquare();     // call

• The function must define a object
– for internal use 
– to use with return statement



7-311

Returning an Object Example

Square initSquare()
{ 
Square s;    // local variable
int inputSize;
cout << "Enter the length of side: ";
cin >> inputSize;
s.setSide(inputSize);
return s;

}



7.10  Object Composition

• Occurs when an object is a member 
variable of another object.

• It is often used to design complex objects 
whose members are simpler objects

• ex. (from book):  Define a rectangle class. 
Then, define a carpet class and use a 
rectangle object as a member of a carpet 
object.

7-312



Object Composition, cont.

7-313



7.11 Separating Class Specification, 
Implementation, and Client Code

Separating class declaration, member 
function definitions, and the program that 
uses the class into separate files is 
considered good design

7-314



Using Separate Files

• Place class declaration in a header file that serves 
as the class specification file.  Name the file 
classname.h (for example, Square.h)

• Place member function definitions in a class 
implementation file. Name the file classname.cpp
(for example, Square.cpp)This file should 
#include the class specification file.

• A client program (client code) that uses the class 
must #include the class specification file and be 
compiled and linked with the class implementation 
file.

7-315



Include Guards
• Used to prevent a header file from being included 

twice
• Format:

#ifndef symbol_name
#define symbol_name
. . .  (normal contents of header file)
#endif

• symbol_name is usually the name of the header 
file, in all capital letters:

#ifndef SQUARE_H
#define SQUARE_H
. . .
#endif

7-316



What Should Be Done Inside vs. Outside 
the Class

• Class should be designed to provide 
functions to store and retrieve data

• In general, input and output (I/O) should be 
done by functions that use class objects, 
rather than by class member functions

7-317



7-318

7.12  Structures

• Structure: Programmer-defined data type that 
allows multiple variables to be grouped 
together

• Structure Declaration Format:  
struct structure name
{
type1 field1;
type2 field2;

…
typen fieldn;

};



7-319

Example struct Declaration

struct Student
{

int studentID;
string name;
short year;
double gpa;

};

structure name

structure members

Notice the 
required   

;



7-320

struct Declaration Notes

• struct names commonly begin with an 
uppercase letter

• The structure name is also called the tag
• Multiple fields of same type can be in a 

comma-separated list 
string name, 

address; 
• Fields in a structure are all public by 

default



7-321

Defining Structure Variables

• struct declaration does not allocate 
memory or create variables

• To define variables, use structure tag as 
type name
Student s1;

studentID

name

year

gpa

s1



7-322

Accessing Structure Members

• Use the dot (.) operator to refer to 
members of struct variables 

getline(cin, s1.name);
cin >> s1.studentID;
s1.gpa = 3.75;

• Member variables can be used in any 
manner appropriate for their data type



7-323

Displaying struct Members

To display the contents of a struct
variable, you must display each field 
separately, using the dot operator 
Wrong:
cout << s1; // won’t work!

Correct:
cout << s1.studentID << endl;
cout << s1.name << endl;
cout << s1.year << endl;
cout << s1.gpa;



7-324

Comparing struct Members

• Similar to displaying a struct, you 
cannot compare two struct variables 
directly: 

if (s1 >= s2) // won’t work!

• Instead, compare member variables:

if (s1.gpa >= s2.gpa) // better



7-325

Initializing a Structure

Cannot initialize members in the structure 
declaration, because no memory has been 
allocated yet

struct Student     // Illegal
{                  // initialization
int studentID = 1145;  
string name = "Alex"; 
short year = 1;
float gpa = 2.95;

};



7-326

Initializing a Structure (continued)

• Structure members are initialized at the time 
a structure variable is created

• Can initialize a structure variable’s members 
with either
– an initialization list
– a constructor



7-327

Using an Initialization List

An initialization list is an ordered set of 
values, separated by commas and 
contained in { }, that provides initial values 
for a set of data members

{12, 6, 3}  // initialization list
// with 3 values



7-328

More on Initialization Lists

• Order of list elements matters: First value 
initializes first data member, second value 
initializes second data member, etc.

• Elements of an initialization list can be constants, 
variables, or expressions

{12, W, L/W + 1} // initialization list
// with 3 items                       



7-329

Initialization List Example
Structure Declaration Structure Variable

struct Dimensions
{ int length,

width,
height;

};

Dimensions box = {12,6,3}; 

box

length 12

width 6

height 3



7-330

Partial Initialization

Can initialize just some members, but 
cannot skip over members

Dimensions box1 = {12,6}; //OK
Dimensions box2 = {12,,3}; //illegal



7-331

Problems with Initialization List

• Can’t omit a value for a member without 
omitting values for all following members

• Does not work on most modern compilers if 
the structure contains any string objects 
– Will, however, work with C-string members



7-332

Using a Constructor to Initialize 
Structure Members

• Similar to a constructor for a class:
– name is the same as the name of the struct

– no return type

– used to initialize data members

• It is normally written inside the struct
declaration



7-333

A Structure with a Constructor

struct Dimensions
{

int length,
width,
height;

// Constructor  
Dimensions(int L, int W, int H)
{length = L; width = W; height = H;}

};



7-334

Nested Structures

A structure can have another structure as a 
member.

struct PersonInfo
{  string name, 

address, 
city;

};
struct Student
{  int         studentID;

PersonInfo  pData;
short       year;
double      gpa;

};



7-335

Members of Nested Structures

Use the dot operator multiple times to 
access fields of nested structures 
Student s5;
s5.pData.name = "Joanne";
s5.pData.city = "Tulsa";



7-336

Structures as Function Arguments

• May pass members of struct variables 
to functions 
computeGPA(s1.gpa);

• May pass entire struct variables to 
functions 
showData(s5);

• Can use reference parameter if function 
needs to modify contents of structure 
variable



7-337

Notes on Passing Structures

• Using a value parameter for structure can 
slow down a program and waste space

• Using a reference parameter speeds up 
program, but allows the function to modify 
data in the structure

• To save space and time, while protecting 
structure data that should not be changed, 
use a const reference parameter
void showData(const Student &s)

// header



7-338

Returning a Structure from a Function

• Function can return a struct
Student getStuData();  // prototype
s1 = getStuData();     // call

• Function must define a local structure 
variable
– for internal use 
– to use with return statement



7-339

Returning a Structure Example

Student getStuData()
{ Student s;    // local variable
cin >> s.studentID;
cin.ignore();
getline(cin, s.pData.name);
getline(cin, s.pData.address);
getline(cin, s.pData.city);
cin >> s.year;
cin >> s.gpa;
return s;

}



7-340

Unions

• Similar to a struct, but
– all members share a single memory location, 

which saves space
– only 1 member of the union can be used at a

time
• Declared using key word union
• Otherwise the same as struct
• Variables defined and accessed like 
struct variables



7-341

Example union Declaration

union WageInfo
{

double hourlyRate;
float annualSalary;

};

union tag

Notice the 
required   

;

union members



7.14  Introduction to Object-Oriented 
Analysis and Design

• Object-Oriented Analysis: that phase of program 
development when the program functionality is 
determined from the requirements

• It includes

– identification of objects and classes

– definition of each class's attributes 

– identification of each class's behaviors

– definition of the relationship between classes

7-342



Identify Objects and Classes

• Consider the major data elements and the 
operations on these elements

• Candidates include
– user-interface components (menus, text boxes, etc.)

– I/O devices 

– physical objects

– historical data (employee records, transaction logs, 
etc.)

– the roles of human participants

7-343



Define Class Attributes

• Attributes are the data elements of an 
object of the class

• They are necessary for the object to work 
in its role in the program

7-344



Define Class Behaviors

• For each class, 

– Identify what an object of a class should do in 
the program

• The behaviors determine some of the 
member functions of the class

7-345



Relationships Between Classes

Possible relationships 

– Access ("uses-a")

– Ownership/Composition ("has-a")

– Inheritance ("is-a")

7-346



Finding the Classes

Technique:
• Write a description of the problem domain 

(objects, events, etc. related to the problem)

• List the nouns, noun phrases, and pronouns.  
These are all candidate objects

• Refine the list to include only those objects that 
are relevant to the problem

7-347



Determine Class Responsibilities

Class responsibilities:
• What is the class responsible to know?
• What is the class responsible to do?

Use these to define some of the member 
functions

7-348



Object Reuse

• A well-defined class can be used to create 
objects in multiple programs

• By re-using an object definition, program 
development time is shortened

• One goal of object-oriented programming is 
to support object reuse

7-349



7.15 Screen Control

• Programs to date have all displayed output 
starting at the upper left corner of computer 
screen or output window.  Output is 
displayed left-to-right, line-by-line.

• Computer operating systems are designed 
to allow programs to access any part of the 
computer screen.  Such access is 
operating system-specific.

7-350



Screen Control – Concepts

• An output screen can be thought of as a 
grid of 25 rows and 80 columns.  Row 0 is 
at the top of the screen.  Column 0 is at the 
left edge of the screen. 

• The intersection of a row and a column is a 
cell.  It can display a single character.  

• A cell is identified by its row and column 
number.  These are its coordinates.

7-351



Screen Control – Windows - Specifics

• #include <windows.h> to access the 
operating system from a program

• Create a handle to reference the output 
screen:

HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);

• Create a COORD structure to hold the 
coordinates of a cell on the screen:

COORD position;

7-352



Screen Control – Windows –
More Specifics

• Assign coordinates where the output 
should appear:

position.X = 30;    // column
position.Y = 12;    // row

• Set the screen cursor to this cell:
SetConsoleCursorPosition(screen, position);

• Send output to the screen:
cout << "Look at me!" << endl;

– be sure to end with endl, not '\n' or nothing

7-353



Chapter 8:  Arrays



Topics

8.1  Arrays Hold Multiple Values
8.2  Accessing Array Elements
8.3  Inputting and Displaying Array Contents
8.4  Array Initialization
8.5  Processing Array Contents
8.6  Using Parallel Arrays

8-355



Topics (continued)

8.7  The typedef Statement
8.8   Arrays as Function Arguments
8.9   Two-Dimensional Arrays
8.10 Arrays with Three or More Dimensions
8.11 Vectors
8.12 Arrays of Objects

8-356



8.1  Arrays Hold Multiple Values

• Array: variable that can store multiple 
values of the same type

• Values are stored in consecutive memory 
locations

• Declared using [] operator
const int ISIZE = 5;
int tests[ISIZE];

8-357



Array Storage in Memory

The definition
int tests[ISIZE];  // ISIZE is 5

allocates the following memory

8-358

Element 0 Element 1 Element 2 Element 3 Element 4



Array Terminology

In the definition int tests[ISIZE];

– int is the data type of the array elements
– tests is the name of the array
– ISIZE, in [ISIZE], is the size declarator.  It 

shows the number of elements in the array.
– The size of an array is the number of bytes 

allocated for it
(number of elements) * (bytes needed for each element)

8-359



Array Terminology Examples

Examples:
Assumes int uses 4 bytes and double uses 8 bytes

const int ISIZE = 5, DSIZE = 10;

int tests[ISIZE]; // holds 5 ints, array
// occupies 20 bytes

double volumes[DSIZE];// holds 10 doubles,
// array occupies
// 80 bytes

8-360



8.2  Accessing Array Elements

• Each array element has a subscript, used 
to access the element.

• Subscripts start at 0

8-361

subscripts 0             1             2              3             4



Accessing Array Elements

Array elements (accessed by array name and 
subscript) can be used as regular variables

tests[0] = 79;
cout << tests[0];
cin  >> tests[1];
tests[4] = tests[0] + tests[1];
cout << tests; // illegal due to

// missing subscript

8-362

0             1             2              3             4
tests



8.3 Inputting and Displaying 
Array Contents

cout and cin can be used to display values 
from and store values into an array
const int ISIZE = 5;

int tests[ISIZE]; // Define 5-elt. array
cout << "Enter first test score ";
cin  >>  tests[0];

8-363



Array Subscripts

• Array subscript can be an integer constant, 
integer variable, or integer expression

• Examples:                               Subscript is

cin  >> tests[3];   int constant
cout << tests[i];   int variable
cout << tests[i+j]; int expression

8-364



Accessing All Array Elements

To access each element of an array
– Use a loop
– Let the loop control variable be the array 

subscript
– A different array element will be referenced 

each time through the loop
for (i = 0; i < 5; i++)

cout << tests[i] << endl;

8-365



Getting Array Data from a File

const int ISIZE = 5, sales[ISIZE]; 
ifstream dataFile;           
datafile.open("sales.dat");
if (!dataFile)

cout << "Error opening data file\n";
else
{  // Input daily sales

for (int day = 0; day < ISIZE; day++) 
dataFile >> sales[day];  

dataFile.close();
}

8-366



No Bounds Checking

• There are no checks in C++ that an array 
subscript is in range

• An invalid array subscript can cause program 
to overwrite other memory

• Example:
const int ISIZE = 3;
int i = 4;
int num[ISIZE];
num[i] = 25;

8-367

num

[0]   [1]   [2]
25



Off-By-One Errors

• Most often occur when a program accesses 
data one position beyond the end of an 
array, or misses the first or last element of 
an array.

• Don’t confuse the ordinal number of an 
array element (first, second, third) with its 
subscript (0, 1, 2)

8-368



8.4  Array Initialization

• Can be initialized during program execution 
with assignment statements 
tests[0] = 79; 
tests[1] = 82; // etc.

• Can be initialized at array definition with an 
initialization list
const int ISIZE = 5;
int tests[ISIZE] = {79,82,91,77,84};

8-369



Start at element 0 or 1?

• You may choose to declare arrays to be 
one larger than needed.  This allows you to 
use the element with subscript 1 as the 
‘first’ element, etc., and may minimize off-
by-one errors.

• The element with subscript 0 is not used.
• This is most often done when working with 

ordered data, e.g., months of the year or 
days of the week

8-370



Partial Array Initialization

• If array is initialized at definition with fewer values 
than the size declarator of the array, remaining 
elements will be set to 0 or the empty string

int tests[ISIZE] = {79, 82};

• Initial values used in order; cannot skip over 
elements to initialize noncontiguous range

• Cannot have more values in initialization list than 
the declared size of the array

8-371

79 82 0 0 0



Implicit Array Sizing

• Can determine array size by the size of the 
initialization list 
short quizzes[]={12,17,15,11};

• Must use either array size declarator or 
initialization list when array is defined

8-372

12 17 15 11



8.5  Processing Array Contents

• Array elements can be 
– treated as ordinary variables of the same type 

as the array
– used in arithmetic operations, in relational 

expressions, etc.

• Example:
if (principalAmt[3] >= 10000)
interest = principalAmt[3] * intRate1;

else
interest = principalAmt[3] * intRate2;

8-373



Using Increment and Decrement 
Operators with Array Elements

When using ++ and -- operators, don’t 
confuse the element with the subscript 
tests[i]++;  // adds 1 to tests[i]
tests[i++];  // increments i, but has

// no effect on tests

8-374



Copying One Array to Another

• Cannot copy with an assignment 
statement:

tests2 = tests;  //won’t work

• Must instead use a loop to copy element-
by-element:

for (int indx=0; indx < ISIZE; indx++)
tests2[indx] = tests[indx];

8-375



Are Two Arrays Equal?

• Like copying, cannot compare in a single 
expression:

if (tests2 == tests)

• Use a while loop with a boolean variable:
bool areEqual=true;
int indx=0;
while (areEqual && indx < ISIZE)
{

if(tests[indx] != tests2[indx]
areEqual = false;

}
8-376



Sum, Average of Array Elements

• Use a simple loop to add together array 
elements
float average, sum = 0;
for (int tnum=0; tnum< ISIZE; tnum++)

sum += tests[tnum];

• Once summed, average can be computed
average = sum/ISIZE;

8-377



Largest Array Element

• Use a loop to examine each element and find 
the largest element (i.e., one with the largest value)

int largest = tests[0];
for (int tnum = 1; tnum < ISIZE; tnum++) 
{  if (tests[tnum] > largest)

largest = tests[tnum];
}
cout << "Highest score is " << largest; 

• A similar algorithm exists to find the smallest 
element     

8-378



Partially-Filled Arrays

• The exact amount of data (and, therefore, 
array size) may not be known when a 
program is written.

• Programmer makes best estimate for 
maximum amount of data, sizes arrays 
accordingly.  A sentinel value can be used 
to indicate end-of-data.

• Programmer must also keep track of how 
many array elements are actually used

8-379



Using Arrays vs. Using Simple Variables

• An array is probably not needed if the input 
data is only processed once:
– Find the sum or average of a set of numbers
– Find the largest or smallest of a set of values

• If the input data must be processed more 
than once, an array is probably a good 
idea:
– Calculate the average, then determine and display 

which values are above the average and which are 
below the average

8-380



C-Strings and string Objects

Can be processed using array name 
– Entire string at once, or 
– One element at a time by using a subscript
string city;
cout << "Enter city name: ";
cin  >> city;

8-381

'S' 'a' 'l' 'e' 'm'

city[0] city[1] city[2] city[3] city[4]



8.6  Using Parallel Arrays

• Parallel arrays: two or more arrays that 
contain related data

• Subscript is used to relate arrays
– elements at same subscript are related

• The arrays do not have to hold data of the 
same type

8-382



Parallel Array Example

const int ISIZE = 5;
string name[ISIZE];   // student name
float average[ISIZE]; // course average
char grade[ISIZE];    // course grade

8-383

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

name       average      grade



Parallel Array Processing

const int ISIZE = 5;
string name[ISIZE];   // student name
float average[ISIZE]; // course average
char grade[ISIZE];    // course grade
...
for (int i = 0; i < ISIZE; i++)

cout << " Student: " << name[i]
<< " Average: " << average[i]
<< " Grade: "   << grade[i]
<< endl;

8-384



8.7  The typedef Statement

• Creates an alias for a simple or structured 
data type

• Format:
typedef existingType newName;

• Example:
typedef unsigned int Uint;
Uint tests[ISIZE]; // array of

// unsigned ints

8-385



Uses of typedef

• Used to make code more readable
• Can be used to create alias for an array of 

a particular type
// Define yearArray as a data type
// that is an array of 12 ints
typedef int yearArray[MONTHS];

// Create two of these arrays
yearArray highTemps, lowTemps;

8-386



8.8  Arrays as Function Arguments

• Passing a single array element to a function is no 
different than passing a regular variable of that 
data type

• Function does not need to know that the value it 
receives is coming from an array
displayValue(score[i]);     // call

void displayValue(int item) // header
{  cout << item << endl;
}

8-387



Passing an Entire Array

• To define a function that has an array parameter, 
use empty [] to indicate the array argument

• To pass an array to a function, just use the array 
name

// Function prototype
void showScores(int []); 

// Function header
void showScores(int tests[]) 

// Function call
showScores(tests);

8-388



Passing an Entire Array

• Use the array name, without any brackets, as 
the argument

• Can also pass the array size so the function 
knows how many elements to process
showScores(tests, 5);        // call

void showScores(int[], int); // prototype

void showScores(int A[], 
int size) // header

8-389



Using typedef with a Passed Array
Can use typedef to simplify function 
prototype and heading
// Make intArray an integer array
// of unspecified size
typedef int intArray[]; 

// Function prototype
void showScores(intArray, int); 

// Function header
void showScores(intArray tests,

int size)

8-390



Modifying Arrays in Functions

• Array parameters in functions are similar to 
reference variables

• Changes made to array in a function are 
made to the actual array in the calling function

• Must be careful that an array is not
inadvertently changed by a function

• Can use const keyword in prototype and 
header to prevent changes

8-391



8.9  Two-Dimensional Arrays

• Can define one array for multiple sets of data

• Like a table in a spreadsheet

• Use two size declarators in definition
int exams[4][3];

8-392

Number     
of rows

Number     
of cols



Two-Dimensional Array Representation

int exams[4][3];

Use two subscripts to access element 
exams[2][2] = 86;

8-393

exams[0][0] exams[0][1] exams[0][2]

exams[1][0] exams[1][1] exams[1][2]

exams[2][0] exams[2][1] exams[2][2]

exams[3][0] exams[3][1] exams[3][2]

columns

r
o
w
s



Initialization at Definition

• Two-dimensional arrays are initialized row-
by-row
int exams[2][2] = { {84, 78},

{92, 97} };

• Can omit inner { }

8-394

84 78

92 97



Passing a Two-Dimensional Array to a 
Function

• Use array name and number of columns as 
arguments in function call
getExams(exams, 2);

• Use empty [] for row and a size declarator for col 
in the prototype and header 

// Prototype, where NUM_COLS is 2 
void getExams(int[][NUM_COLS], int); 
// Header
void getExams

(int exams[][NUM_COLS], int rows)

8-395



Using typedef with a
Two-Dimensional Array

Can use typedef for simpler notation
typedef int intExams[][2];

...
// Function prototype
void getExams(intExams, int);

// Function header 
void getExams(intExams exams, int rows)

8-396



2D Array Traversal

• Use nested loops, one for row and one for 
column, to visit each array element.

• Accumulators can be used to sum the 
elements row-by-row, column-by-column, 
or over the entire array.

8-397



8.10 Arrays with Three or More 
Dimensions

• Can define arrays with any number of 
dimensions
short rectSolid(2,3,5);
double timeGrid(3,4,3,4);

• When used as parameter, specify size of 
all but 1st dimension
void getRectSolid(short [][3][5]);

8-398



8.11 Vectors

• Holds a set of elements, like an array
• Flexible number of elements - can grow and shrink

– No need to specify size when defined 
– Automatically adds more space as needed 

• Defined in the Standard Template Library (STL)
– Covered in a later chapter

• Must include vector header file to use vectors
#include <vector>

8-399



Vectors

• Can hold values of any type
– Type is specified when a vector is defined
vector<int> scores;
vector<double> volumes;

• Can use [] to access elements

8-400



Defining Vectors

• Define a vector of integers (starts with 0 elements)
vector<int> scores;

• Define int vector with initial size 30 elements
vector<int> scores(30);

• Define 20-element int vector and initialize all 
elements to 0 
vector<int> scores(20, 0);

• Define int vector initialized to size and contents of  
vector finals
vector<int> scores(finals);

8-401



Growing a Vector’s Size

• Use push_back member function to add 
an element to a full array or to an array 
that had no defined size 
// Add a new element holding a 75
scores.push_back(75); 

• Use size member function to determine 
number of elements currently in a vector 
howbig = scores.size();

8-402



Removing Vector Elements

• Use pop_back member function to remove 
last element from vector 
scores.pop_back();

• To remove all contents of vector, use 
clear member function 
scores.clear();

• To determine if vector is empty, use empty
member function
while (!scores.empty()) ...

8-403



8.14 Arrays of Objects

• Objects can also be used as array elements 
class Square
{ private:

int side;
public:

Square(int s = 1)
{ side = s; }
int getSide()
{ return side; }

};
Square shapes[10];  // Create array of 10

// Square objects

8-404



Arrays of Objects

• Like an array of structures, use an array 
subscript to access a specific object in the 
array

• Then use dot operator to access member 
methods of that object

for (i = 0; i < 10; i++)
cout << shapes[i].getSide() << endl;

8-405



Initializing Arrays of Objects

• Can use default constructor to perform same 
initialization for all objects

• Can use initialization list to supply specific initial 
values for each object 
Square shapes[5] = {1,2,3,4,5};

• Default constructor is used for the remaining 
objects if initialization list is too short
Square boxes[5] = {1,2,3};

8-406



Initializing Arrays of Objects

If an object is initialized with a constructor 
that takes > 1 argument, the initialization 
list must include a call to the constructor 
for that object 
Rectangle spaces[3] = 
{ Rectangle(2,5), 
Rectangle(1,3), 
Rectangle(7,7)  };

8-407



8-408

Arrays of Structures

• Structures can be used as array elements
struct Student
{

int studentID;
string name;
short year;
double gpa;

};
const int CSIZE = 30;
Student class[CSIZE]; // Holds 30

// Student structures



8-409

Arrays of Structures

• Use array subscript to access a specific 
structure in the array

• Then use dot operator to access members of 
that structure 
cin  >> class[25].studentID;

cout << class[i].name << " has GPA "
<< class[i].gpa << endl;



Chapter 9: Searching, Sorting, and 
Algorithm Analysis



Topics

9.1  Introduction to Search Algorithms
9.2  Searching an Array of Objects
9.3  Introduction to Sorting Algorithms
9.4  Sorting an Array of Objects
9.5  Sorting and Searching Vectors
9.6  Introduction to Analysis of Algorithms

9-411



9.1  Introduction to Search Algorithms

• Search: to locate a specific item in a list 
(array, vector, etc.) of information

• Two algorithms (methods) considered here:
– Linear search (also called Sequential Search)
– Binary search

9-412



Linear Search Algorithm

Set found to false
Set position to –1
Set index to 0
While index < number of elts and found is false

If list [index] is equal to search value
found = true
position = index

End If
Add 1 to index

End While
Return position

9-413



Linear Search Example

• Array numlist contains 

• Searching for the the value 11, linear 
search examines 17, 23, 5, and 11

• Searching for the the value 7, linear 
search examines 17, 23, 5, 11, 2, 
29, and 3

9-414

17 23 5 11 2 29 3



Linear Search Tradeoffs

• Benefits
– Easy algorithm to understand and to implement
– Elements in array can be in any order

• Disadvantage
– Inefficient (slow): for array of N elements, it 

examines N/2 elements on average for a value 
that is found in the array, N elements for a 
value that is not in the array

9-415



Binary Search Algorithm

1. Divide a sorted array into three sections:
– middle element
– elements on one side of the middle element
– elements on the other side of the middle element

2. If the middle element is the correct value, done.  
Otherwise, go to step 1, using only the half of the 
array that may contain the correct value.  

3. Continue steps 1 and 2 until either the value is 
found or there are no more elements to examine.

9-416



Binary Search Example

• Array numlist2 contains

• Searching for the the value 11, binary 
search examines 11 and stops

• Searching for the the value 7, binary 
search examines 11, 3, 5, and stops

9-417

2 3 5 11 17 23 29



Binary Search Tradeoffs

• Benefit 
– Much more efficient than linear search.  For an 

array of N elements, it performs at most
log2N comparisons.

• Disadvantage 
– Requires that array elements be sorted

9-418



9.2  Searching an Array of Objects

• Search algorithms are not limited to 
arrays of integers

• When searching an array of objects or 
structures, the value being searched for 
is a member of an object or structure, 
not the entire object or structure

• Member in object/structure: key field
• Value used in search: search key

9-419



9.3  Introduction to Sorting Algorithms

• Sort: arrange values into an order 
– Alphabetical
– Ascending (smallest to largest) numeric
– Descending (largest to smallest) numeric

• Two algorithms considered here 
– Bubble sort
– Selection sort

9-420



Bubble Sort Algorithm

1. Compare 1st two elements and exchange them if 
they are out of order.

2. Move down one element and compare 2nd and 3rd 

elements. Exchange if necessary. Continue until 
the end of the array.

3. Pass through the array again, repeating the 
process and exchanging as necessary.

4. Repeat until a pass is made with no exchanges.

9-421



Bubble Sort Example

Array numlist3 contains 

9-422

First, compare values 17
and 23. In correct order, 
so no exchange.

Finally, compare values 
23 and 11. Not in correct 
order, so exchange them.

17 23 5 11

Then, compare values 
23 and 5. Not in correct 
order, so exchange them.



Bubble Sort Example (continued)

After first pass, array numlist3 contains

9-423

Compare values 17 and 
5. Not in correct order,
so exchange them.

Compare values 17 and
23. In correct order, so
no exchange.

17 5 11 23

Compare values 17 and
11. Not in correct order, 
so exchange them.

In order from 
previous pass



Bubble Sort Example (continued)
After second pass, array numlist3 contains

9-424

No exchanges, so 
array is in order

Compare values 5 and 
11. In correct order, so
no exchange.

Compare values 17 and
23. In correct order, so
no exchange.

5 11 17 23

Compare values 11 and
17. In correct order, so
no exchange.

In order from 
previous passes



Bubble Sort Tradeoffs

• Benefit
– Easy to understand and to implement

• Disadvantage
– Inefficiency makes it slow for large arrays 

9-425



Selection Sort Algorithm

1. Locate smallest element in array and exchange 
it with element in position 0.

2. Locate next smallest element in array and  
exchange it with element in position 1.

3. Continue until all elements are in order.

9-426



Selection Sort Example

Array numlist contains

Smallest element is 2. Exchange 2 with
element in 1st array position (i.e., element 0).

9-427

11 2 29 3

2 11 29 3
Now in order



Selection Sort – Example (continued)

Next smallest element is 3. Exchange 
3 with element in 2nd array position.

Next smallest element is 11. Exchange
11 with element in 3rd array position.  

9-428

2 3 29 11

2 3 11 29

Now in order

Now in order



Selection Sort Tradeoffs

• Benefit 
– More efficient than Bubble Sort, due to fewer 

exchanges

• Disadvantage 
– Considered harder than Bubble Sort to 

understand and implement

9-429



9.4  Sorting an Array of Objects

• As with searching, arrays to be sorted can 
contain objects or structures

• The key field determines how the 
structures or objects will be ordered

• When exchanging the contents of array 
elements, entire structures or objects must 
be exchanged, not just the key fields in the 
structures or objects

9-430



9.5  Sorting and Searching Vectors

• Sorting and searching algorithms can be 
applied to vectors as well as to arrays

• Need slight modifications to functions to 
use vector arguments 
– vector <type> & used in prototype
– No need to indicate vector size, as functions 

can use size member function to calculate

9-431



9.6  Introduction to Analysis of Algorithms

• Given two algorithms to solve a problem, 
what makes one better than the other?

• Efficiency of an algorithm is measured by
– space (computer memory used)
– time (how long to execute the algorithm)

• Analysis of algorithms is a more effective 
way to find efficiency than by using 
empirical data

9-432



Analysis of Algorithms: Terminology

• Computational Problem: a problem solved 
by an algorithm

• Basic step: an operation in the algorithm 
that executes in a constant amount of 
time

• Examples of basic steps:
– exchange the contents of two variables
– compare two values

9-433



Analysis of Algorithms: Terminology

• Complexity of an algorithm: the number of 
basic steps required to execute the 
algorithm for an input of size N (N = 
number of input values)

• Worst-case complexity of an algorithm: the 
number of basic steps for input of size N 
that requires the most work

• Average case complexity function: the 
complexity for typical, average inputs of 
size N

9-434



Complexity Example
Analysis:

Lines 1 and 2 execute once.

The test in line 3 executes n times.

The test in line 4 executes n times.

The assignment in line 6 executes at 
most n times.

Due to lines 3 and 4, the algorithm 
requires execution time proportional to n.

9-435

Find the largest value in array A of size n
1. biggest = A[0]

2. indx = 0

3. while (indx < n) do

4. if (A[n] > biggest)

5. then

6. biggest = A[n]

7. end if

8. end while



Comparison of Algorithmic Complexity

Given algorithms F and G with complexity 
functions f(n) and g(n) for input of size n

• If the ratio approaches a constant value as n 
gets large, F and G have equivalent efficiency

• If the ratio gets larger as n gets large, 
algorithm G is more efficient than algorithm F

• If the ratio approaches 0 as n gets large, 
algorithm F is more efficient than algorithm G

9-436

)(
)(

ng
nf

)(
)(

ng
nf

)(
)(

ng
nf



"Big O" Notation

• Function f(n) is O(g(n)) (“f is big O of g") for some 
mathematical function g(n) if the ratio       
approaches a positive constant as n gets large

• O(g(n)) defines a complexity class for the function 
f(n) and for the algorithm F

• Increasing complexity classes means faster rate 
of growth and less efficient algorithms

9-437

)(
)(

ng
nf



Chapter 10: Pointers



Topics

10.1  Pointers and the Address Operator
10.2  Pointer Variables
10.3  The Relationship Between Arrays

and Pointers
10.4  Pointer Arithmetic
10.5  Initializing Pointers
10.6   Comparing Pointers

10-439



Topics (continued)

10.7   Pointers as Function Parameters
10.8   Pointers to Constants and Constant 

Pointers
10.9   Dynamic Memory Allocation
10.10 Returning Pointers from Functions
10.11 Pointers to Class Objects and Structures
10.12 Selecting Members of Objects

10-440



10.1  Pointers and the Address Operator

• Each  variable in a program is stored at a 
unique location in memory that has an 
address

• Use the address operator & to get the address 
of a variable:

int num = -23;
cout << &num; // prints address

// in hexadecimal
• The address of a memory location is a pointer

10-441



10.2  Pointer Variables

• Pointer variable (pointer): a variable that 
holds an address

• Pointers provide an alternate way to access 
memory locations

10-442



Pointer Variables

• Definition:
int *intptr;

• Read as:
“intptr can hold the address of an int” or “the 
variable that intptr points to has type int”

• The spacing in the definition does not matter:
int * intptr;
int*  intptr;

• * is called the indirection operator

10-443



Pointer Variables
• Assignment:
int num = 25;
int *intptr;
intptr = &num;

• Memory layout:

• Can access num using intptr and indirection 
operator *:
cout << intptr; // prints 0x4a00
cout << *intptr; // prints 25
*intptr = 20;    // puts 20 in num

10-444

num intptr

25 0x4a00
address of num: 0x4a00



10.3  The Relationship Between 
Arrays and Pointers

An array name is the starting address of the 
array

int vals[] = {4, 7, 11};

cout << vals; // displays 0x4a00
cout << vals[0]; // displays 4

10-445

4 7 11

starting address of vals: 0x4a00



The Relationship Between Arrays and 
Pointers

• An array name can be used as a pointer 
constant
int vals[] = {4, 7, 11};
cout << *vals;    // displays 4

• A pointer can be used as an array name
int *valptr = vals;
cout << valptr[1]; // displays 7

10-446



Pointers in Expressions

• Given:
int vals[]={4,7,11};
int *valptr = vals;

• What is valptr + 1?  
• It means (address in valptr) + (1 * size of an int)

cout << *(valptr+1); // displays 7
cout << *(valptr+2); // displays 11

• Must use ( ) in expression

10-447



Array Access

Array elements can be accessed in many ways

10-448

Array access 
method

Example

array name and [ ] vals[2] = 17;

pointer to array and [ ] valptr[2] = 17;

array name and 
subscript arithmetic

*(vals+2) = 17;

pointer to array and 
subscript arithmetic

*(valptr+2) = 17;



Array Access

• Array notation  

vals[i]

is equivalent to the pointer notation

*(vals + i)

• No bounds checking is performed on 
array access

10-449



10.4  Pointer Arithmetic

Some arithmetic operators can be used with 
pointers:
– Increment and decrement operators ++, --
– Integers can be added to or subtracted from 

pointers using the operators +, -, +=, and -=
– One pointer can be subtracted from another by 

using the subtraction operator -

10-450



Pointer Arithmetic

Assume the variable definitions
int vals[]={4,7,11}; 
int *valptr = vals;

Examples of use of ++ and --
valptr++; // points at 7
valptr--; // now points at 4

10-451



10-452

More on Pointer Arithmetic

Assume the variable definitions:
int vals[]={4,7,11}; 
int *valptr = vals;

Example of the use of + to add an int to 
a pointer:
cout << *(valptr + 2)

This statement will print 11      



10-453

Assume the variable definitions:
int vals[]={4,7,11}; 
int *valptr = vals;

Example of use of +=:
valptr = vals; // points at 4
valptr += 2;   // points at 11

More on Pointer Arithmetic



10-454

More on Pointer Arithmetic

Assume the variable definitions
int vals[] = {4,7,11}; 
int *valptr = vals;

Example of pointer subtraction
valptr += 2; 
cout << valptr - val; 

This statement prints 2: the number of
ints between valptr and val



10.5  Initializing Pointers

• Can initialize to NULL or 0 (zero)
int *ptr = NULL;

• Can initialize to addresses of other variables
int num, *numPtr = &num;
int val[ISIZE], *valptr = val;

• Initial value must have correct type
float cost;
int *ptr = &cost; // won't work

10-455



10.6  Comparing Pointers

• Relational operators can be used to 
compare addresses in pointers

• Comparing addresses in pointers is not the 
same as comparing contents pointed at by 
pointers:
if (ptr1 == ptr2)   // compares

// addresses
if (*ptr1 == *ptr2) // compares

// contents

10-456



10.7  Pointers as Function Parameters

• A pointer can be a parameter

• It works like a reference parameter to allow 
changes to argument from within a function

• A pointer parameter must be explicitly 
dereferenced to access the contents at 
that address

10-457



Pointers as Function Parameters

Requires:
1)  asterisk * on parameter in prototype and

heading
void getNum(int *ptr);

2)   asterisk * in body to dereference the pointer
cin >> *ptr;

3)   address as argument to the function in the call
getNum(&num);

10-458



Pointers as Function Parameters

void swap(int *x, int *y)
{

int temp;
temp = *x;
*x = *y;
*y = temp;

}
int num1 = 2, num2 = -3;
swap(&num1, &num2);  //call

10-459



10.8  Ponters to Constants and Constant 
Pointers

• Pointer to a constant: cannot change the 
value that is pointed at

• Constant pointer: the address in the 
pointer cannot change after the pointer 
is initialized

10-460



Ponters to Constant

• Must use const keyword in pointer 
definition:
const double taxRates[] = 

{0.65, 0.8, 0.75};
const double *ratePtr;

• Use const keyword for pointers in 
function headers to protect data from 
modification from within function

10-461



Pointer to Constant – What does the 
Definition Mean?

10-462

Read as: “rates is a pointer to a constant that is a double.”



Constant Pointers

• Defined with const keyword adjacent to variable 
name:
int classSize = 24;
int * const classPtr = &classSize; 

• Must be initialized when defined
• Can be used without initialization as a function 

parameter
– Initialized by argument when function is called
– Function can receive different arguments on different calls

• While the address in the pointer cannot change, the 
data at that address may be changed

10-463



Constant Pointer – What does the 
Definition Mean?

10-464

Read as: “pts is a constant pointer to an int.”



Constant Pointer to Constant

• Can combine pointer to constants and constant 
pointers:
int size = 10;
const int * const ptr = &size; 

• What does it mean?

10-465



10.9  Dynamic Memory Allocation

• Can allocate storage for a variable while 
program is running

• Uses new operator to allocate memory
double *dptr;
dptr = new double;

• new returns address of memory location

10-466



Dynamic Memory Allocation

• Can also use new to allocate array
arrayPtr = new double[25];

– Program may terminate if there is not sufficient 
memory

• Can then use [ ] or pointer arithmetic to 
access array

10-467



Dynamic Memory Example
int *count, *arrayptr;
count = new int;
cout <<"How many students? ";
cin >> *count;
arrayptr = new int[*count];

for (int i=0; i<*count; i++)
{
cout << "Enter score " << i << ": ";
cin >> arrayptr[i];

}

10-468



Releasing Dynamic Memory

• Use delete to free dynamic memory
delete count;

• Use delete [] to free dynamic array 
memory
delete [] arrayptr;

• Only use delete with dynamic memory! 

10-469



Dangling Pointers and Memory Leaks

• A pointer is dangling if it contains the 
address of memory that has been freed by 
a call to delete.
– Solution: set such pointers to 0 as soon as 

memory is freed.
• A memory leak occurs if no-longer-needed 

dynamic memory is not freed.  The memory 
is unavailable for reuse within the program.
– Solution:  free up dynamic memory after use

10-470



10.10  Returning Pointers from Functions

• Pointer can be return type of function
int* newNum();

• The function must not return a pointer to a 
local variable in the function

• The function should only return a pointer
– to data that was passed to the function as an 

argument
– to dynamically allocated memory

10-471



10.11 Pointers to Class Objects and 
Structures

• Can create pointers to objects and structure 
variables

struct Student {…};
class Square {…};
Student stu1;
Student *stuPtr = &stu1;
Square sq1[4];
Square *squarePtr = &sq1[0];

• Need to use() when using * and . operators
(*stuPtr).studentID = 12204;

10-472



Structure Pointer Operator

• Simpler notation than (*ptr).member
• Use the form ptr->member:

stuPtr->studentID = 12204;

squarePtr->setSide(14);

in place of the form (*ptr).member:

(*stuPtr).studentID = 12204;
(*squarePtr).setSide(14);

10-473



Dynamic Memory with Objects

• Can allocate dynamic structure variables 
and objects using pointers:
stuPtr = new Student;

• Can pass values to constructor:
squarePtr = new Square(17);

• delete causes destructor to be invoked:
delete squarePtr;

10-474



Structure/Object Pointers 
as Function Parameters

• Pointers to structures or objects can be 
passed as parameters to functions

• Such pointers provide a pass-by-reference 
parameter mechanism

• Pointers must be dereferenced in the 
function to access the member fields

10-475



Controlling Memory Leaks

• Memory that is allocated with new should 
be deallocated with a call to delete as 
soon as the memory is no longer needed.  
This is best done in the same function as 
the one that allocated the memory.

• For dynamically-created objects, new
should be used in the constructor and 
delete should be used in the destructor

10-476



10.12 Selecting Members of Objects
Situation:  A structure/object contains a pointer as a 

member.  There is also a pointer to the structure/ 
object.  

Problem: How do we access the pointer member 
via the structure/object pointer?
struct GradeList

{ string courseNum;
int * grades;

}
GradeList test1, *testPtr = &test1;

10-477



Selecting Members of Objects

10-478

Expression Meaning
testPtr->grades Access the grades pointer in 

test1.  This is the same as 
(*testPtr).grades

*testPtr->grades Access the value pointed at by 
testPtr->grades.  This is the 
same as *(*testPtr).grades

*test1.grades Access the value pointed at by 
test1.grades



Chapter 11: More About Classes and 
Object-Oriented Programming



Topics

11.1  The this Pointer and Constant 
Member Functions

11.2  Static Members
11.3  Friends of Classes
11.4  Memberwise Assignment
11.5  Copy Constructors
11.6  Operator Overloading
11.7  Type Conversion Operators

11-480



Topics (continued)

11.8   Convert Constructors
11.9   Aggregation and Composition
11.10  Inheritance
11.11  Protected Members and Class Access
11.12  Constructors, Destructors, and 

Inheritance
11.13  Overriding Base Class Functions

11-481



11.1  The this Pointer and Constant 
Member Functions

• this pointer:
- Implicit parameter passed to a member
function

- points to the object calling the function
• const member function: 

- does not modify its calling object

11-482



Using the this Pointer

Can be used to access members that 
may be hidden by parameters with the 
same name: 
class SomeClass
{

private:
int num;

public:
void setNum(int num)
{ this->num = num; }

};

11-483



Constant Member Functions
• Declared with keyword const

• When const appears in the parameter list,
int setNum (const int num)

the function is prevented from modifying the 
parameter.  The parameter is read-only.

• When const follows the parameter list,
int getX()const

the function is prevented from modifying the object.

11-484



11.2  Static Members

• Static member variable: 
– One instance of variable for the entire class
– Shared by all objects of the class

• Static member function: 
– Can be used to access static member 

variables
– Can be called before any class objects are 

created

11-485



Static Member Variables
1) Must be declared in class with keyword 

static:
class IntVal
{ 
public:

intVal(int val = 0)
{ value = val; valCount++ } 
int getVal();
void setVal(int);

private:
int value;       
static int valCount;

};

11-486



Static Member Variables

2) Must be defined outside of the class:
class IntVal
{   

//In-class declaration    
static int valCount;
//Other members not shown

};
//Definition outside of class
int IntVal::valCount = 0;

11-487



Static Member Variables

3)  Can be accessed or modified by any 
object of the class: Modifications by one 
object are visible to all objects of the 
class:
IntVal val1, val2;

11-488

valCount

val1 val22



Static Member Functions

1)Declared with static before return type:
class IntVal
{ public:

static int getValCount()
{ return valCount; }

private:
int value;       
static int valCount;

};

11-489



Static Member Functions

2) Can be called independently of class
objects, through the class name:
cout << IntVal::getValCount();

3) Because of item 2 above, the this
pointer cannot be used

4) Can be called before any objects of the 
class have been created

5) Used primarily to manipulate static 
member variables of the class

11-490



11.3  Friends of Classes

• Friend function: a function that is not a 
member of a class, but has access to 
private members of the class

• A friend function can be a stand-alone 
function or a member function of another 
class

• It is declared a friend of a class with the 
friend keyword in the function prototype

11-491



Friend Function Declarations
1) Friend function may be a stand-alone 

function:
class aClass
{  
private:
int x;
friend void fSet(aClass &c, int a);

};

void fSet(aClass &c, int a)
{

c.x = a;
} 

11-492



Friend Function Declarations

2) Friend function may be a member of another 
class:

class aClass
{ private:

int x;
friend void OtherClass::fSet

(aClass &c, int a);
};
class OtherClass
{ public:

void fSet(aClass &c, int a)
{ c.x = a; }

};

11-493



Friend Class Declaration

3) An entire class can be declared a friend of a 
class:

class aClass
{private:
int x;
friend class frClass;

};
class frClass
{public:
void fSet(aClass &c,int a){c.x = a;}
int fGet(aClass c){return c.x;}

};

11-494



Friend Class Declaration

• If frClass is a friend of aClass, then all 
member functions of frClass have 
unrestricted access to all members of 
aClass, including the private members.

• In general, restrict the property of 
Friendship to only those functions that must 
have access to the private members of a 
class.

11-495



11.4 Memberwise Assignment

• Can use = to assign one object to another, 
or to initialize an object with an object’s 
data

• Examples (assuming class V):
V v1, v2;
… // statements that assign
… // values to members of v1
v2 = v1;    // assignment
V v3 = v2;  // initialization

11-496



11.5  Copy Constructors

• Special constructor used when a newly 
created object is initialized to the data of 
another object of same class

• Default copy constructor copies field-to-
field, using memberwise assignment

• The default copy constructor works fine in 
most cases

11-497



Copy Constructors

Problems occur when objects contain 
pointers to dynamic storage:
class CpClass
{
private: 
int *p;

public:
CpClass(int v=0)
{ p = new int; *p = v;}

~CpClass(){delete p;}
};

11-498



Default Constructor Causes Sharing of 
Storage 

CpClass c1(5);
if (true)
{

CpClass c2=c1;
}
// c1 is corrupted
// when c2 goes
// out of scope and
// its destructor
// executes 

11-499

c1

c2

5



Problems of Sharing Dynamic Storage

• Destructor of one object deletes memory 
still in use by other objects

• Modification of memory by one object 
affects other objects sharing that memory

11-500



Programmer-Defined Copy Constructors

• A copy constructor is one that takes a 
reference parameter to another object of 
the same class

• The copy constructor uses the data in the 
object passed as parameter to initialize the 
object being created

• Reference parameter should be const to 
avoid potential for data corruption

11-501



Programmer-Defined Copy Constructors

• The copy constructor avoids problems 
caused by memory sharing 

• Can allocate separate memory to hold new 
object’s dynamic member data

• Can make new object’s pointer point to this 
memory

• Copies the data, not the pointer, from the 
original object to the new object

11-502



Copy Constructor Example

class CpClass
{ 

int *p;
public:
CpClass(const CpClass &obj)
{ p = new int; *p = *obj.p; }
CpClass(int v=0)
{ p = new int; *p = v; }
~CpClass(){delete p;}

};

11-503



Copy Constructor – When Is It Used?

A copy constructor is called when

• An object is initialized from an object of the same 
class

• An object is passed by value to a function
• An object is returned using a return statement 

from a function

11-504



11.6  Operator Overloading

• Operators such as =, +, and others can be 
redefined for use with objects of a class

• The name of the function for the overloaded 
operator is operator followed by the 
operator symbol, e.g.,
operator+ is the overloaded + operator and
operator= is the overloaded = operator

11-505



Operator Overloading

• Operators can be overloaded as
- instance member functions, or as
- friend functions

• The overloaded operator must have the 
same number of parameters as the 
standard version.  For example, 
operator= must have two parameters, 
since the standard = operator takes two 
parameters.

11-506



Overloading Operators as Instance 
Members

A binary operator that is overloaded as an 
instance member needs only one parameter, 
which represents the operand on the right:
class OpClass
{
private:
int x;

public:
OpClass operator+(OpClass right);

};

11-507



Overloading Operators as Instance 
Members

• The left operand of the overloaded binary 
operator is the calling object

• The implicit left parameter is accessed 
through the this pointer
OpClass OpClass::operator+(OpClass r)
{  OpClass sum;

sum.x = this->x + r.x; 
return sum;

}

11-508



Invoking an Overloaded Operator

• Operator can be invoked as a member 
function:
OpClass a, b, s;
s = a.operator+(b);

• It can also be invoked in the more 
conventional manner:
OpClass a, b, s;
s = a + b;

11-509



Overloading Assignment
• Overloading the assignment operator solves 

problems with object assignment when an 
object contains pointer to dynamic memory.

• Assignment operator is most naturally 
overloaded as an instance member function

• It needs to return a value of the assigned 
object to allow cascaded assignments such 
as
a = b = c;

11-510



Overloading Assignment

Assignment overloaded as a member function:
class CpClass
{ 

int *p;
public:
CpClass(int v=0)
{ p = new int; *p = v;
~CpClass(){delete p;}
CpClass operator=(CpClass);

};

11-511



Overloading Assignment

Implementation returns a value:
CpClass CpClass::operator=(CpClass r)
{
*p = *r.p;
return *this;

};
Invoking the assignment operator:
CpClass a, x(45);
a.operator=(x); // either of these
a = x;          // lines can be used

11-512



Notes on Overloaded Operators

• Overloading can change the entire 
meaning of an operator

• Most operators can be overloaded
• Cannot change the number of operands of 

the operator
• Cannot overload the following operators:

?:  .  .*  sizeof

11-513



Overloading Types of Operators
• ++, -- operators overloaded differently 

for prefix vs. postfix notation
• Overloaded relational operators should 

return a bool value
• Overloaded stream operators >>, <<

must return istream, ostream objects 
and take istream, ostream objects as 
parameters

11-514



Overloaded [] Operator

• Can be used to create classes that 
behave like arrays, providing bounds-
checking on subscripts

• Overloaded [] returns a reference to 
object, not an object itself

11-515



11.7  Type Conversion Operators

• Conversion Operators are member 
functions that tell the compiler how to 
convert an object of the class type to a 
value of another type

• The conversion information provided by 
the conversion operators is automatically 
used by the compiler in assignments, 
initializations, and parameter passing

11-516



Syntax of Conversion Operators

• Conversion operator must be a member 
function of the class you are converting from

• The name of the operator is the name of the 
type you are converting to

• The operator does not specify a return type

11-517



Conversion Operator Example
• To convert from a class IntVal to an integer:

class IntVal
{

int x;
public:
IntVal(int a = 0){x = a;}
operator int(){return x;}

};

• Automatic conversion during assignment:
IntVal obj(15); int i;
i = obj;  cout << i; // prints 15

11-518



11.8  Convert Constructors

Convert constructors are constructors that take 
a single parameter of a type other than the 
class in which they are defined
class CCClass
{  int x;
public:
CCClass()           //default
CCClass(int a, int b);
CCClass(int a);     //convert
CCClass(string s);  //convert

};

11-519



Example of a Convert Constructor

The C++ string class has a convert 
constructor that converts from C-strings:

class string
{
public:
string(char *);  //convert
…

};

11-520



Uses of Convert Constructors

• They are automatically invoked by the 
compiler to create an object from the value 
passed as parameter:
string s("hello");  //convert C-string
CCClass obj(24);    //convert int

• The compiler allows convert constructors to 
be invoked with assignment-like notation:
string s = "hello"; //convert C-string
CCClass obj = 24;   //convert int

11-521



Uses of Convert Constructors

• Convert constructors allow functions that 
take the class type as parameter to take 
parameters of other types:
void myFun(string s); // needs string

// object
myFun("hello");       // accepts C-string

void myFun(CCClass c);
myFun(34);            // accepts int

11-522



11.9  Aggregation and Composition

• Class aggregation:  An object of one 
class owns an object of another class

• Class composition: A form of aggregation 
where the enclosing class controls the 
lifetime of the objects of the enclosed 
class

• Supports the modeling of ‘has-a’ 
relationship between classes – enclosing 
class ‘has a(n)’  instance of the enclosed 
class

11-523



Object Composition

class StudentInfo 
{

private:
string firstName, LastName;
string address, city, state, zip;

...
};
class Student
{

private:
StudentInfo personalData;

...
};

11-524



Member Initialization Lists

• Used in constructors for classes involved in 
aggregation.

• Allows constructor for enclosing class to pass 
arguments to the constructor of the enclosed 
class

• Notation:
owner_class(parameters):owned_class(parameters);

11-525



Member Initialization Lists

Use:
class StudentInfo 
{

...
};
class Student
{

private:
StudentInfo personalData;

public:
Student(string fname, lname):
StudentInfo(fname, lname);

};
11-526



Member Initialization Lists

• Member Initialization lists can be used to 
simplify the coding of constructors

• Should keep the entries in the initialization 
list in the same order as they are declared in 
the class

11-527



Aggregation Through Pointers

• A ‘has-a’ relationship can be implemented 
by owning a pointer to an object

• Can be used when multiple objects of a 
class may ‘have’ the same attribute for a 
member
– ex: students who may have the same city/state/ 

zipcode 
• Using pointers minimizes data duplication 

and saves space
11-528



Aggregation, Composition, and Object 
Lifetimes

• Aggregation represents the owner/owned 
relationship between objects.

• Composition is a form of aggregation in 
which the lifetime of the owned object is the 
same as that of the owner object

• Owned object is usually created as part of 
the owning object’s constructor, destroyed 
as part of owning object’s destructor

11-529



11.10  Inheritance

• Inheritance is a way of creating a new class 
by starting with an existing class and 
adding new members

• The new class can replace or extend the 
functionality of the existing class

• Inheritance models the 'is-a' relationship 
between classes

11-530



Inheritance - Terminology

• The existing class is called the base class
– Alternates: parent class, superclass

• The new class is called the derived class
– Alternates: child class, subclass

11-531



Inheritance Syntax and Notation

// Existing class
class Base
{
};
// Derived class
class Derived : public Base
{
};

Inheritance Class      
Diagram

11-532

Base Class

Derived Class



Inheritance of Members

class Parent
{

int a;
void bf();

};
class Child : public 

Parent 
{

int c;
void df();

};

Objects of Parent have 
members  
int a; void bf();

Objects of Child have  
members
int a; void bf();
int c; void df();

11-533



11.11  Protected Members and Class 
Access

• protected member access specification: A 
class member labeled protected is 
accessible to member functions of derived 
classes as well as to member functions of 
the same class

• Like private, except accessible to 
members functions of derived classes

11-534



Base Class Access Specification

Base class access specification determines 
how private, protected, and public
members of base class can be accessed 
by derived classes

11-535



Base Class Access 

C++ supports three inheritance modes, also 
called base class access modes:
- public inheritance

class Child : public Parent { };

- protected inheritance
class Child : protected Parent{ };

- private inheritance
class Child : private Parent{ };

11-536



Base Class Access vs. Member 
Access Specification

Base class access is not the same as 
member access specification:

– Base class access: determine access for 
inherited members

– Member access specification: determine 
access for members defined in the class

11-537



Member Access Specification

Specified using the keywords 
private, protected, public
class MyClass
{ 
private: int a;
protected: int b; void fun();
public: void fun2();

};

11-538



Base Class Access Specification

class Child : public Parent
{               

protected:        
int a;

public:
Child();

};

11-539

member access

base access



Base Class Access Specifiers

1) public – object of derived class can be 
treated as object of base class (not vice-
versa)

2) protected – more restrictive than public, 
but allows derived classes to know some of 
the details of parents

3) private – prevents objects of derived class 
from being treated as objects of base class.

11-540



Effect of Base Access 

11-541

private: x
protected: y
public: z

private: x
protected: y
public: z

private: x
protected: y
public: z

Base class members

x inaccessible
private: y
private: z

x inaccessible
protected: y
protected: z

x inaccessible
protected: y
public: z

How base class members
appear in derived class

private
base class

protected
base class

public
base class



11.12  Constructors,Destructors and 
Inheritance

• By inheriting every member of the base 
class, a derived class object contains a 
base class object

• The derived class constructor can specify 
which base class constructor should be 
used to initialize the base class object

11-542



Order of Execution

• When an object of a derived class is 
created, the base class’s constructor is 
executed first, followed by the derived 
class’s constructor

• When an object of a derived class is 
destroyed, its destructor is called first, then 
that of the base class 

11-543



Order of Execution

// Student – base class 
// UnderGrad – derived class
// Both have constructors, destructors 
int main()
{

UnderGrad u1;
...
return 0;

}// end main

11-544

Execute Student
constructor, then 

execute 
UnderGrad
constructor

Execute UnderGrad
destructor, then 

execute Student
destructor



Passing Arguments to Base Class 
Constructor

• Allows selection between multiple base 
class constructors

• Specify arguments to base constructor on 
derived constructor heading

• Can also be done with inline constructors
• Must be done if base class has no default 

constructor

11-545



Passing Arguments to Base Class 
Constructor

class Parent {
int x, y;
public: Parent(int,int);

};
class Child : public Parent {

int z
public: 
Child(int a): Parent(a,a*a)
{z = a;}

};

11-546



11.13  Overriding Base Class Functions

• Overriding: function in a derived class that 
has the same name and parameter list as a 
function in the base class

• Typically used to replace a function in base 
class with different actions in derived class

• Not the same as overloading – with 
overloading, the parameter lists must be 
different 

11-547



Access to Overridden Function

• When a function is overridden, all objects of 
derived class use the overriding function.

• If necessary to access the overridden 
version of the function, it can be done using 
the scope resolution operator with the name 
of the base class and the name of the 
function:
Student::getName();

11-548



Chapter 12: More on C-Strings
and the string Class 



Topics
12.1  C-Strings
12.2  Library Functions for Working with

C-Strings
12.3  Conversions Between Numbers and     

Strings
12.4  Writing Your Own C-String Handling

Functions
12.5  More About the C++ string Class
12.6  Creating Your Own String Class

12-550



12.1  C-Strings

• C-string: sequence of characters stored in 
adjacent memory locations and terminated 
by NULL character

• The C-string 
"Hi there!"

would be stored in memory  as shown: 

12-551

H i t h e r e ! \0



What is NULL?

• The null character is used to indicate the 
end of a string

• It can be specified as
– the character '\0'
– the int value 0
– the named constant NULL

12-552



Representation of C-strings

As a string literal
"Hi There!"

As a pointer to char
char *p;

As an array of characters
char str[20];

All three representations are pointers to 
char

12-553



String Literals

• A string literal is stored as a null-terminated 
array of char

• Compiler uses the address of the first 
character of the array as the value of the 
string

• String literal is a pointer to char

12-554

h i \0value of "hi" is the 

address of  this array



Array of char

• An array of char can be defined and initialized to 
a C-string
char str1[20] = "hi";

• An array of char can be defined and later have a 
string copied into it using strcpy or 
cin.getline
char str2[20], str3[20];
strcpy(str2, "hi");
cout << "Enter your name: ";
cin.getline(str3, 20);

12-555



Array of char

• The name of an array of char is used as 
a pointer to char

• Unlike a string literal, a C-string defined 
as an array can be referred to in other 
parts of the program by using the array 
name

12-556



Pointer to char

• Defined as 
char *pStr;

• Does not itself allocate memory
• Useful in repeatedly referring to C-

strings defined as a string literal
pStr = "Hi there";
cout << pStr << " " 

<< pStr;

12-557



Pointer to char

• Pointer to char can also refer to C-strings 
defined as arrays of char

char str[20] = "hi";
char *pStr = str;
cout << pStr;  // prints hi

• Can dynamically allocate memory to be 
used for C-string using new

12-558



12.2  Library Functions for Working with 
C-Strings

• Require cstring header file
• Functions take one or more C-strings as 

arguments.  Argument can be:
– Name of an array of char
– pointer to char
– string literal 

12-559



Library Functions for 
Working with C-Strings

int strlen(char *str)

Returns length of a C-string:
cout << strlen("hello");

Prints: 5

Note:  This is the number of characters in 
the string, NOT the size of the array that 
contains it

12-560



strcat

strcat(char *dest, char *source)
• Takes two C-strings as input.  It adds the contents 

of the second string to the end of the first string:
char str1[15] = "Good ";
char str2[30] = "Morning!";
strcat(str1, str2);
cout << str1; // prints: Good Morning!

• No automatic bounds checking: programmer must 
ensure that 1st string has enough room for result

12-561



strcpy

strcpy(char *dest, char *source)

• Copies a string from a source address to a 
destination address
char name[15];
strcpy(name, "Deborah");
cout << name; // prints Deborah

• Again, no automatic bounds checking

12-562



strcmp

int strcmp(char *str1, char*str2)
• Compares strings stored at two addresses to 

determine their relative alphabetic order:
• Returns  a value:

less than 0 if str1 precedes str2
equal to 0 if str1 equals str2
greater than 0 if str1 succeeds str2

12-563



strcmp

• Often used to test for equality
if(strcmp(str1, str2) == 0)

cout << "equal"; 
else 

cout << "not equal";
• Also used to determine ordering of C-strings in 

sorting applications
• Note:

– Comparisons are case-sensitive:  "Hi" != "hi"
– C-strings cannot be compared using == (compares 

addresses of C-strings, not contents)
12-564



strstr

char *strstr(char *str1,char *str2)
• Searches for the occurrence of str2 within   
str1.  

• Returns a pointer to the occurrence of str2
within str1 if found, and returns NULL otherwise

char s[15] = "Abracadabra";
char *found = strstr(s,"dab");
cout << found;     // prints dabra

12-565



12.3  Conversions Between Numbers 
and Strings

• "1416" is a string; 1416 without quotes is 
an int

• There are classes that can be used to 
convert between string and numeric forms 
of numbers

• Need to include sstream header file

12-566



Conversion Classes
• istringstream:

– contains a string to be converted to numeric values 
where necessary

– Use str(s) to initialize string to contents of s
– Use the stream extraction operator >> to read from the 

string
• ostringstream:

– collects a string in which numeric data is converted as 
necessary

– Use the stream insertion operator << to add data onto 
the string

– Use str() to retrieve converted string

12-567



atoi and atol

• atoi converts alphanumeric to int 
• atol converts alphanumeric to long
int atoi(char *numericStr)
long atol(char *numericStr)

• Examples:
int number; long lnumber;
number = atoi("57");
lnumber = atol("50000");

12-568



atof

• atof converts a numeric string to a 
floating point number, actually a 
double
double atof(char *numericStr)

• Example:
double dnumber;
dnumber = atof("3.14159");

12-569



atoi, atol, atof

• if C-string being converted contains non-
digits, results are undefined
– function may return result of conversion up 

to first non-digit
– function may return 0

• All functions require cstdlib

12-570



itoa

• itoa converts an int to an alphanumeric string
• Allows user to specify the base of conversion

itoa(int num, char *numStr, int base)
• Example: To convert the number 1200 to a 

hexadecimal string
char numStr[10];
itoa(1200, numStr, 16);

• The function performs no bounds-checking on the 
array numStr

12-571



12.4  Character Testing

require cctype header file

FUNCTION MEANING
isalpha true if arg. is a letter, false otherwise
isalnum true if arg. is a letter or digit, false

otherwise
isdigit true if arg. is a digit 0-9, false otherwise
islower true if arg. is lowercase letter, false

otherwise

12-572



12.4  Writing Your Own C-String 
Handling Functions

When writing C-String Handling Functions:
– can pass arrays or pointers to char
– can perform bounds checking to ensure 

enough space for results
– can anticipate unexpected user input

12-573



12.5  More About the C++ string Class

• The string class offers several advantages 
over C-style strings:

– large body of member functions
– overloaded operators to simplify expressions

• Need to include the string header file

12-574



string class constructors

• Default constructor string()
• Copy constructor string(string&)

initializes string objects with values of other 
string objects

• Convert constructor string(char *)
initializes string objects with values of C-
strings

• Various other constructors

12-575



Overloaded string Operators

OPERATOR MEANING

>> reads whitespace-delimited strings 
into string object

<< inserts string object into a stream

= assigns string on right to string 
object on left

+= appends string on the right to the 
end of contents of string on left

12-576



Overloaded string Operators (continued)

OPERATOR MEANING

+ Returns concatenation of the two 
strings

[] references character in string using 
array notation

>, >=, 
<, <=, 
==, !=

relational operators for string 
comparison.  Return true or false

12-577



Overloaded string Operators

string word1, phrase;
string word2 = " Dog";
cin >> word1; // user enters "Hot"

// word1 has "Hot"
phrase = word1 + word2; // phrase has

// "Hot Dog"
phrase += " on a bun";
for (int i = 0; i < 16; i++)

cout << phrase[i];  // displays
// "Hot Dog on a bun"

12-578



string Member Functions

Categories:
– conversion to C-strings: c_str, data
– modification: append, assign, clear, 
copy, erase, insert, replace, swap

– space management: capacity, empty,
length, resize, size

– substrings: find, substr
– comparison: compare

12-579



Conversion to C-strings

• data() and c_str() both return the C-
string equivalent of a string object

• Useful when using a string object with a 
function that is expecting a C-string

char greeting[20] = "Have a ";
string str("nice day");
strcat(greeting, str.data());

12-580



Modification of string objects

• str.append(string s)
appends contents of s to end of str

• Convert constructor for string allows a C-
string to be passed in place of s

string str("Have a ");
str.append("nice day");

• append is overloaded for flexibility

12-581



Modification of string objects

• str.insert(int pos, string s)
inserts s at position pos in str

• Convert constructor for string allows a C-
string to be passed in place of s

string str("Have a day");
str.insert(7, "nice ");

• insert is overloaded for flexibility

12-582



12.6  Creating Your Own String Class

• A good way to put OOP skills into practice
• The class allocates dynamic memory, so 

has copy constructor, destructor, and 
overloaded assignment

• Overloads the stream insertion and 
extraction operators, and many other 
operators

12-583



Chapter 13: Advanced File and I/O 
Operations



Topics

13.1  Input and Output Streams
13.2  More Detailed Error Testing
13.3  Member Functions for Reading and 

Writing Files
13.4  Binary Files
13.5  Creating Records with Structures
13.6  Random-Access Files
13.7  Opening a File for Both Input and Output

13-585



13.1  Input and Output Streams
• Input Stream – data stream from which 

information can be read
– Ex: cin and the keyboard
– Use istream, ifstream, and istringstream

objects to read data
• Output Stream – data stream to which information 

can be written
– Ex: cout and monitor screen
– Use ostream, ofstream, and ostringstream

objects to write data
• Input/Output Stream – data stream that can be 

both read from and written to
– Use fstream objects here

13-586



File Stream Classes

• ifstream (open primarily for input), ofstream
(open primarily for output), and fstream (open 
for either or both input and output)

• All have open member function to connect the 
program to an external file

• All have close member function to disconnect 
program from an external file when access is 
finished
– Files should be open for as short a time as possible
– Always close files before the program ends

13-587



File Open Modes

• File open modes specify how a file is opened 
and what can be done with the file once it is 
open

• ios::in and ios::out are examples of file 
open modes, also called file mode flag

• File modes can be combined and passed as 
second argument of open member function

13-588



The fstream Object

• fstream object can be used for either input or 
output

fstream file;
• To use fstream for input, specify ios::in as 

the second argument to open
file.open("myfile.dat",ios::in);

• To use fstream for output, specify ios::out
as the second argument to open

file.open("myfile.dat",ios::out);

13-589



File Mode Flags

ios::app create new file, or append to end of 
existing file

ios::ate go to end of existing file; write anywhere
ios::binary read/write in binary mode (not text mode)
ios::in open for input
ios::out open for output

13-590



Opening a File for Input and Output

• fstream object can be used for both input and 
output at the same time

• Create the fstream object and specify both 
ios::in and ios::out as the second 
argument to the open member function

fstream file;
file.open("myfile.dat",

ios::in|ios::out);

13-591



File Open Modes

• Not all combinations of file open modes 
make sense

• ifstream and ofstream have default file 
open modes defined for them, hence the 
second parameter to their open member 
function is optional

13-592



Opening Files with Constructors

• Stream constructors have overloaded 
versions that take the same parameters as 
open

• These constructors open the file, 
eliminating the need for a separate call to 
open
fstream inFile("myfile.dat",

ios::in);

13-593



Default File Open Modes

• ofstream:
– open for output only
– file cannot be read from
– file is created if no file exists
– file contents erased if file exists

• ifstream: 
– open for input only
– file cannot be written to
– open fails if the file does not exist

13-594



Output Formatting with I/O Manipulators

• Can format with I/O manipulators: they 
work with file objects just like they work 
with cout

• Can format with formatting member 
functions

• The ostringstream class allows 
in-memory formatting into a string object 
before writing to a file

13-595



I/O Manipulators

left, right left or right justify output

oct, dec, 
hex

display output in octal, decimal, or 
hexadecimal

endl, flush write newline (endl only) and flush output

showpos, 
noshowpos

do, do not show leading + with non-negative 
numbers

showpoint, 
noshowpoint

do, do not show decimal point and trailing 
zeroes

13-596



More I/O Manipulators 

fixed, 
scientific

use fixed or scientific notation for 
floating-point numbers

setw(n) sets minimum field output width to n

setprecision(n) sets floating-point precision to n

setfill(ch) uses ch as fill character

13-597



sstream Formatting

1) To format output into an in-memory  
string object, include the sstream
header file and create an 
ostringstream object
#include <sstream>
ostringstream outStr;

13-598



sstream Formatting

2) Write to the ostringstream object 
using I/O manipulators, all other 
stream member functions:
outStr << showpoint << fixed

<< setprecision(2)   
<< '$'<< amount;

13-599



sstream Formatting

3) Access the C-string inside the 
ostringstream object by calling its 
str member function

cout << outStr.str();

13-600



13.2  More Detailed Error Testing

13-601

• Stream objects have error bits (flags) 
that are set by every operation to 
indicate success or failure of the 
operation, and the status of the stream

• Stream member functions report on the 
settings of the flags



Error State Bits

Can examine error state bits to determine file 
stream status
ios::eofbit set when end of file detected

ios::failbit set when operation failed

ios::hardfail set when an irrecoverable error 
occurred

ios::badbit set when invalid operation 
attempted

ios::goodbit set when no other bits are set

13-602



Error Bit Reporting Functions

eof() true if eofbit set, false otherwise

fail() true if failbit or hardfail set, false 
otherwise

bad() true if badbit set, false otherwise

good() true if goodbit set, false otherwise

clear() clear all flags (no arguments), or clear a 
specific flag

13-603



Detecting File Operation Errors

• The file handle is set to true if a file operation 
succeeds.  It is set to false when a file operation 
fails

• Test the status of the stream by testing the file 
handle:

inFile.open("myfile");
if (!inFile)
{ cout << "Can't open file";
exit(1);

}

13-604



13.3  Member Functions for Reading 
and Writing Files

Unlike the extraction operator >>, these 
reading functions do not skip whitespace:

getline: read a line of input
get: reads a single character
seekg: goes to beginning of input file

13-605



getline Member Function

getline(char s[ ], 
int max, char stop ='\n')

– char s[ ]: Character array to hold input
– int max : 1 more than the maximum 

number of characters to read
– char stop: Terminator to stop at if 

encountered before max number of 
characters is read .  Optional, default is '\n'

13-606



Single Character Input

get(char &ch)

Read a single character from the input stream 
and put it in ch. Does not skip whitespace.
ifstream inFile;  char ch;
inFile.open("myFile");
inFile.get(ch);  
cout << "Got " << ch;

13-607



Single Character Input, Again

get()

Read a single character from the input stream 
and return the character. Does not skip 
whitespace.
ifstream inFile;  char ch;
inFile.open("myFile");
ch = inFile.get();  
cout << "Got " << ch;

13-608



Single Character Input, with a Difference

peek()

Read a single character from the input stream 
but do not remove the character from the input 
stream. Does not skip whitespace.
ifstream inFile;  char ch;
inFile.open("myFile");
ch = inFile.peek();  
cout << "Got " << ch;
ch = inFile.peek();  
cout << "Got " << ch;//same output

13-609



Single Character Output

• put(char ch)

Output a character to a file
• Example

ofstream outFile;
outFile.open("myfile");
outFile.put('G');

13-610



Moving About in Input Files

seekg(offset, place)
Move to a given offset relative to a given
place in the file
– offset: number of bytes from place, 

specified as a long

– place: location in file from which to compute offset
ios::beg: beginning of file
ios::end: end of the file
ios::cur: current position in file

13-611



Example of Single Character I/O

To copy an input file to an output file
char ch; infile.get(ch);
while (!infile.fail())
{ outfile.put(ch);
infile.get(ch);
}
infile.close(); 
outfile.close();

13-612



Rewinding a File

• To move to the beginning of file, seek to an 
offset of zero from beginning of file
inFile.seekg(0L, ios::beg);

• Error or eof bits will block seeking to the 
beginning of file.  Clear bits first:
inFile.clear();
inFile.seekg(0L, ios::beg);

13-613



13.4  Binary Files

• Binary files store data in the same format 
that a computer has in main memory

• Text files store data in which numeric 
values have been converted into strings of 
ASCII characters

• Files are opened in text mode (as text files) 
by default

13-614



Using Binary Files

• Pass the ios::binary flag to the open
member function to open a file in binary mode 
infile.open("myfile.dat",ios::binary);

• Reading and writing of binary files requires 
special read and write member functions

read(char *buffer, int numberBytes)
write(char *buffer, int numberBytes)

13-615



Using read and  write

read(char *buffer, int numberBytes)
write(char *buffer, int numberBytes)

• buffer: holds an array of bytes to transfer 
between memory and the file

• numberBytes: the number of bytes to transfer

Address of the buffer needs to be cast to 
char * using reinterpret_cast <char *>

13-616



Using  write

To write an array of 2 doubles to a binary file

ofstream outFile("myfile",ios:binary);
double d[2] = {12.3, 34.5};
outFile.write(
reinterpret_cast<char *>(d),sizeof(d));

13-617



Using  read

To read two 2 doubles from a binary file into an array
ifstream inFile("myfile", ios:binary);
const int DSIZE = 10;
double data[DSIZE];
inFile.read(

reinterpret_cast<char *>(data),
2*sizeof(double));

// only data[0] and data[1] contain
// values

13-618



13.5  Creating Records with
Structures

• Can write structures to, read structures 
from files

• To work with structures and files, 
– use binary file flag upon open
– use read, write member functions 

13-619



Creating Records with Structures

struct TestScore
{ int studentId;
float score;
char grade;

};
TestScore test1[20];
...
// write out test1 array to a file
gradeFile.write(               
reinterpret_cast<char*>(test1), 
sizeof(test1));

13-620



Notes on Structures Written to Files

• Structures to be written to a file must not 
contain pointers

• Since string objects use pointers and 
dynamic memory internally, structures to 
be written to a file must not contain any 
string objects

13-621



13.6  Random-Access Files

• Sequential access: start at beginning of 
file and go through data the in file, in 
order, to the end of the file
– to access 100th entry in file, go through 99 

preceding entries first
• Random access: access data in a file in 

any order
– can access 100th entry directly

13-622



Random Access Member Functions

• seekg (seek get): used with input files

• seekp (seek put): used with output files

Both are used to go to a specific position 
in a file

13-623



Random Access Member Functions

seekg(offset,place)
seekp(offset,place)

offset:long integer specifying number of bytes  
to move

place: starting point for the move,  specified  
by ios:beg, ios::cur or  
ios:end

13-624



Random-Access Member Functions

• Examples:
// Set read position 25 bytes 
// after beginning of file
inData.seekg(25L, ios::beg); 

// Set write position 10 bytes
// before current position
outData.seekp(-10L, ios::cur);

13-625



Random Access Information

• tellg member function: return current 
byte position in input file, as a long
long whereAmI;
whereAmI = inFile.tellg();

• tellp member function: return current 
byte position in output file, as a long
whereAmI = outFile.tellp();

13-626



13.7 Opening a File for Both 
Input and Output

• A file can be open for input and output 
simultaneously

• Supports updating a file:
– read data from file into memory
– update data
– write data back to file

• Use fstream for file object definition:
fstream gradeList("grades.dat",

ios::in | ios::out);

13-627



Chapter 14: Recursion



Topics
14.1  Introduction to Recursion
14.2  The Recursive Factorial Function
14.3  The Recursive gcd Function
14.4  Solving Recursively Defined Problems
14.5  A Recursive Binary Search Function
14.6  The QuickSort Algorithm
14.7  The Towers of Hanoi
14.8  Exhaustive and Enumeration Algorithms
14.9  Recursion Versus Iteration

14-629



14.1 Introduction to Recursion

• A recursive function is a function that 
calls itself.  

• Recursive functions can be useful in 
solving problems that can be broken 
down into smaller or simpler 
subproblems of the same type.  A base 
case should eventually be reached, at 
which time the breaking down 
(recursion) will stop.

14-630



Recursive Functions

Consider a function for solving the 
count-down problem from some number 
num down to 0:
– The base case is when num is already 0: 

the problem is solved and we “blast off!”
– If num is greater than 0, we count off num

and then recursively count down from 
num-1

14-631



Recursive Functions

A recursive function for counting down to 0:
void countDown(int num)
{

if (num == 0)
cout << "Blastoff!";

else
{

cout << num << ". . .";
countDown(num-1); // recursive

}                    // call
}

14-632



What Happens When Called?

If a program contains a line like countDown(2);
1. countDown(2) generates the output 2..., then 

it calls countDown(1)
2. countDown(1) generates the output 1..., then 

it calls countDown(0)
3. countDown(0) generates the output 

Blastoff!, then returns to countDown(1)
4. countDown(1) returns to countDown(2)
5. countDown(2)returns to the calling function

14-633



What Happens When Called?

14-634

third call to
countDown
num is 0

countDown(1);

countDown(0);

// no
// recursive
// call

second call to
countDown
num is 1

first call to
countDown
num is 2 OUTPUT:

2...

1...

Blastoff!



Stopping the Recursion

• A recursive function should include a 
test for the base cases

• In the sample program, the test is:
if (num == 0)

14-635



Stopping the Recursion

void countDown(int num)
{ 

if (num == 0) // test
cout << "Blastoff!";

else
{ 

cout << num << "...\n";
countDown(num-1); // recursive

}                    // call
}

14-636



Stopping the Recursion

• With each recursive call, the parameter 
controlling the recursion should move  
closer to the base case

• Eventually, the parameter reaches the base 
case and the chain of recursive calls 
terminates

14-637



Stopping the Recursion

void countDown(int num)
{ 

if (num == 0)      // base case
cout << "Blastoff!";

else
{  cout << num << "...\n";

countDown(num-1); 
}

}

14-638

Value passed to 
recursive call is closer to 
base case of num = 0.



What Happens When Called?

• Each time a recursive function is called, a new 
copy of the function runs, with new instances of 
parameters and local variables being created

• As each copy finishes executing, it returns to 
the copy of the function that called it

• When the initial copy finishes executing, it 
returns to the part of the program that made the 
initial call to the function

14-639



Types of Recursion

• Direct recursion
– a function calls itself

• Indirect recursion
– function A calls function B, and function B calls 

function A.  Or,
– function A calls function B, which calls …, 

which then calls function A

14-640



14.2 The Recursive Factorial Function

• The factorial of a nonnegative integer n is 
the product of all positive integers less or 
equal to n

• The factorial of n is denoted by n!
• The factorial of 0 is 1

0 ! = 1
n ! = n x (n-1) x … x 2 x 1  if n > 0

14-641



Recursive Factorial Function

• Factorial of n can be expressed in terms of 
the factorial of n-1

0 ! = 1
n ! = n x (n-1) !

• Recursive function
int factorial(int n)
{ if (n == 0) return 1;

else 
return n *factorial(n-1);

}

14-642



14.3  The Recursive gcd Function

• Greatest common divisor (gcd) of two 
integers x and y is the largest number that 
divides both x and y

• The Greek mathematician Euclid 
discovered that
– If y divides x, then gcd(x, y) is  just y
– Otherwise, the gcd(x, y) is the gcd of y and the 

remainder of dividing x by y

14-643



The Recursive gcd Function

int gcd(int x, int y)
{

if (x % y == 0) //base case
return y;

else
return gcd(y, x % y);

}

14-644



14.4  Solving Recursively Defined 
Problems

• The natural definition of some problems 
leads to a recursive solution

• Example: Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, ...

• After the initial 0 and 1, each term is the 
sum of the two preceding terms

• Recursive calculation of the nth Fibonacci 
number:
fib(n) = fib(n – 1) + fib(n – 2);

• Base cases: n == 0, n == 1

14-645



Recursive Fibonacci Function

int fib(int n)
{

if (n <= 0)         // base case
return 0;

else if (n == 1)    // base case
return 1;

else
return fib(n – 1) + fib(n – 2);

}

14-646



14.5 A Recursive Binary Search Function

• Assume an array a that is sorted in 
ascending order, and an item X to 
search for

• We want to write a function that 
searches for X within the array a, 
returning the index of X if it is found, and 
returning -1 if X is not in the array

14-647



Recursive Binary Search

A recursive strategy for searching a portion 
of the array from index lo to index hi is to
set m to the index of the middle element of  
the array:

14-648

mlo hi



Recursive Binary Search

If a[m] == X, we found X, so return m
If a[m] > X, recursively search a[lo..m-1]
If a[m] < X, recursively search a[m+1..hi]

14-649

mlo hi



Recursive Binary Search
int bSearch(int a[],int lo,int hi,int X)
{ 

int m = (lo + hi) /2;
if(lo > hi) return -1;    // base 
if(a[m] == X) return m;   // base
if(a[m] > X) 
return bsearch(a,lo,m-1,X);

else
return bsearch(a,m+1,hi,X);

}

14-650



14.6  The QuickSort Algorithm

• Recursive algorithm that can sort an 
array 

• First, determine an element to use as 
pivot value:

14-651

pivot

sublist 1 sublist 2



The QuickSort Algorithm

• Then, values are shifted so that elements in 
sublist1 are < pivot and elements in sublist2 
are >= pivot

• Algorithm then recursively sorts sublist1 and 
sublist2

• Base case: a sublist has size <=1

14-652

pivot value

sublist 1 sublist 2



14.7 The Towers of Hanoi

• Setup:  3 pegs, one has n disks on it, the other two 
pegs empty.  The disks are arranged in increasing 
diameter, top bottom

• Objective: move the disks from peg 1 to peg 3, 
observing these rules:
– only one disk moves at a time
– all remain on pegs except the one being moved
– a larger disk cannot be placed on top of a smaller disk 

at any time

14-653



The Towers of Hanoi

How it works:

14-654

n=1 Move disk from peg 1 to peg 3.  
Done.

n=2 Move top disk from peg 1 to peg 2.
Move remaining disk from peg 1 to peg 3.
Move disk from peg 2 to peg 3.
Done.



Outline of Recursive Algorithm

If n==0, do nothing (base case)
If n>0, then

a. Move the topmost n-1 disks from peg1 to peg2
b. Move the nth disk from peg1 to peg3
c. Move the n-1 disks from peg2 to peg3

end if

14-655



14.8 Exhaustive and Enumeration 
Algorithms

• Enumeration algorithm: generate all 
possible combinations
Example: all possible ways to make change for a 

certain amount of money
• Exhaustive algorithm: search a set of 

combinations to find an optimal one
Example: change for a certain amount of money 

that uses the fewest coins

14-656



14.9 Recursion vs. Iteration

• Benefits (+), disadvantages(-) for recursion:
+ Natural formulation of solution to certain 

problems
+ Results in shorter, simpler functions
– May not execute very efficiently

• Benefits (+), disadvantages(-) for iteration:
+ Executes more efficiently than recursion
– May not be as natural a method of solution as 

recursion for some problems

14-657



Chapter 15: Polymorphism and Virtual 
Functions



Topics

15.1  Type Compatibility in Inheritance 
Hierarchies

15.2  Polymorphism and Virtual Member
Functions

15.3  Abstract Base Classes and Pure Virtual 
Functions

15.4  Composition Versus Inheritance

15-659



15.1 Type Compatibility in Inheritance 
Hierarchies

• Classes in a program 
may be part of an
inheritance hierarchy

• Classes lower in the 
hierarchy are special 
cases of those above

15-660

Animal

Cat Dog

Poodle



Type Compatibility in Inheritance

• A pointer to a derived class can be 
assigned to a pointer to a base class.  
Another way to say this is:

• A base class pointer can point to derived 
class objects
Animal *pA = new Cat;

15-661



Type Compatibility in Inheritance

• Assigning a base class pointer to a 
derived class pointer requires a cast
Animal *pA = new Cat;
Cat *pC;
pC = static_cast<Cat *>(pA);

• The base class pointer must already 
point to a derived class object for this to 
work

15-662



Using Type Casts with Base Class 
Pointers

• C++ uses the declared type of a pointer to 
determine access to the members of the 
pointed-to object

• If an object of a derived class is pointed to 
by a base class pointer, all members of the 
derived class may not be accessible

• Type cast the base class pointer to the 
derived class (via static_cast) in order 
to access members that are specific to the 
derived class

15-663



15.2  Polymorphism and Virtual Member 
Functions

• Polymorphic code: Code that behaves 
differently when it acts on objects of 
different types

• Virtual Member Function: The C++ 
mechanism for achieving polymorphism

15-664



Polymorphism

Consider the Animal, 
Cat, Dog hierarchy 
where each class has 
its own version of the 
member function id( )

15-665

Animal

Cat Dog

Poodle



Polymorphism

class Animal{
public: void id(){cout << "animal";}
}
class Cat : public Animal{
public: void id(){cout << "cat";}

}
class Dog : public Animal{
public: void id(){cout << "dog";}

}

15-666



Polymorphism

• Consider the collection of different Animal 
objects
Animal *pA[] = {new Animal, new Dog,   

new Cat};
and accompanying code
for(int k=0; k<3; k++)

pA[k]->id();

• Prints: animal animal animal, ignoring the 
more specific versions of id() in Dog and Cat

15-667



Polymorphism

• The preceding code is not polymorphic: 
it behaves the same way even though 
Animal, Dog and Cat have different 
types and different id() member 
functions

• Polymorphic code would have printed 
"animal dog cat" instead of 
"animal animal animal"

15-668



Polymorphism

• The code is not polymorphic because in the 
expression 

pA[k]->id()
the compiler sees only the type of the 
pointer pA[k], which is pointer to Animal

• Compiler does not see type of actual object 
pointed to, which may be Animal, or Dog, 
or Cat

15-669



Virtual Functions

Declaring a function virtual will make 
the compiler check the type of each 
object to see if it defines a more specific 
version of the virtual function

15-670



Virtual Functions

If the member functions id()are declared 
virtual, then the code 
Animal *pA[] = {new Animal,

new Dog,new Cat};
for(int k=0; k<3; k++)

pA[k]->id();
will print animal dog cat

15-671



Virtual Functions

How to declare a member function virtual:
class Animal{
public: virtual void id(){cout << "animal";}

}
class Cat : public Animal{
public: virtual void id(){cout << "cat";}

}
class Dog : public Animal{
public: virtual void id(){cout << "dog";}

}

15-672



Function Binding

• In pA[k]->id(), Compiler must choose 
which version of id() to use: There are 
different versions in the  Animal, Dog, and Cat
classes

• Function binding is the process of determining 
which function definition to use for a particular 
function call

• The alternatives are static and dynamic binding

15-673



Static Binding

• Static binding chooses the function in the 
class of the base class pointer, ignoring 
any versions in the class of the object 
actually pointed to

• Static binding is done at compile time

15-674



Dynamic Binding

• Dynamic Binding determines the function to 
be invoked at execution time

• Can look at the actual class of the object 
pointed to and choose the most specific 
version of the function

• Dynamic binding is used to bind virtual 
functions

15-675



15.3 Abstract Base Classes and Pure 
Virtual Functions

• An abstract class is a class that contains no 
objects that are not members of subclasses 
(derived classes)

• For example, in real life, Animal is an 
abstract class: there are no animals that 
are not dogs, or cats, or lions…

15-676



Abstract Base Classes and Pure Virtual 
Functions

• Abstract classes are an organizational tool.  
They are useful in organizing inheritance 
hierarchies

• Abstract classes can be used to specify an 
interface that must be implemented by all 
subclasses

15-677



Abstract Functions

• The member functions specified in an 
abstract class do not have to be 
implemented

• The implementation is left to the 
subclasses

• In C++, an abstract class is a class with at 
least one abstract member function

15-678



Pure Virtual Functions

• In C++, a member function of a class is 
declared to be an abstract function by making 
it virtual and replacing its body with  = 0;

class Animal{
public:
virtual void id()=0;

};
• A virtual function with its body omitted and 

replaced with =0 is called a pure virtual
function, or an abstract function

15-679



Abstract Classes

• An abstract class can not be instantiated
• An abstract class can only be inherited 

from; that is, you can derive classes 
from it

• Classes derived from abstract classes 
must override all pure virtual functions 
with a concrete member functions before 
they can be instantiated.

15-680



15.4 Composition vs. Inheritance

• Inheritance models an 'is a' relation 
between classes.  An object of a derived 
class 'is a(n)' object of the base class

• Example: 
– an UnderGrad is a Student
– a Mammal is an Animal
– a Poodle is a Dog

15-681



Composition vs. Inheritance

• When defining a new class:
• Composition is appropriate when the new class 

needs to use an object of an existing class
• Inheritance is appropriate when

– objects of the new class are a subset of the objects 
of the existing class, or 

– objects of the new class will be used in the same 
ways as the objects of the existing class

15-682



Chapter 16: Exceptions, Templates, and 
the Standard Template Library (STL)



Topics

16.1  Exceptions 
16.2  Function Templates
16.3  Class Templates
16.4  Class Templates and Inheritance
16.5  Introduction to the Standard Template 

Library

16-684



16.1  Exceptions

• An exception is a value or an object that 
indicates that an error has occurred

• When an exception occurs, the program 
must either terminate or jump to special 
code for handling the exception.

• The special code for handling the exception 
is called an exception handler

16-685



Exceptions – Key Words

• throw – followed by an argument, is 
used to signal an exception

• try – followed by a block { }, is used to 
invoke code that throws an exception

• catch – followed by a block { }, is used 
to process exceptions thrown in a 
preceding try block.  It takes a 
parameter that matches the type of 
exception thrown

16-686



Throwing an Exception

• Code that detects the exception must pass 
information to the exception handler. This is 
done using a throw statement:

throw "Emergency!"
throw 12;

• In C++, information thrown by the throw
statement may be a value of any type

16-687



Catching an Exception
• Block of code that handles the exception is 

said to catch the exception and is called an 
exception handler

• An exception handler is written to catch 
exceptions of a given type: For example, the 
code
catch(char *str)
{
cout << str;

}
can only catch exceptions of type C-string

16-688



Catching an Exception

Another example of a handler:
catch(int x)
{
cerr << "Error: " << x;

}

This can catch exceptions of type int

16-689



Connecting to the Handler 

Every catch block is attached to a try block of code and is 
responsible for handling exceptions thrown from that block
try
{

}
catch(char e1)
{  

// This code handles exceptions
// of type char that are thrown 
// in this block

} 

16-690



Execution of Catch Blocks

• The catch block syntax is similar to a that of 
a function

• A catch block has a formal parameter that 
is initialized to the value of the thrown 
exception before the block is executed

16-691



Exception Example

• An example of exception handling is code 
that computes the square root of a number.

• It throws an exception in the form of a C-
string if the user enters a negative number

16-692



Example
int main( )
{
try
{
double x;
cout << "Enter a number: ";
cin >> x;    
if (x < 0) throw "Bad argument!";
cout << "Square root of " << x << " is " << sqrt(x);

}
catch(char *str)
{

cout << str;
}
return 0;  

}

16-693



Flow of Control

1. Computer encounters a throw statement in 
a try block

2. The computer evaluates the throw
expression, and immediately exits the try
block

3. The computer selects an attached catch
block that matches the type of the thrown 
value, places the value in the catch block’s 
formal parameter, and executes the catch 
block

16-694



Uncaught Exception

• An exception may be uncaught if 
– there is no catch block with a data type that 

matches the exception that was thrown, or
– it was not thrown from within a try block

• The program will terminate in either case

16-695



Handling Multiple Exceptions

Multiple catch blocks can be attached to 
the same block of code. The catch blocks 
should handle exceptions of different types

try{...}
catch(int iEx){ }
catch(char *strEx){ }
catch(double dEx){ }

16-696



Throwing an Exception Class

• An exception class can be defined and 
thrown 

• A catch block must be designed to catch an 
object of the exception class

• The exception class object can pass data 
to exception handler via data members

16-697



Exception When Calling new

• If new cannot allocate memory, it throws an 
exception of type bad_alloc

• Must #include <new> to use bad_alloc
• Can invoke new from within a try block, 

and use a catch block to detect that 
memory was not allocated. 

16-698



Nested Exception Handling

try blocks can be nested in other try
blocks and even in catch blocks
try
{

try{ } catch(int i){ }
}
catch(char *s)
{ }

16-699



Where to Find an Exception Handler?

• The compiler looks for a suitable handler 
attached to an enclosing try block in 
the same function

• If there is no matching handler in the 
function, it terminates execution of the 
function, and continues the search for a 
handler starting at the point of the call in 
the calling function.

16-700



Unwinding the Stack

• An unhandled exception propagates 
backwards into the calling function and 
appears to be thrown at the point of the call

• The computer will keep terminating function 
calls and tracing backwards along the call 
chain until it finds an enclosing try block with 
a matching handler, or until the exception 
propagates out of main (terminating the 
program).

• This process is called unwinding the call stack

16-701



Rethrowing an Exception

• Sometimes an exception handler may need 
to do some tasks, then pass the exception 
to a handler in the calling environment. 

• The statement
throw;

with no parameters can be used within a 
catch block to pass the exception to a 
handler in the outer block

16-702



16.2  Function Templates

• Function template: A pattern for creating 
definitions of functions that differ only in the 
type of data they manipulate.  It is a generic 
function

• They are better than overloaded functions, 
since the code defining the algorithm of the 
function is only written once

16-703



Example

Two functions that differ only in the type of the 
data they manipulate
void swap(int &x, int &y)
{ int temp = x; x = y; 
y = temp;

}

void swap(char &x, char &y)
{ char temp = x; x = y; 
y = temp;

}

16-704



A swap Template

The logic of both functions can be captured 
with one template function definition
template<class T>
void swap(T &x, T &y)
{ T temp = x; x = y; 
y = temp;

}

16-705



Using a Template Function

• When a function defined by a template is called, 
the compiler creates the actual definition from the 
template by inferring the type of the type 
parameters from the arguments in the call:
int i = 1, j = 2;
swap(i,j);

• This code makes the compiler instantiate the 
template with type int in place of the type 
parameter T

16-706



Function Template Notes

• A function template is a pattern
• No actual code is generated until the 

function named in the template is called
• A function template uses no memory 

• When passing a class object to a function 
template, ensure that all operators 
referred to in the template are defined or 
overloaded in the class definition

16-707



Function Template Notes

• All data types specified in template prefix 
must be used in template definition

• Function calls must pass parameters for all 
data types specified in the template prefix

• Function templates can be overloaded –
need different parameter lists

• Like regular functions, function templates 
must be defined before being called

16-708



Where to Start  When Defining 
Templates

• Templates are often appropriate for 
multiple functions that perform the same 
task with different parameter data types

• Develop function using usual data types 
first, then convert to a template:
– add template prefix
– convert data type names in the function to a 

type parameter (i.e., a T type) in the template

16-709



16.3  Class Templates

• It is possible to define templates for 
classes. Such classes define abstract data 
types

• Unlike functions, a class template is 
instantiated by supplying the type name 
(int, float, string, etc.) at object 
definition

16-710



Class Template

Consider the following classes
1. Class used to join two integers by adding them:

class Joiner
{ public: 

int combine(int x, int y)
{return x + y;}

};
2. Class used to join two strings by concatenating them:

class Joiner
{ public:

string combine(string x, string y)
{return x + y;}

};

16-711



Example class Template
A single class template can capture the logic of 
both classes: it is written with a template prefix 
that specifies the data type parameters:
template <class T>
class Joiner
{
public:

T combine(T x, T y)
{return x + y;}

};

16-712



Using Class Templates

To create an object of a class defined by a 
template, specify the actual parameters for the 
formal data types

Joiner<double> jd;
Joiner<string> sd;
cout << jd.combine(3.0, 5.0);     
cout << sd.combine("Hi ", "Ho");

Prints 8.0 and Hi Ho

16-713



16.4  Class Templates and Inheritance

• Templates can be combined with 
inheritance

• You can derive 
– Non template classes from a template class: 

instantiate the base class template and then 
inherit from it

– Template class from a template class
• Other combinations are possible

16-714



16.5  Introduction to the Standard 
Template Library

• Standard Template Library (STL): a library 
containing templates for frequently used 
data structures and algorithms

• Programs can be developed faster and are 
more portable if they use templates from 
the STL

16-715



Standard Template Library

Two important types of data structures in 
the STL:
– containers: classes that store data and impose 

some organization on it

– iterators: like pointers; provides mechanisms 
for accessing elements in a container

16-716



Containers

Two types of container classes in STL:
– sequential containers: organize and access 

data sequentially, as in an array.  These 
include vector, dequeue, and list
containers.

– associative containers: use keys to allow 
data elements to be quickly accessed.  
These include set, multiset, map, and 
multimap containers.

16-717



Creating Container Objects

• To create a list of int, write
list<int> mylist;

• To create a vector of string objects, 
write
vector<string> myvector;

• Requires the vector header file

16-718



Iterators

• Generalization of pointers, used to 
access information in containers

• Many types:
– forward (uses ++)
– bidirectional (uses ++ and -- )
– random-access
– input (can be used with cin and istream

objects)
– output (can be used with cout and 
ostream objects)

16-719



Containers and Iterators

• Each container class defines an iterator 
type, used to access its contents

• The type of an iterator is determined by 
the type of the container: 
list<int>::iterator x;
list<string>::iterator y;

x is an iterator for a container of type 
list<int>

16-720



Containers and Iterators

Each container class defines functions 
that return iterators:

begin(): returns iterator to item at start
end(): returns iterator denoting end of 

container

16-721



Containers and Iterators

• Iterators support pointer-like operations. If 
iter is an iterator, then
– *iter is the item it points to: this 

dereferences the iterator
– iter++ advances to the next item in the 

container
– iter-- backs up in the container

• The end() iterator points to past the end: 
it should never be dereferenced

16-722



Traversing a Container

Given a vector:
vector<int> v;
for  (int k=1; k<= 5; k++) 
v.push_back(k*k);

Traverse it using iterators:
vector<int>::iterator iter = v.begin();
while (iter != v.end())
{ cout << *iter << " "; iter++}

Prints  1 4 9 16 25

16-723



Some vector Class Member Functions

Function Description
front(), back() Returns a reference to the first, last element in a vector
size() Returns the number of elements in a vector
capacity() Returns the number of elements that a vector can hold
clear() Removes all elements from a vector
push_back(value) Adds element containing value as the last element in the 

vector
pop_back() Removes the last element from the vector
insert(iter, value) Inserts new element containing value just before element 

pointed at by iter

16-724



Algorithms

• STL contains algorithms that are 
implemented as function templates to 
perform operations on containers.

• Requires algorithm header file
• Collection of algorithms includes 

16-725

binary_search count
for_each find
max_element min_element
random_shuffle sort
and others



Using STL algorithms

• Many STL algorithms manipulate portions 
of STL containers specified by a begin and 
end iterator

• max_element(iter1, iter2) finds 
max element in the portion of a container 
delimited by iter1, iter2

• min_element(iter1, iter2) is similar 
to above

16-726



More STL algorithms

• random_shuffle(iter1, iter2)
randomly reorders the portion of the 
container in the given range

• sort(iter1, iter2) sorts the portion 
of the container specified by the given 
range

16-727



random-shuffle Example

The following example stores the 
squares 1, 4, 9, 16, 25 in a vector, 
shuffles the vector, and then prints it out

16-728



random_shuffle example

int main()
{ 

vector<int> vec;
for (int k = 1; k <= 5; k++)

vec.push_back(k*k);  
random_shuffle(vec.begin(),vec.end());
vector<int>::iterator p = vec.begin();
while (p != vec.end())
{ cout << *p << "  "; p++;
}
return 0;

}

16-729



Chapter 17:  Linked Lists



Topics

17.1  Introduction to the Linked List ADT
17.2  Linked List Operations
17.3  A Linked List Template
17.4  Recursive Linked List Operations
17.5  Variations of the Linked List
17.6  The STL list Container

17-731



17.1  Introduction to the Linked List ADT

• Linked list: a sequence  of data structures (nodes) with 
each node containing a pointer to its successor

• The last node in the list has its successor pointer set to 
NULL

17-732

NULL

list
head



Linked List Terminology

• The node at the beginning is called the 
head of the list

• The entire list is identified by the pointer 
to the head node.  This pointer is called 
the list head.

17-733



Linked Lists

• Nodes can be added or removed from 
the linked list during execution

• Addition or removal of nodes can take 
place at beginning, end, or middle of the 
list

17-734

NULL
list

head Add or delete node



Linked Lists vs. Arrays and Vectors

• Linked lists can grow and shrink as 
needed, unlike arrays, which have a fixed 
size

• Unlike vectors, insertion or removal of a 
node in the middle of the list is very efficient

17-735

NULL

list
head



Node Organization

A node contains:
– data: one or more data fields – may be 

organized as structure, object, etc.
– a pointer that can point to another node

17-736

data
pointer



Empty List

• A list with no nodes is called the empty 
list

• In this case the list head is set to NULL

17-737

NULL

list
head



Creating an Empty List

• Define a pointer for the head of the list:
ListNode *head = NULL;

• Head pointer initialized to NULL to indicate 
an empty list

17-738

NULL

head



C++ Implementation

Implementation of nodes requires a 
structure containing a pointer to a structure 
of the same type (a self-referential data 
structure):
struct ListNode
{

int data;
ListNode *next;

};
17-739



C++ Implementation

Nodes can be equipped with constructors:
struct ListNode
{

int data;
ListNode *next;
ListNode(int d, ListNode* p=NULL)
{data = d; next = p;}

};

17-740



Building a List from a File of Numbers

ListNode *head = NULL;
int val;
while (inFile >> val)
{

// add new nodes at the head
head = new ListNode(val, head);

};

17-741



Traversing a Linked List

• List traversals visit each node in a linked list 
to display contents, validate data, etc.

• Basic process of traversal:
set a pointer to the head pointer
while pointer is not NULL

process data
set pointer to the successor of the current node

end while

17-742



Traversing a Linked List

17-743

NULL

list
head

5 13 19

nodePtr

nodePtr points to the node containing 5, then the
node containing 13, then the node containing 19,
then points to NULL, and the list traversal stops



17.2 Linked List Operations

Basic operations:
• add a node to the end of the list
• insert a node within the list
• traverse the linked list
• Delete/remove a node from the list
• delete/destroy the list

17-744



Creating a Node

ListNode *p;   
int num = 23;
p = new ListNode(num);

17-745

NULL23

p



Appending an Item

To add an item to the end of the list:
• If the list is empty, set head to a new node 

containing the item
head = new ListNode(num);

• If the list is not empty, move a pointer p to the last 
node, then add a new node containing the item
p->next = new ListNode(num);

17-746



Appending an Item

17-747

list
head

5 13 23

p

NULL

List originally has nodes 
with 5 and 13.
p locates the last node, 
then a node with a new 
item, 23, is added



Destroying a Linked List

• Must remove all nodes used in the list

• To do this, use list traversal to visit each 
node

• For each node,
– Unlink the node from the list

– Free the node’s memory

• Finally, set the list head to NULL
17-748



Inserting a Node 

• Used to insert an item into a sorted list, 
keeping the list sorted.

• Two possibilities:
– Insertion is at the head of the list (because 

item at head is already greater than item 
being inserted, or because list is empty

– Insertion is after an existing node in a non-
empty list

17-749



Inserting a Node at Head of a List 

• Test to see if
– head pointer is NULL, or 
– node value pointed at by head is greater 

than value to be inserted
• Must test in this order:  unpredictable 

results if second test is attempted on an 
empty list

• Create new node, set its next pointer to 
head, then point head to it 

17-750



Inserting a Node in Body of a List 

• Requires two pointers to traverse the list:
– pointer to locate the node with data value 

greater than that of node to be inserted
– pointer to 'trail behind' one node, to point to 

node before point of insertion
• New node is inserted between the nodes 

pointed at by these pointers

17-751



Inserting a Node into a 
Linked List

17-752

NULL

list
head

5 13 19

17

nodePtrpreviousNode

Correct position located
Item to insert

num



Inserting a Node into a 
Linked List

17-753

NULL

list
head

5 13 19

17

nodePtrpreviousNode

New node created and inserted in order in the linked list



Removing an Element

• Used to remove a node from a linked list
• Requires two pointers: one to locate the 

node to be deleted, one to point to the 
node before the node to be deleted

17-754



Deleting a Node

17-755

NULL

list
head

5 13 19

nodePtrpreviousNode

Locating the node containing 13

Contents of node to 
be deleted: 13



Deleting a Node

17-756

NULL

list
head

5 13 19

nodePtrpreviousNode

Adjusting pointer around the node to be deleted



Deleting a Node

17-757

NULL

list
head

5 19

nodePtrpreviousNode

Linked list after deleting the node containing 13



17.3  A Linked List Template

• A linked list template can  be written by 
replacing the type of the data in the node 
with a type parameter, say T.

• If defining the linked list as a class 
template, then all member functions must 
be function templates

• Implementation assumes use with data 
types that support comparison: == and <=

17-758



17.4 Recursive Linked List Operations

• A non-empty linked list consists of a 
head node followed by the rest of the 
nodes

• The rest of the nodes form a linked list 
that is called the tail of the original list

17-759



Recursive Linked List Operations

Many linked list operations can be 
broken down into the smaller problems 
of processing the head of the list and 
then recursively operating on the tail of 
the list

17-760



Recursive Linked List Operations

To find the length (number of elements) of 
a list
– If the list is empty, the length is 0 (base 

case)
– If the list is not empty, find the length of the 

tail and then add 1 to obtain the length of 
the original list

17-761



Recursive Linked List Operations

To find the length of a list:

int length(ListNode *myList)
{

if (myList == NULL) return 0;
else 
return 1 + length(myList->next);

}

17-762



Recursive Linked List Operations

Using recursion to display a list:
void displayList(ListNode *myList)
{
if (myList != NULL)
{
cout << myList->data << " ";
displayList(myList->next);

}
}

17-763



Other Recursive Linked List Operations
• Insert and remove operations can be written to 

use recursion
• General design considerations:

– Base case is often when the list is empty

– Recursive case often involves the use of the tail of the 
list (i.e., the list without the head).  Since the tail has 
one fewer entry than the list that was passed in to this 
call, the recursion eventually stops.

17-764



17.5  Variations of the Linked List

Other linked list organizations:
– doubly-linked list: each node contains two 

pointers: one to the next node in the list, one to 
the previous node in the list

17-765

NULL

list
head

5 13 19

NULL



Variations of the Linked List

Other linked list organizations:
– circular linked list: the last node in the list 

points back to the first node in the list, not to 
NULL

17-766

list
head

5 13 19



17.6  The STL list Container

• Template for a doubly linked list
• Member functions for

– locating beginning, end of list: front, 
back, end

– adding elements to the list: insert, 
merge, push_back, push_front

– removing elements from the list: erase, 
pop_back, pop_front, unique

17-767



Chapter 18: Stacks and Queues



Topics

18.1  Introduction to the Stack ADT
18.2  Dynamic Stacks
18.3  The STL stack Container
18.4  Introduction to the Queue ADT
18.5  Dynamic Queues
18.6  The STL deque and queue Containers
18.7  Eliminating Recursion

18-769



18.1  Introduction to the Stack ADT

• Stack: a LIFO (last in, first out) data 
structure

• Examples:
– plates in a cafeteria serving area
– return addresses for function calls

18-770



Stack Basics

• Stack is usually implemented as a list, 
with additions and removals taking place 
at one end of the list

• The active end of the list implementing 
the stack is the top of the stack

• Stack types:
– Static – fixed size, often implemented using 

an array
– Dynamic – size varies as needed, often 

implemented using a linked list
18-771



Stack Operations and Functions

Operations:
– push: add a value at the top of the stack
– pop: remove a value from the top of  the stack

Functions:
– isEmpty: true if the stack currently contains no 

elements
– isFull: true if the stack is full; only useful for 

static stacks

18-772



Static Stack Implementation 

• Uses an array of a fixed size
• Bottom of stack is at index 0.  A variable called 

top tracks the current top of the stack
const int STACK_SIZE = 3;
char s[STACK_SIZE];
int top = 0;

top is where the next item will be added

18-773



Array Implementation Example

This stack has max capacity 3, initially top = 0 and 
stack is empty. 

K

E

G

K

E

18-774

E
push('E'); push('K'); push('G');

top is 1 top is 2 top is 3



Stack Operations Example

After three pops, top is 0 and the stack is empty

E

18-775

K

E
pop();
(remove G)

pop();
(remove K)

pop();
(remove E)



Array Implementation

char s[STACK_SIZE];
int top=0;

To check if stack is empty:
bool isEmpty()
{
if (top == 0)

return true;
else return false;

}

18-776



Array Implementation

char s[STACK_SIZE];
int top=0;

To check if stack is full:
bool isFull()
{

if (top == STACK_SIZE)
return true;

else return false;
}

18-777



Array Implementation

To add an item to the stack
void push(char x)
{
if (isFull())
{error(); exit(1);}

// or could throw an exception
s[top] = x; 
top++;      

}

18-778



Array Implementation

To remove an item from the stack
void pop(char &x)
{
if (isEmpty()) 
{error(); exit(1);}

// or could throw an exception
top--;
x = s[top];   

}

18-779



Class Implementation
class STACK
{
private:

char *s;
int capacity, top;

public:
void push(char x);
void pop(char &x);
bool isFull(); bool isEmpty();
STACK(int stackSize);  
~STACK()

};

18-780



Exceptions from Stack Operations

• Exception classes can be added to the 
stack object definition to handle cases 
where an attempt is made to push onto a 
full stack (overflow) or to pop from an 
empty stack (underflow)

• Programs that use push and pop
operations should do so from within a try
block.

• catch block(s) should follow the try
block, interpret what occurred, and inform 
the user.

18-781



18.2  Dynamic Stacks

• Implemented as a linked list

• Can grow and shrink as necessary

• Can't ever be full as long as memory is 
available

18-782



Dynamic Linked List Implementation

• Define a class for a dynamic linked list

• Within the class, define a private member 
class for dynamic nodes in the list

• Define a pointer to the beginning of the 
linked list, which will serve as the top of the 
stack

18-783



Linked List Implementation

A linked stack after three push operations:
push('a'); push('b'); push('c');

18-784

NULL

top

abc



Operations on a Linked Stack
Check if stack is empty:

bool isEmpty()
{

if (top == NULL) 
return true;

else
return false;

}

18-785



Operations on a Linked Stack

Add a new item to the stack
void push(char x)
{

top = new LNode(x, top);
}

18-786



Operations on a Linked Stack

Remove an item from the stack
void pop(char &x)
{
if (isEmpty())
{ error(); exit(1);}
x = top->value;
LNode *oldTop = top;
top = top->next;
delete oldTop;

}
•

18-787



18.3  The STL stack Container

• Stack template can be implemented as a 
vector, list, or a deque

• Implements push, pop, and empty
member functions

• Implements other member functions:
– size: number of elements on the stack
– top: reference to element on top of the stack 

(must be used with pop to remove and retrieve 
top element)

18-788



Defining an STL-based Stack

• Defining a stack of char, named cstack, 
implemented using a vector:
stack< char, vector<char> > cstack;

• Implemented using a list:
stack< char, list<char> > cstack;

• Implemented using a deque (default):
stack< char > cstack;

• Spaces are required between consecutive > >
symbols to distinguish from stream extraction

18-789



18.4  Introduction to the Queue ADT

• Queue: a FIFO (first in, first out) data 
structure.  

• Examples:
– people in line at the theatre box office
– print requests sent by users to a network printer

• Implementation:
– static: fixed size, implemented as array
– dynamic: variable size, implemented as linked 

list

18-790



Queue Locations and Operations

• rear: position where elements are added
• front: position from which elements are 

removed
• enqueue: add an element to the rear of 

the queue
• dequeue: remove an element from the 

front of a queue

18-791



Array Implementation of Queue

An empty queue that can hold char values:

enqueue('E');

E

18-792

front rear

front, rear



Queue Operations - Example

enqueue('K');

enqueue('G');

E K

E K G

18-793

front rear

front rear



Queue Operations - Example

dequeue(); // remove E

dequeue(); // remove K

K G

G

18-794

front rear

front rear



Array Implementation Issues

• In the preceding example, Front never 
moves.  

• Whenever dequeue is called, all remaining 
queue entries move up one position.  This 
takes time.

• Alternate approach:
– Circular array:  front and rear both move 

when items are added and removed.  Both can 
‘wrap around’ from the end of the array to the 
front if warranted.  

• Other conventions are possible
18-795



Array Implementation Issues

• Variables needed
– const int QSIZE = 100;
– char q[QSIZE];
– int front = -1; 
– int rear = -1;
– int number = 0; //how many in queue

• Could make these members of a queue 
class, and queue operations would be 
member functions

18-796



isEmpty Member Function

Check if queue is empty
bool isEmpty()
{

if (number > 0) 
return false;

else
return true;

}

18-797



isFull Member Function

Check if queue is full
bool isFull()
{

if (number < QSIZE) 
return false;

else
return true;

}

18-798



enqueue and dequeue

• To enqueue, we need to add an item x to 
the rear of the queue

• Queue convention says q[rear] is 
already occupied.  Execute
if(!isFull) 
{ rear = (rear + 1) % QSIZE;
// mod operator for wrap-around
q[rear] = x;
number ++;

}
18-799



enqueue and dequeue

• To dequeue, we need to remove an item x
from the front of the queue

• Queue convention says q[front] has 
already been removed.  Execute
if(!isEmpty) 
{  front = (front + 1) % QSIZE;

x = q[front];
number--;

}

18-800



enqueue and dequeue

• enqueue moves rear to the right as it fills 
positions in the array

• dequeue moves front to the right as it empties 
positions in the array

• When enqueue gets to the end, it wraps around 
to the beginning to use those positions that have 
been emptied

• When dequeue gets to the end, it wraps around 
to the beginning use those positions that have 
been filled

18-801



enqueue and dequeue

• Enqueue wraps around by executing
rear = (rear + 1) % QSIZE;

• Dequeue wraps around by executing
front = (front + 1) % QSIZE;

18-802



Exception Handling in Static Queues

• As presented, the static queue class will encounter 
an error if an attempt is made to enqueue an element 
to a full queue, or to dequeue an element from an 
empty queue

• A better design is to throw an underflow or an 
overflow exception and allow the programmer to 
determine how to proceed

• Remember to throw exceptions from within a try
block, and to follow the try block with a catch block

18-803



18.5  Dynamic Queues

• Like a stack, a queue can be implemented 
using a linked list

• This allows dynamic sizing and avoids the 
issue of  wrapping indices

18-804

front rear

NULL



Dynamic Queue Implementation Data 
Structures

• Define a class for the dynamic queue

• Within the dynamic queue, define a private 
member class for a dynamic node in the 
queue

• Define pointers to the front and rear of the 
queue

18-805



isEmpty Member Function

To check if queue is empty:

bool isEmpty()
{

if (front == NULL)
return true;

else 
return false;

}

18-806



enqueue Member Function Details
To add item at rear of queue
if (isEmpty())

{ 
front = new QNode(x);
rear = front; 

}
else

{
rear->next = new QNode(x);
rear = rear->next;

}

18-807



dequeue Member Function
To remove item from front of queue

if (isEmpty())
{ 

error(); exit(1);
}
x = front->value;
QNode *oldfront = front;
front = front->next;
delete oldfront;    

18-808



18.6  The STL deque and queue
Containers

• deque: a double-ended queue (DEC).  Has 
member functions to enqueue 
(push_back) and dequeue (pop_front)

• queue: container ADT that can be used to 
provide a queue based on a vector, list, 
or deque.  Has member functions to 
enqueue (push) and dequeue (pop)

18-809



Defining a Queue

• Defining a queue of char, named cQueue, based 
on a deque:
deque<char> cQueue;

• Defining a queue with the default base container
queue<char> cQueue;

• Defining a queue based on a list:
queue<char, list<char> > cQueue;

• Spaces are required between consecutive > >
symbols to distinguish from stream extraction

18-810



18.7  Eliminating Recursion

• Recursive solutions to problems are often 
elegant but inefficient

• A solution that does not use recursion is 
more efficient for larger sizes of inputs

• Eliminating the recursion:  re-writing a 
recursive algorithm so that it uses other 
programming constructs (stacks, loops) 
rather than recursive calls

18-811



Chapter 19: Binary Trees



Topics

19.1  Definition and Application of Binary Trees
19.2  Binary Search Tree Operations
19.3  Template Considerations for Binary 

Search Trees

19-813



19.1  Definition and Application of Binary 
Trees

• Binary tree: a nonlinear data structure in 
which each node may point to 0, 1, or 
two other nodes

• The nodes that a node
N points to are the
(left or right)
children
of N

19-814

NULL NULL

NULL NULL NULL NULL



Terminology

• If a node N is a child of another node P, 
then P is called the parent of N

• A node that has no children is called a 
leaf node

• In a binary tree there is a unique node 
with no parent.  This is the root of the tree

19-815



Binary Tree Terminology

• Root pointer: like a 
head pointer for a 
linked list, it points to 
the root node of the 
binary tree

• Root node: the node 
with no parent

19-816

NULL NULL

NULL NULL NULL NULL



Binary Tree Terminology

Leaf nodes: nodes 
that have no 
children

The nodes 
containing  7 and 
43 are leaf nodes

19-817

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Binary Tree Terminology

Child nodes, 
children:  
The children of the 
node containing 31
are the nodes 
containing 19 and 
59

19-818

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Binary Tree Terminology

The parent of the 
node containing 43
is the node 
containing 59

19-819

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Binary Tree Terminology

• A subtree of a binary tree is a part of the 
tree from a node N down to the leaf 
nodes

• Such a subtree is said to be rooted at N, 
and N is called the root of the subtree

19-820



Subtrees of Binary Trees

• A subtree of a binary tree is itself a binary 
tree

• A nonempty binary tree consists of a root 
node, with the rest of its nodes forming two 
subtrees, called the left and right subtree

19-821



Binary Tree Terminology

• The node containing 
31 is the root

• The nodes containing 
19 and 7 form the left 
subtree 

• The nodes containing 
59 and 43 form the 
right subtree

19-822

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Uses of Binary Trees

• Binary search tree: a 
binary tree whose data is 
organized to simplify 
searches

• Left subtree at each node 
contains data values less 
than the data in the node

• Right subtree at each 
node contains values 
greater than the data in 
the node

•
19-823

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



19.2  Binary Search Tree Operations

• Create a binary search tree 
• Insert a node into a binary tree – put node into 

tree in its correct position to maintain order
• Find a node in a binary tree – locate a node 

with particular data value
• Delete a node from a binary tree – remove a 

node and adjust links to preserve the binary tree 
and the order

19-824



Binary Search Tree Node

• A node in a binary tree is like a node in a linked 
list, except that it has two node pointer fields:
class TreeNode
{

int value;
TreeNode *left;
TreeNode *right;

};
• Define the nodes as class objects.  A 

constructor can aid in the creation of nodes

19-825



TreeNode Constructor

TreeNode::TreeNode(int val,
TreeNode *l1=NULL,   
TreeNode *r1=NULL)

{
value = val;
left = l1;
right = r1;

}

19-826



Creating a New Node

TreeNode *p;
int num = 23;
p = new TreeNode(num);

19-827

NULLNULL

23

p



Inserting an item into a Binary Search 
Tree

1) If the tree is empty, replace the empty tree 
with a new binary tree consisting of the 
new node as root, with empty left and right 
subtrees

2) Otherwise, if the item  is less than the root, 
recursively insert the item in the left 
subtree.  If the item is greater than the 
root, recursively insert the item into the 
right subtree

19-828



Inserting an item into a Binary Search 
Tree

19-829

NULL NULL7

19

31

43

59

root

Step 1: 23 is less than 
31.  Recursively insert 
23 into the left subtree

Step 2: 23 is 
greater than 19. 
Recursively 
insert 23 into the 
right subtree

Step 3: Since the right 
subtree is NULL, insert 
23 here

NULL NULL NULL NULL

value to insert:
23



Traversing a Binary Tree

Three traversal methods:
1) Inorder: 

a) Traverse left subtree of node
b) Process data in node
c) Traverse right subtree of node

2) Preorder: 
a) Process data in node
b) Traverse left subtree of node
c) Traverse right subtree of node

3) Postorder: 
a) Traverse left subtree of node
b) Traverse right subtree of node
c) Process data in node

19-830



Traversing a Binary Tree

19-831

NULL NULL7

19

31

43

59

TRAVERSAL 
METHOD

NODES ARE 
VISITED IN 
THIS ORDER

Inorder 7, 19, 31, 
43, 59

Preorder 31, 19, 7, 
59, 43

Postorder 7, 19, 43, 
59, 31

NULL NULL NULL NULL



Searching in a Binary Tree
1) Start at root node
2) Examine node data:

a) Is it desired value? Done
b) Else, is desired data < 

node data? Repeat step 
2 with left subtree

c) Else, is desired data > 
node data? Repeat step 
2 with right subtree

3) Continue until desired 
value found or NULL
pointer reached

19-832

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Searching in a Binary Tree
To locate the node 
containing 43,

1. Examine the root node 
(31) 

2. Since 43 > 31, 
examine the right child 
of the node containing 
31, (59) 

3. Since 43 < 59, 
examine the left child of 
the node containing 59, 
(43)

4. The node containing 43 
has been found

19-833

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Deleting a Node from a 
Binary Tree – Leaf Node

If node to be deleted is a leaf node, replace 
parent node’s pointer to it with a NULL
pointer, then delete the node

19-834

NULL7

19

NULL NULL

NULL

19

NULL

Deleting node with 
7 – before deletion

Deleting node with 
7 – after deletion



Deleting a Node from a 
Binary Tree – One Child

If node to be deleted has one child node, 
adjust pointers so that parent of node to 
be deleted points to child of node to be 
deleted, then delete the node

19-835



Deleting a Node from a 
Binary Tree – One Child

19-836

NULL NULL7

19

31

43

59

NULL NULL NULL NULL

NULL

7

31

43

59

NULL NULL

NULL NULL

Deleting node containing 
19 – before deletion Deleting node containing

19 – after deletion



Deleting a Node from a 
Binary Tree – Two Children

• If node to be deleted has left and right children, 
– ‘Promote’ one child to take the place of the deleted 

node
– Locate correct position for other child in subtree of 

promoted child
• Convention in text: “attach" the right subtree to 

its parent, then position the left subtree at the 
appropriate point in the right subtree

19-837



Deleting a Node from a 
Binary Tree – Two Children

19-838

NULL NULL7

19

31

43

59

NULL NULL NULL NULL

43

59

NULL

NULL

Deleting node with 
31 – before deletion

Deleting node with 
31 – after deletion

7

19

NULL NULL

NULL



19.3  Template Considerations for 
Binary Search Trees

• Binary tree can be implemented as a 
template, allowing flexibility in  determining 
type of data stored

• Implementation must support relational 
operators >, <, and == to allow comparison 
of nodes

19-839


	Número de diapositiva 1
	Número de diapositiva 2
	Topics
	1.1 Why Program?
	1.2 Computer Systems: Hardware and Software
	Main Hardware Component Categories
	Central Processing Unit (CPU)
	The CPU's Role in Running a Program
	Main Memory
	Main Memory Organization
	Secondary Storage
	Input Devices
	Output Devices
	Software Programs That Run on a Computer
	1.3 Programs and Programming Languages
	Algorithm
	Programs and Programming Languages
	From a High-level Program to an Executable File
	From a High-level Program to an Executable File
	From a High-level Program to an Executable File
	1.4 What Is a Program Made Of?
	Example Program
	Key Words
	Programmer-Defined Identifiers
	Operators
	Punctuation
	Lines vs. Statements
	Lines vs. Statements
	Variables
	1.5 Input, Processing, and Output
	1.6 The Programming Process
	The Programming Process (cont.)
	Número de diapositiva 33
	Topics
	Topics (continued)
	2.1 The Parts of a C++ Program
	2.1 The Parts of a C++ Program
	Special Characters
	Important Details
	2.2 The cout Object
	Starting a New Line
	Escape Sequences – More Control Over Output
	2.3 The #include Directive
	2.4 Standard and Prestandard C++
	2.5 Variables, Literals, and the Assignment Statement
	Variables
	Assignment Statement
	Constants
	2.6 Identifiers
	Multi-word Variable Names
	Valid and Invalid Identifiers
	2.7 Integer Data Types
	Signed vs. Unsigned Integers
	Defining Variables
	Integral Constants
	2.8 Floating-Point Data Types
	Floating-point Constants
	Assigning Floating-point Values to Integer Variables
	2.9 The char Data Type
	Character Literal
	String Literals
	A character or a string literal?
	2.10 The C++ string Class
	2.11 The bool Data Type
	2.12 Determining the Size of a Data Type
	2.13 More on Variable Assignments and Initialization
	Variable Assignment vs. Initialization
	2.14 Scope
	2.15 Arithmetic Operators
	Binary Arithmetic Operators
	/ Operator
	 % Operator
	2.16 Comments
	Single-Line Comments
	Multi-Line Comments
	Número de diapositiva 76
	Topics
	Topics (continued)
	3.1 The cin Object
	The cin Object
	The cin Object
	3.2 Mathematical Expressions
	Using Mathematical Expressions
	Order of Operations
	Associativity of Operators
	Algebraic Expressions
	3.3 Data Type Conversion �and Type Casting
	Hierarchy of Data Types
	Type Coercion
	Coercion Rules
	Coercion Rules – Important Notes
	Type Casting
	More Type Casting Examples
	Older Type Cast Styles
	3.4 Overflow and Underflow
	Overflow Example
	Handling Overflow and Underflow
	3.5 Named Constants
	Benefits of Named Constants
	const vs. #define
	3.6 Multiple and Combined Assignment
	Combined Assignment
	More Examples
	3.7 Formatting Output
	Stream Manipulators
	Stream Manipulators
	Manipulator Examples
	3.8 Working with Characters and Strings
	String Input
	Character Input
	String Operators
	string Member Functions
	3.9 Using C-Strings
	C-String Input
	C-String Initialization vs. Assignment
	C-String and Keyboard Input
	3.10 More Mathematical Library Functions
	More Mathematical Library Functions
	More on Random Numbers
	Número de diapositiva 120
	Topics
	Topics (continued)
	4.1 Relational Operators
	Relational Expressions
	Relational Expressions
	4.2 The if Statement
	Format of the if Statement
	How the if Statement Works
	if Statement Flow of Control
	Example if Statements
	if Statement Notes
	if Statement Style Recommendations
	What is true and false?
	Flag
	Flag Example
	Integer Flags
	4.3 The if/else Statement
	How the if/else Works
	if/else Flow of Control
	Example if/else Statements
	Comparisons with floating-point numbers
	4.4 The if/else if Statement
	if/else if Format
	Using a Trailing else
	Example if/else if with Trailing else
	4.5 Menu-Driven Program
	Menu-driven Program Organization
	4.6 Nested if Statements
	Notes on Coding Nested ifs
	4.7 Logical Operators
	Logical Operator Examples
	Logical Precedence
	More on Precedence
	Checking Numeric Ranges with Logical Operators
	4.8 Validating User Input
	4.9 More About Blocks and Scope
	More About Blocks and Scope
	4.10 More About Characters and Strings
	Testing Characters
	 Character Testing
	4.11 The Conditional Operator
	4.12 The switch Statement
	switch Statement Format
	switch Statement Requirements
	How the switch Statement Works
	The break Statement
	Example switch Statement
	Using switch with a Menu
	4.13 Enumerated Data Types
	Enumerated Data Type Variables
	Enumerated Data Type Values
	Enumerated Data Type Notes
	Número de diapositiva 173
	Topics
	Topics (continued)
	5.1 Introduction to Loops: �The while Loop
	How the while Loop Works
	while Loop Flow of Control
	while Loop Example
	while Loop is a Pretest Loop
	Exiting the Loop
	Common Loop Errors
	while Loop Programming Style
	5.2 Using the while Loop for Input Validation
	Input Validation Loop Example
	5.3 The Increment and Decrement Operators
	Prefix Mode
	Prefix Mode Example
	Postfix Mode
	Postfix Mode Example
	Increment & Decrement Notes
	5.4 Counters
	Letting the User Control the Loop
	User Controls the Loop Example
	5.5 The do-while Loop
	do-while Flow of Control
	do-while Loop Notes
	do-while and Menu-Driven Programs
	Menu-Driven Program Example
	5.6 The for Loop
	for Loop Mechanics
	for Loop Flow of Control
	for Loop Example
	for Loop Notes
	for Loop Modifications
	More for Loop Modifications �(These are NOT Recommended)
	5.7 Keeping a Running Total
	5.8 Sentinels
	Sentinel Example
	5.9 Deciding Which Loop to Use
	5.10 Nested Loops
	Notes on Nested Loops
	5.11 Breaking Out of a Loop
	The continue Statement
	5.12 Using Files for Data Storage
	File Types
	File Access – Ways to Use �the Data in a File
	What is Needed to Use Files
	Open the File
	Use the File
	Close the File
	Input File – the Read Position
	Using  Loops to Process Files
	Using the >> Operator to Test for End of File (EOF) on an Input File 
	File Open Errors
	User-Specified Filenames
	5.13 Creating Good Test Data
	Número de diapositiva 228
	Topics
	Topics (continued)
	6.1 Modular Programming
	6.2 Defining and Calling Functions
	Function Definition
	Function Definition
	Function Header
	Function Return Type
	Calling a Function
	Calling a Function
	6.3 Function Prototypes
	Function Prototypes
	Prototype Notes
	6.4 Sending Data into a Function
	Parameters, Prototypes, �and Function Headings
	Function Call Notes
	Calling Functions with Multiple Arguments
	Calling Functions with �Multiple Arguments Illustration
	6.5 Passing Data by Value
	Passing Data to Parameters by Value
	6.6 The return Statement
	6.7 Returning a Value from a Function
	Returning a Value – the return Statement
	6.8 Returning a Boolean Value
	Boolean return Example
	6.9 Using Functions in a Menu-Driven Program
	6.10 Local and Global Variables
	Local Variable Lifetime
	Local and Global Variables
	Initializing Local and Global Variables
	Global Variables – Why Use Sparingly?
	Global Constants
	Local and Global Variable Names
	6.11 Static Local Variables
	6.12 Default Arguments
	Default Arguments
	6.13 Using Reference Variables as Parameters
	Reference Variables
	Pass by Reference Example
	Reference Variable Notes
	6.14 Overloading Functions
	Overloaded Functions Example
	6.15 The exit() Function
	exit() – Passing Values to Operating System
	6.16 Stubs and Drivers
	Número de diapositiva 274
	Topics
	Topics (Continued)
	7.1  Abstract Data Types
	Abstraction in Software Development
	Abstraction and Data Types
	7.2  Object-Oriented Programming
	Object-Oriented Programming�Terminology
	More Object-Oriented Programming Terminology
	Object Example
	Why Hide Data?
	7.3 Introduction to Classes
	Introduction to Classes
	Access Specifiers
	Class Example
	More on Access Specifiers
	7.4  Creating and Using Objects
	Types of Member Functions
	7.5  Defining Member Functions
	Defining Member Functions Inside the Class Declaration
	Inline Member Function Example
	Defining Member Functions After the Class Declaration
	Conventions and a Suggestion
	Tradeoffs of Inline vs. Regular Member Functions
	7.6  Constructors
	Constructor – 2 Examples
	Overloading Constructors
	The Default Constructor
	Default Constructor Example
	Another Default Constructor Example
	Invoking a Constructor
	7.7  Destructors
	7. 8  Private Member Functions
	7.9  Passing Objects to Functions
	Notes on Passing Objects
	Notes on Passing Objects
	Returning an Object from a Function
	Returning an Object Example
	7.10  Object Composition
	Object Composition, cont.
	7.11 Separating Class Specification, Implementation, and Client Code
	Using Separate Files
	Include Guards
	What Should Be Done Inside vs. Outside the Class
	7.12  Structures
	Example struct Declaration
	struct Declaration Notes
	Defining Structure Variables
	Accessing Structure Members
	Displaying struct Members
	Comparing struct Members
	Initializing a Structure
	Initializing a Structure (continued)
	Using an Initialization List
	More on Initialization Lists
	Initialization List Example
	Partial Initialization
	Problems with Initialization List
	Using a Constructor to Initialize Structure Members
	A Structure with a Constructor
	Nested Structures
	Members of Nested Structures
	Structures as Function Arguments
	Notes on Passing Structures
	Returning a Structure from a Function
	Returning a Structure Example
	Unions
	Example union Declaration
	7.14  Introduction to Object-Oriented Analysis and Design
	Identify Objects and Classes
	Define Class Attributes
	Define Class Behaviors
	Relationships Between Classes
	Finding the Classes
	Determine Class Responsibilities
	Object Reuse
	7.15 Screen Control
	Screen Control – Concepts
	Screen Control – Windows - Specifics
	Screen Control – Windows – �More Specifics
	Número de diapositiva 354
	Topics
	Topics (continued)
	8.1  Arrays Hold Multiple Values
	Array Storage in Memory
	Array Terminology
	Array Terminology Examples
	8.2  Accessing Array Elements
	Accessing Array Elements
	8.3 Inputting and Displaying �Array Contents
	Array Subscripts
	Accessing All Array Elements
	Getting Array Data from a File
	No Bounds Checking
	Off-By-One Errors
	8.4  Array Initialization
	Start at element 0 or 1?
	Partial Array Initialization
	Implicit Array Sizing
	8.5  Processing Array Contents
	Using Increment and Decrement Operators with Array Elements
	Copying One Array to Another
	Are Two Arrays Equal?
	Sum, Average of Array Elements
	Largest Array Element
	Partially-Filled Arrays
	Using Arrays vs. Using Simple Variables
	C-Strings and string Objects
	8.6  Using Parallel Arrays
	Parallel Array Example
	Parallel Array Processing
	8.7  The typedef Statement
	Uses of typedef
	8.8  Arrays as Function Arguments
	Passing an Entire Array
	Passing an Entire Array
	Using typedef with a Passed Array
	Modifying Arrays in Functions
	8.9  Two-Dimensional Arrays
	Two-Dimensional Array Representation
	Initialization at Definition
	Passing a Two-Dimensional Array to a Function
	Using typedef with a�Two-Dimensional Array
	2D Array Traversal
	8.10 Arrays with Three or More Dimensions
	8.11 Vectors
	Vectors
	Defining Vectors
	Growing a Vector’s Size
	Removing Vector Elements
	8.14 Arrays of Objects
	Arrays of Objects
	Initializing Arrays of Objects
	Initializing Arrays of Objects
	Arrays of Structures
	Arrays of Structures
	Número de diapositiva 410
	Topics
	9.1  Introduction to Search Algorithms
	Linear Search Algorithm
	Linear Search Example
	Linear Search Tradeoffs
	Binary Search Algorithm
	Binary Search Example
	Binary Search Tradeoffs
	9.2  Searching an Array of Objects
	9.3  Introduction to Sorting Algorithms
	Bubble Sort Algorithm
	Bubble Sort Example
	Bubble Sort Example (continued)
	Bubble Sort Example (continued)
	Bubble Sort Tradeoffs
	Selection Sort Algorithm
	Selection Sort Example
	Selection Sort – Example (continued)
	Selection Sort Tradeoffs
	9.4  Sorting an Array of Objects
	9.5  Sorting and Searching Vectors
	9.6  Introduction to Analysis of Algorithms
	Analysis of Algorithms: Terminology
	Analysis of Algorithms: Terminology
	Complexity Example
	Comparison of Algorithmic Complexity
	"Big O" Notation
	Número de diapositiva 438
	Topics
	Topics (continued)
	10.1  Pointers and the Address Operator
	           10.2  Pointer Variables
	Pointer Variables
	Pointer Variables
	10.3  The Relationship Between Arrays and Pointers
	The Relationship Between Arrays and Pointers
	Pointers in Expressions
	Array Access
	Array Access
	10.4  Pointer Arithmetic
	Pointer Arithmetic
	 
	 
	  
	10.5  Initializing Pointers
	10.6  Comparing Pointers
	10.7  Pointers as Function Parameters
	Pointers as Function Parameters
	Pointers as Function Parameters
	10.8  Ponters to Constants and Constant Pointers
	Ponters to Constant
	Pointer to Constant – What does the Definition Mean?
	Constant Pointers
	Constant Pointer – What does the Definition Mean?
	Constant Pointer to Constant
	10.9  Dynamic Memory Allocation
	Dynamic Memory Allocation
	Dynamic Memory Example
	Releasing Dynamic Memory
	Dangling Pointers and Memory Leaks
	10.10  Returning Pointers from Functions
	10.11 Pointers to Class Objects and Structures
	Structure Pointer Operator
	Dynamic Memory with Objects
	Structure/Object Pointers �as Function Parameters
	Controlling Memory Leaks
	10.12 Selecting Members of Objects
	Selecting Members of Objects
	Número de diapositiva 479
	Topics
	Topics (continued)
	11.1  The this Pointer and Constant Member Functions
	Using the this Pointer
	Constant Member Functions
	11.2  Static Members
	Static Member Variables
	Static Member Variables
	Static Member Variables
	Static Member Functions
	Static Member Functions
	11.3  Friends of Classes
	 Friend Function Declarations
	 Friend Function Declarations
	 Friend Class Declaration
	 Friend Class Declaration
	11.4 Memberwise Assignment�
	11.5  Copy Constructors
	Copy Constructors
	Default Constructor Causes Sharing of Storage 
	Problems of Sharing Dynamic Storage
	Programmer-Defined Copy Constructors
	Programmer-Defined Copy Constructors
	Copy Constructor Example
	Copy Constructor – When Is It Used?
	11.6  Operator Overloading
	  Operator Overloading
	Overloading Operators as Instance Members
	Overloading Operators as Instance Members
	Invoking an Overloaded Operator
	Overloading Assignment
	Overloading Assignment
	Overloading Assignment
	Notes on Overloaded Operators
	Overloading Types of Operators
	Overloaded [] Operator
	11.7  Type Conversion Operators
	   Syntax of Conversion Operators
	 Conversion Operator Example
	11.8  Convert Constructors
	Example of a Convert Constructor
	Uses of Convert Constructors
	Uses of Convert Constructors
	11.9  Aggregation and Composition
	Object Composition
	Member Initialization Lists
	Member Initialization Lists
	Member Initialization Lists
	Aggregation Through Pointers
	Aggregation, Composition, and Object Lifetimes
	11.10  Inheritance
	  Inheritance - Terminology
	Inheritance Syntax and Notation
	Inheritance of Members
	11.11  Protected Members and Class Access
	Base Class Access Specification
	Base Class Access 
	Base Class Access vs. Member Access Specification
	Member Access Specification
	Base Class Access Specification
	Base Class Access Specifiers
	Effect of Base Access 
	11.12  Constructors,Destructors and Inheritance
	 Order of Execution
	Order of Execution
	Passing Arguments to Base Class Constructor
	Passing Arguments to Base Class Constructor
	11.13  Overriding Base Class Functions
	Access to Overridden Function
	Número de diapositiva 549
	Topics
	12.1  C-Strings
	What is NULL?
	Representation of C-strings
	String Literals
	Array of char
	Array of char
	Pointer to char
	Pointer to char
	12.2  Library Functions for Working with C-Strings
	Library Functions for �Working with C-Strings
	strcat
	strcpy
	strcmp
	strcmp
	strstr
	12.3  Conversions Between Numbers and Strings
	Conversion Classes
	atoi and atol
	atof
	atoi, atol, atof
	itoa
	12.4  Character Testing
	12.4  Writing Your Own C-String Handling Functions
	12.5  More About the C++ string Class
	string class constructors
	Overloaded string Operators
	Overloaded string Operators (continued)
	Overloaded string Operators
	string Member Functions
	Conversion to C-strings
	Modification of string objects
	Modification of string objects
	12.6  Creating Your Own String Class
	Número de diapositiva 584
	Topics
	13.1  Input and Output Streams
	File Stream Classes
	 File Open Modes
	The fstream Object
	File Mode Flags
	Opening a File for Input and Output
	File Open Modes
	Opening Files with Constructors
	 Default File Open Modes
	Output Formatting with I/O Manipulators
	I/O Manipulators
	More I/O Manipulators 
	sstream Formatting
	sstream Formatting
	sstream Formatting
	13.2  More Detailed Error Testing
	Error State Bits
	Error Bit Reporting Functions
	Detecting File Operation Errors
	13.3  Member Functions for Reading and Writing Files
	getline Member Function
	Single Character Input
	Single Character Input, Again
	Single Character Input, with a Difference
	Single Character Output
	Moving About in Input Files
	Example of Single Character I/O
	Rewinding a File
	13.4  Binary Files
	 Using Binary Files
	Using read and  write
	Using  write
	Using  read
	13.5  Creating Records with�Structures
	Creating Records with Structures
	Notes on Structures Written to Files
	13.6  Random-Access Files
	Random Access Member Functions
	Random Access Member Functions
	Random-Access Member Functions
	Random Access Information
	13.7 Opening a File for Both �Input and Output
	Número de diapositiva 628
	Topics
	14.1 Introduction to Recursion
	 Recursive Functions
	 Recursive Functions
	What Happens When Called?
	What Happens When Called?
	Stopping the Recursion
	Stopping the Recursion
	Stopping the Recursion
	Stopping the Recursion
	What Happens When Called?
	Types of Recursion
	14.2 The Recursive Factorial Function
	Recursive Factorial Function
	14.3  The Recursive gcd Function
	The Recursive gcd Function
	14.4  Solving Recursively Defined Problems
	Recursive Fibonacci Function
	14.5 A Recursive Binary Search Function
	Recursive Binary Search
	Recursive Binary Search
	Recursive Binary Search
	14.6  The QuickSort Algorithm
	The QuickSort Algorithm
	14.7 The Towers of Hanoi
	The Towers of Hanoi
	Outline of Recursive Algorithm
	14.8 Exhaustive and Enumeration Algorithms
	14.9 Recursion vs. Iteration
	Número de diapositiva 658
	Topics
	15.1 Type Compatibility in Inheritance Hierarchies
	Type Compatibility in Inheritance
	Type Compatibility in Inheritance
	Using Type Casts with Base Class Pointers
	15.2  Polymorphism and Virtual Member Functions
	Polymorphism
	Polymorphism
	Polymorphism
	Polymorphism
	Polymorphism
	Virtual Functions
	Virtual Functions
	Virtual Functions
	Function Binding
	Static Binding
	Dynamic Binding
	15.3 Abstract Base Classes and Pure Virtual Functions
	Abstract Base Classes and Pure Virtual Functions
	Abstract Functions
	Pure Virtual Functions
	Abstract Classes
	15.4 Composition vs. Inheritance
	Composition vs. Inheritance
	Número de diapositiva 683
	Topics
	16.1  Exceptions
	Exceptions – Key Words
	Throwing an Exception
	Catching an Exception
	Catching an Exception
	Connecting to the Handler 
	Execution of Catch Blocks
	Exception Example
	Example
	Flow of Control
	Uncaught Exception
	Handling Multiple Exceptions
	Throwing an Exception Class
	Exception When Calling new
	Nested Exception Handling
	Where to Find an Exception Handler?
	Unwinding the Stack
	Rethrowing an Exception
	16.2  Function Templates
	Example
	A swap Template
	Using a Template Function
	Function Template Notes
	Function Template Notes
	Where to Start  When Defining Templates
	16.3  Class Templates
	Class Template
	Example class Template
	Using Class Templates
	16.4  Class Templates and Inheritance
	16.5  Introduction to the Standard Template Library
	Standard Template Library
	Containers
	Creating Container Objects
	Iterators
	Containers and Iterators
	Containers and Iterators
	Containers and Iterators
	Traversing a Container
	Some vector Class Member Functions
	Algorithms
	Using STL algorithms
	More STL algorithms
	random-shuffle Example
	 random_shuffle example
	Número de diapositiva 730
	Topics
	17.1  Introduction to the Linked List ADT
	Linked List Terminology
	Linked Lists
	Linked Lists vs. Arrays and Vectors
	Node Organization
	Empty List
	Creating an Empty List
	C++ Implementation
	C++ Implementation
	Building a List from a File of Numbers
	Traversing a Linked List
	Traversing a Linked List
	17.2 Linked List Operations
	Creating a Node
	Appending an Item
	Appending an Item
	Destroying a Linked List
	Inserting a Node 
	Inserting a Node at Head of a List 
	Inserting a Node in Body of a List 
	Inserting a Node into a �Linked List
	Inserting a Node into a �Linked List
	Removing an Element
	Deleting a Node
	Deleting a Node
	Deleting a Node
	17.3  A Linked List Template
	17.4 Recursive Linked List Operations
	Recursive Linked List Operations
	Recursive Linked List Operations
	Recursive Linked List Operations
	Recursive Linked List Operations
	Other Recursive Linked List Operations
	17.5  Variations of the Linked List
	Variations of the Linked List
	17.6  The STL list Container
	Número de diapositiva 768
	Topics
	18.1  Introduction to the Stack ADT
	Stack Basics
	Stack Operations and Functions
	Static Stack Implementation 
	Array Implementation Example
	Stack Operations Example
	Array Implementation
	Array Implementation
	Array Implementation
	Array Implementation
	Class Implementation
	Exceptions from Stack Operations
	18.2  Dynamic Stacks
	Dynamic Linked List Implementation
	  Linked List Implementation
	Operations on a Linked Stack
	Operations on a Linked Stack
	Operations on a Linked Stack
	18.3  The STL stack Container
	Defining an STL-based Stack
	18.4  Introduction to the Queue ADT
	Queue Locations and Operations
	Array Implementation of Queue
	Queue Operations - Example
	Queue Operations - Example
	Array Implementation Issues
	Array Implementation Issues
	isEmpty Member Function
	isFull Member Function
	enqueue and dequeue
	enqueue and dequeue
	enqueue and dequeue
	enqueue and dequeue
	Exception Handling in Static Queues
	18.5  Dynamic Queues
	Dynamic Queue Implementation Data Structures
	isEmpty Member Function
	enqueue Member Function Details
	dequeue Member Function
	18.6  The STL deque and queue Containers
	Defining a Queue
	18.7  Eliminating Recursion
	Número de diapositiva 812
	Topics
	19.1  Definition and Application of Binary Trees
	Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Subtrees of Binary Trees
	Binary Tree Terminology
	Uses of Binary Trees
	19.2  Binary Search Tree Operations
	Binary Search Tree Node
	TreeNode Constructor
	Creating a New Node
	Inserting an item into a Binary Search Tree
	Inserting an item into a Binary Search Tree
	Traversing a Binary Tree
	Traversing a Binary Tree
	Searching in a Binary Tree
	Searching in a Binary Tree
	Deleting a Node from a �Binary Tree – Leaf Node
	Deleting a Node from a �Binary Tree – One Child
	Deleting a Node from a �Binary Tree – One Child
	Deleting a Node from a �Binary Tree – Two Children
	Deleting a Node from a �Binary Tree – Two Children
	19.3  Template Considerations for Binary Search Trees

