
Chapter 2

Discrete Probabilistic

Models

When we talk about a random variable, it is helpful to think of an associated
random experiment or trial. A random experiment or trial can be thought of as
any activity that will result in one and only one of several well-defined outcomes,
but one does not know in advance which one will occur. The set of all possible
outcomes of a random experiment E, denoted by S(E), is called the sample
space of the random experiment E.

Suppose that the structural condition of a concrete structure (e.g., a bridge)
can be classified into one of three categories: poor, fair, or good. An engineer
examines one such structure to assess its condition. This is a random experiment
and its sample space, S(E) = {poor, fair, good}, has three elements.

Definition 2.1 (Random variable) A random variable can be defined as a
real-valued function defined over a sample space of a random experiment. That
is, the function assigns a real value to every element in the sample space of
a random experiment. The set of all possible values of a random variable X,
denoted by S(X), is called the support or range of the random variable X.

Example 2.1 (Concrete structure). In the previous concrete example,
let X be −1, 0, or 1, depending on whether the structure is poor, fair, or good,
respectively. Then X is a random variable with support S(X) = {−1, 0, 1}. The
condition of the structure can also be assessed using a continuous scale, say, from
0 to 10, to measure the concrete quality, with 0 indicating the worst possible
condition and 10 indicating the best. Let Y be the assessed condition of the
structure. Then Y is a random variable with support S(Y ) = {y : 0 ≤ y ≤ 10}.

We consistently use the customary notation of denoting random variables by
uppercase letters such as X,Y , and Z or X1,X2, . . . ,Xn, where n is the number
of random variables under consideration. Realizations of random variables (that
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22 Chapter 2. Discrete Probabilistic Models

is, the actual values they may take) are denoted by the corresponding lowercase
letters such as x, y, and z or x1, x2, . . . , xn.

A random variable is said to be discrete if it can assume only a finite or
countably infinite number of distinct values. Otherwise, it is said to be contin-
uous. Thus, a continuous random variable can take an uncountable set of real
values. The random variable X in Example 2.1 is discrete, whereas the random
variable Y is continuous.

When we deal with a single random quantity, we have a univariate random
variable. When we deal with two or more random quantities simultaneously,
we have a multivariate random variable. Section 2.1 presents some probability
functions of random variables that are common to all discrete random variables.
Section 2.2 introduces examples of the commonly used discrete univariate ran-
dom variables. Section 2.3 introduces discrete multivariate random variables.
Commonly used continuous random variables are reviewed in Chapter 3.

2.1 Univariate Discrete Random Variables

To specify a random variable we need to know (a) its range or support, S(X),
which is the set of all possible values of the random variable, and (b) a tool by
which we can obtain the probability associated with every subset in its support,
S(X). These tools are some functions such as the probability mass function
(pmf), the cumulative distribution function (cdf), or the characteristic function.
The pmf, cdf, and the so-called moments of random variables are described in
this section.

2.1.1 Probability Mass Function

Every discrete random variable has a probability mass function (pmf). The pmf
of a discrete random variable X is a function that assigns to each real value x
the probability of X having the value x. That is, PX(x) = Pr(X = x). For
notational simplicity we sometimes use P (x) instead of PX(x). Every pmf P (x)
must satisfy the following conditions:

P (x) > 0 for all x ∈ S(X), and
∑

x∈S(X)

P (x) = 1. (2.1)

Example 2.2 (Concrete structure). Suppose in Example 2.1 that 20% of
all concrete structures we are interested in are in poor condition, 30% are in
fair condition, and the remaining 50% are in good condition, then if one such
structure is selected at random, the probability that the selected structure is
in poor condition is P (−1) = 0.2, the probability that it is in fair condition is
P (0) = 0.3, and the probability that it is in good condition is P (1) = 0.5.

The pmf of a random variable X can be displayed in a table known as a
probability distribution table. For example, Table 2.1 is the probability distri-
bution table for the random variable X in Example 2.2. The first column in a
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Table 2.1: The Probability Mass Function (pmf) of a Random Variable X.

x P (x)
−1 0.2

0 0.3
1 0.5

Total 1.0

Table 2.2: The Probability Mass Function (pmf) and the Cumulative Distri-
bution Function (cdf) of a Random Variable X.

x P (x) F (x)
−1 0.2 0.2

0 0.3 0.5
1 0.5 1.0

probability distribution table is a list of the values of x ∈ S(X), that is, only
the values of x for which P (x) > 0. The second column displays P (x). It is
understood that P (x) = 0 for every x /∈ S(X).

2.1.2 Cumulative Distribution Function

Every random variable also has a cumulative distribution function (cdf). The
cdf of a random variable X, denoted by F (x), is a function that assigns to each
real value x the probability of X having values less than or equal to x, that is,

F (x) = Pr(X ≤ x) =
∑

a≤x

P (a).

Accordingly, the cdf can be obtained from the pmf and vice versa. For example,
the cdf in the last column of Table 2.2 is computed from the pmf in Table 2.1
by accumulating P (x) in the second column.

The pmf and cdf of any discrete random variable X can be displayed in prob-
ability distribution tables, such as Table 2.2, or they can be displayed graph-
ically. For example, the graphs of the pmf and cdf in Table 2.2 are shown in
Figure 2.1. In the graph of pmf, the height of a line on top of x is P (x). The
graph of the cdf for discrete random variable is a step function. The height of
the step function is F (x).

The cdf has the following properties as a direct consequence of the definitions
of cdf and probability (see, for example, Fig. 2.1):

1. F (∞) = 1 and F (−∞) = 0.

2. F (x) is nondecreasing and right continuous.
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Figure 2.1: Graphs of the pmf and cdf of the random variable in Table 2.2.

3. P (x) is the jump of the cdf at x.

4. Pr(a < X ≤ b) = F (b) − F (a).

2.1.3 Moments

Let g(X) be a function of a discrete random variable X. The expected value of
g(X) is defined by

E[g(X)] =
∑

x∈S(X)

g(x)P (x). (2.2)

For example, letting g(X) = Xr, we obtain the so-called rth moment of the
discrete random variable X, with respect to the origin

E(Xr) =
∑

x∈S(X)

xrP (x). (2.3)

When r = 1, we obtain the mean, µ, of the discrete random variable X,

µ = E(X) =
∑

x∈S(X)

xP (x). (2.4)

Thus, the mean, µ, is the first moment of X with respect to the origin.
Letting g(X) = (X − µ)r, we obtain the rth central moment,

E[(X − µ)r] =
∑

x∈S(X)

(x − µ)rP (x). (2.5)

When r = 1, it can be shown that the first central moment of any random
variable X is zero, that is,

E(X − µ) = 0. (2.6)
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Table 2.3: Calculations of the Mean and Variance of the Random Variable X.

x P (x) xP (x) x2 x2P (x)
–1 0.2 –0.2 1 0.2
0 0.3 0.0 0 0.0
1 0.5 0.5 1 0.5

Total 1.0 0.3 0.7

When r = 2, we obtain the second central moment, better known as the vari-
ance, σ2, of the discrete random variable X, that is,

σ2 = E[(X − µ)2] =
∑

x∈S(X)

(x − µ)2P (x). (2.7)

The standard deviation, σ, of the random variable X is the positive square root
of its variance. The mean can be thought of as a measure of center and the
standard deviation (or, equivalently, the variance) as a measure of spread or
variability. It can be shown that the variance can also be expressed as

σ2 = E(X2) − µ2, (2.8)

where

E(X2) =
∑

x∈S(X)

x2P (x)

is the second moment of X with respect to the origin. For example, the calcula-
tions of the mean and variance of the random variable X are shown in Table 2.3.
Accordingly, the mean and variance of X are µ = 0.3 and σ2 = 0.7−0.32 = 0.61,
respectively.

The expected value, defined in (2.2), can be thought of as an operator, which
has the following properties:

1. E(c) = c, for any constant c, that is, the expected value of a constant (a
degenerate random variable) is the constant.

2. E[cg(X)] = cE[g(X)].

3. E[g(X) + h(X)] = E[g(X)] + E[h(X)], for any functions g(X) and h(X).

For example, E(c + X) = E(c) + E(X) = c + µ. In other words, the mean of
a constant plus a random variable is the constant plus the mean of the random
variable. As another example,

σ2 = E[(X −µ)2] = E[X2 −2µX +µ2] = E(X2)−2µE(X)+µ2 = E(X2)−µ2.

This is actually the proof of the identity in (2.8).
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2.2 Common Discrete Univariate Models

In this section we present several important discrete random variables that
often arise in extreme value applications. For a more detailed description and
additional random variables, see, for example, the books by Balakrishnan and
Nevzorov (2003), Christensen (1984), Galambos (1995), Johnson et al. (1992),
Ross (1992), and Wackerly et al. (2002).

2.2.1 Discrete Uniform Distribution

When a random variable X can have one on n possible values and they are all
equally likely, then X is said to have a discrete uniform distribution. Since the
possible values are equally likely, the probability for each one of them is equal
to 1/n. Without loss of generality, let us assume these values are 1, . . . , n. Then
the pmf of X is

P (x) =
1

n
, x = 1, 2, . . . , n. (2.9)

This discrete uniform distribution is denoted by U(n). The mean and variance
of U(n) are

µ = (n + 1)/2 and σ2 = (n + 1)(4n2 − n − 3)/12, (2.10)

respectively.

Example 2.3 (Failure types). A computer system has four possible types
of failure. let X = i if the system results in a failure of type i, with i = 1, 2, 3, 4.
If these failure types are equally likely to occur, then the distribution of X is
U(4) and the pmf is

P (x) =
1

4
, x = 1, 2, 3, 4.

The mean and variance can be shown to be 2.5 and 23.75, respectively.

2.2.2 Bernoulli Distribution

The Bernoulli random variable arises in situations where we have a random
experiment, which has two possible mutually exclusive outcomes: success or
failure. The probability of success is p and the probability of failure is 1 − p.
This random experiment is called a Bernoulli trial or experiment. Define a
random variable X by

X =

{
0, if a failure is observed,
1, if a success is observed.

This is called a Bernoulli random variable and its distribution is called a Bernoulli
distribution. The pmf of X is

P (x) = px(1 − p)1−x, x = 0, 1, (2.11)
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and its cdf is

F (x) =





0, if x < 0,
1 − p, if 0 ≤ x < 1,
1, if x ≥ 1.

(2.12)

The mean and variance of a Bernoulli random variable are

µ = p and σ2 = p(1 − p), (2.13)

respectively. Note that if p = 1, then X becomes a degenerate random variable
(that is, a constant) and the pmf of X is

P (x) =

{
1, if x = 1,
0, otherwise.

(2.14)

This is known as the Dirac function.

Example 2.4 (Concrete structure). Suppose we are interested in knowing
whether or not a given concrete structure is in poor condition. Then, a random
variable X can be defined as

X =

{
1, if the condition is poor,
0, otherwise.

This is a Bernoulli random variable. From Example 2.2, 20% of structures are
in poor condition. Then the pmf is

P (x) = 0.2x(1 − 0.2)1−x, x = 0, 1.

The mean and variance of X are µ = p = 0.2 and σ2 = p(1 − p) = 0.16.

Bernoulli random variables arise frequently while handling extremes. Engi-
neers are often interested in events that cause failure such as exceedances of a
random variable over a threshold value.

Definition 2.2 (Exceedances) Let X be a random variable and u a given
threshold value. The event {X = x} is said to be an exceedance at the level u if
x > u.

For example, waves can destroy a breakwater when their heights exceed a given
value, say 9 m. Then it does not matter whether the height of a wave is 9.5, 10,
or 12 m because the consequences of these events are the same.

Let X be a random variable representing heights of waves and Yu be defined
as

Yu =

{
0, if no exceedance occurred,
1, if an exceedance occurred.

Then Yu is a Bernoulli random variable with success probability pu = Pr(X >
u).

Bernoulli random variables arise in many important practical engineering
situations.
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Example 2.5 (Yearly maximum wave height). When designing a break-
water, civil engineers need to define the so-called design wave height, which is a
wave height such that, when occurring, the breakwater will be able to withstand
it without failure. Then, a natural design wave height would be the maximum
wave height reaching the breakwater during its lifetime. However, this value
is random and cannot be found. So, the only thing that an engineer can do
is to choose this value with a small probability of being exceeded. In order to
obtain this probability it is important to know the probability of exceedances of
certain values during a year. Then, if we are concerned with whether the yearly
maximum wave height exceeds a given threshold value h0, we have a Bernoulli
experiment.

Example 2.6 (Tensile strength). Suspension bridges are supported by
long cables. However, long cables are much weaker than short cables, the only
ones tested in the laboratory. This is so because of the weakest link principle,
which states that the strength of a long piece is the minimum strength of all
its constituent pieces. Thus, the engineer has to extrapolate from lab results
to real cables. The design of a suspension bridge requires the knowledge of the
probability of the strength of the cable to fall below certain values. That is why
values below a threshold are important.

Example 2.7 (Nuclear power plant). When designing a nuclear power
plant one has to consider the occurrence of earthquakes that can lead to dis-
astrous consequences. Apart from the earthquake intensity, one of the main
parameters to be considered is the distance from the earthquake epicenter to
the location of the plant. Damage will be more severe for short distances than
for long ones. Thus, engineers need to know whether this distance is below a
given threshold value.

Example 2.8 (Temperature). Temperatures have a great influence on en-
gineering works and can cause problems either for large or small values. Then,
values above or below given threshold values are important.

Example 2.9 (Water flows). The water circulating through rivers also
influences the life of humans. If the amount of water exceeds a given level, large
areas can be flooded. On the other hand, if the water levels are below given
values, the environment can be seriously damaged.

2.2.3 Binomial Distribution

Suppose now that n Bernoulli experiments are run such that the following con-
ditions hold:

1. The experiments are identical, that is, the probability of success p is the
same for all trials.

2. The experiments are independent, that is, the outcome of an experiment
has no influence on the outcomes of the others.
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Figure 2.2: Examples of probability mass functions of binomial random variables
with n = 6 and three values of p.

Let X be the number of successes in these n experiments. Then X is a random
variable. To obtain the pmf of X, we first consider the event of obtaining
x successes. If we obtained x successes, it also means that we obtained n − x
failures. Because the experiments are identical and independent, the probability
of obtaining x successes and n − x failures is

px(1 − p)n−x.

Note also that the number of possible ways of obtaining x successes (and n− x
failures) is obtained using the combinations formula:

(
n

x

)
=

n!

x!(n − x)!
.

Therefore, the pmf of X is

P (x) =

(
n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n. (2.15)

This random variable is known as the binomial random variable and is denoted
by X ∼ B(n, p) and the distribution in (2.15) is called the binomial distribution.

The mean and variance of a B(n, p) random variable can be shown to be

µ = np and σ2 = np(1 − p). (2.16)

Figure 2.2 shows the graphs of the pmf of three binomial random variables with
n = 6 and three values of p. From these graphs it can be seen that when p = 0.5,
the pmf is symmetric; otherwise it is skewed.

Since X is the number of successes in these n identical and independent
Bernoulli experiments, one may think of X as the sum of n identical and inde-
pendent Bernoulli random variables, that is, X = X1 +X2 + . . .+Xn, where Xi

is a Bernoulli random variable with probability of success equal to p. Note that
when n = 1, then a B(1, p) random variable is a Bernoulli random variable.

Another important property of binomial random variables is reproductivity
with respect to the parameter n. This means that the sum of two independent
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binomial random variables with the same p is also a binomial random variable.
More precisely, if X1 ∼ B(n1, p) and X2 ∼ B(n2, p), then

X1 + X2 ∼ B(n1 + n2, p).

Example 2.10 (Exceedances). An interesting practical problem consists
of determining the probability of r exceedances over a value u in n identical
and independent repetitions of the experiment. Since there are only two possi-
ble outcomes (exceedance or not exceedance), these are Bernoulli experiments.
Consequently, the number of exceedances Mu over the value u of the associated
random variable X is a B(n, pu) random variable with parameters n and pu,
where pu is the probability of an exceedance over the level u of X. Therefore,
the pmf of Mu is

Pr (Mu = r) =

(
n

r

)
(pu)r (1 − pu)

n−r
, r = 0, 1, . . . , n. (2.17)

Moreover, since pu can be written as

pu = Pr (X > u) = 1 − F (u), (2.18)

where F (·) is the cdf of X, (2.17) becomes

Pr (Mu = r) =

(
n

r

)
[1 − F (u)]

r
[F (u)]n−r. (2.19)

Example 2.11 (Concrete structures). Suppose that an engineer examined
n = 6 concrete structures to determine which ones are in poor condition. As
in Example 2.4, the probability that a given structure is in poor condition is
p = 0.2. If X is the number of structures that are in poor condition, then X is
a binomial random variable B(6, 0.2). From (2.15) the pmf is

P (x) =

(
6

x

)
px(1 − p)6−x, x = 0, 1, . . . , 6. (2.20)

The graph of this pmf is given in Figure 2.2. For example, the probability that
none of the six structures are found to be in poor condition is

P (0) =

(
6

0

)
0.20 0.86 = 0.2621,

and the probability that only one of the six structures are found to be in poor
condition is

P (1) =

(
6

1

)
0.21 0.85 = 0.3932.
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Example 2.12 (Yearly maximum wave height). Consider a breakwater
that is to be designed for a lifetime of 50 years. Assume also that the probability
of yearly exceedance of a wave height of 9 m is 0.05. Then, the probability of
having 5 years with exceedances during its lifetime is given by

P (5) =

(
50

5

)
0.055(1 − 0.05)50−5 = 0.06584.

Note that we have admitted the two basic assumptions of the binomial model,
that is, identical and independent Bernoulli experiments. In this case both
assumptions are reasonable. Note, however, that if the considered period were
one day or one month instead of one year this would not be the case, because
the wave heights in consecutive days are not independent events. (Assume both
days belong to the same storm, then the maximum wave heights would be both
high. On the other hand, if the periods were calm, both would be low.)

It is well known that there are some periodical phenomena ruling the waves
that can last for more than one year. For that reason it would be even better
to consider periods of longer duration.

Example 2.13 (Earthquake epicenter). From past experience, the epi-
centers of 10% of the earthquakes are within 50 km from a nuclear power plant.
Now, consider a sequence of 10 such earthquakes and let X be the number of
earthquakes whose epicenters are within 50 km from the nuclear power plant.
Assume for the moment that the distances associated with different earthquakes
are independent random variables and that all the earthquakes have the same
probabilities of having their epicenters at distances below 50 km. Then, X is
a B(10, 0.1) random variable. Accordingly, the probability that none of the 10
earthquakes will occur within 50 km is

P (0) =

(
10

0

)
0.10(1 − 0.1)10−0 = 0.348678.

Note that this probability is based on two assumptions:

1. The distances associated with any two earthquakes are independent ran-
dom variables.

2. The occurrence of an earthquake does not change the possible locations
for others.

Both assumptions are not very realistic, because once an earthquake has oc-
curred some others usually occur in the same or nearby location until the ac-
cumulated energy is released. After then, the probability of occurrence at the
same location becomes much smaller, because no energy has been built up yet.

2.2.4 Geometric or Pascal Distribution

Consider again a series of identical and independent Bernoulli experiments,
which are repeated until the first success is obtained. Let X be the number
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Figure 2.3: Graph of the probability mass function of the geometric random
variable with p = 0.4.

of trial on which the first success occurs. What is the pmf of the random vari-
able X? Note that if the first success has occurred at the trial number x, then
the first (x−1) trials must have been failures. Since the probability of a success
is p and the probability of the (x − 1) failures is (1 − p)x−1 (because the trials
are identical and independent), the pmf of X is

P (x) = p(1 − p)x−1, x = 1, 2, . . . . (2.21)

This random variable is called a geometric or Pascal random variable and is
denoted by G(p). The pmf of G(p) random variable is decreasing in x, which
means that the largest value of P (x) is at x = 1. A graph of the pmf of G(0.4)
is shown in Figure 2.3. The mean and variance of G(p) are

µ =
1

p
and σ2 =

1 − p

p2
. (2.22)

Example 2.14 (Job interviews). A company has one vacant position to
fill. It is known that 80% of job applicants for this position are actually qualified
for the job. The company interviews the applicants one at a time as they come
in. The interview process stops as soon as one qualified applicant is found. How
many interviews will have to be conducted until the first qualified applicant is
found? This can be thought of having a series of identical and independent
Bernoulli trials each with success probability p = 0.8. If X is the number of
interviews required to find the first qualified applicant, then X is G(0.8) random
variable. For example, the probability that the first qualified applicant is found
on the third interview is

P (3) = 0.8(1 − 0.8)3−1 = 0.032.

Also, the probability that the company will conduct at least three interviews to
find the first qualified applicant is

Pr(X ≥ 3) = 1 − Pr(X ≤ 2) = 1 − F (2) = 1 − [P (1) + P (2)] = 0.04.
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If each interview costs the company $500, then the expected costs of filling the
vacant position is

500 E(X) = 500 (1/0.8) = $625.

Assume now that a given event (flood, dam failure, exceedance over a given
temperature, etc.) is such that its probability of occurrence during a period
of unit duration (normally one year) is a small value p. Assume also that the
occurrences of such event in nonoverlapping periods are independent. Then, as
time passes, we have a sequence of identical Bernoulli experiments (occurrence
or not of the given event). Thus, the time measured in the above units until
the first occurrence of this event is the number of experiments until the first
occurrence and then it can be considered as a geometric G(p) random variable,
whose mean is 1/p. This suggests the following definition.

Definition 2.3 (Return period) Let A be an event, and T be the random
time between successive occurrences of A. The mean value, µ, of the random
variable T is called the return period of A (note that it is the mean time for the
return of such an event).

For the return period to be approximately 1/p, the following conditions must
hold:

1. The probability of one event occurring during a short period of time is
small.

2. The probability of more than one event occurring during a short period
of time is negligible.

2.2.5 Negative Binomial Distribution

The geometric distribution arises when we are interested in the number of
Bernoulli trials that are required until we get the first success. Now suppose
that we define the random variable X as the number of identical and indepen-
dent Bernoulli trials that are required until we get the rth success. For the rth
success to occur at the trial number x, we must have r − 1 successes in the
x − 1 previous trials and one success in the trial number x. The number of
possible ways of obtaining r − 1 successes in x − 1 trials is obtained using the
combinations formula:

(
x − 1

r − 1

)
=

(x − 1)!

(r − 1)! (x − r)!
.

Therefore, the pmf of X is

P (x) =

(
x − 1

r − 1

)
pr(1 − p)x−r, x = r, r + 1, . . . . (2.23)
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Figure 2.4: Illustration of the parts of a breakwater.

This random variable is called a negative binomial random variable and is de-
noted by X ∼ NB(r, p). Note that the geometric distribution is a special case of
the negative binomial distribution obtained by setting (r = 1), that is, G(p) ∼
NB(1, p). The mean and variance of an NB(r, p) variable are

µ =
r (1 − p)

p
and σ2 =

r (1 − p)

p2
. (2.24)

Example 2.15 (Job interviews). Suppose that the company in Example
2.14 wishes to fill two vacant positions. Thus, the interview process stops as soon
as two qualified applicants are found. If X is the number of interviews needed
to fill the two vacant positions, then X is an NB(2, 0.8) random variable. For
example, the probability that the second qualified applicant is found on the
third interview is

P (3) =

(
3 − 1

2 − 1

)
0.82 0.23−2 = 0.128.

Example 2.16 (Rubble-mound breakwater). A rubble-mound breakwa-
ter is made of a supported crownwall on an earthfill that is protected by a
mound armor (large pieces of stone to protect the earthfill from the waves) (see
Fig. 2.4). The geometrical connectivity and structural stress transmission in
the armor occurs by friction and interlocking between units. While failure of
rigid breakwaters occurs when a single wave exceeds a given threshold value,
a rubble-mound breakwater fails after the occurrence of several waves above a
given threshold value. This is because the failure is progressive, that is, the
first wave produces some movement of the stone pieces, the second increases
the damage, etc.

Then, a failure occurs when the rth Bernoulli event (wave height exceeding
the threshold) occurs. Thus, the negative binomial random variable plays a key
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role. Assume that a wave produces some damage on the armor if its height
exceeds 7 m, and that the probability of this event is 0.001. Then, if the rubble-
mound breakwater fails after, say, eight such waves, then the number of waves
occurring until failure is a negative binomial random variable. Consequently,
the pmf of the number of waves until failure is

P (x) =

(
x − 1

8 − 1

)
0.0018(1 − 0.001)x−8, x = 8, 9, . . . .

Like the binomial random variable, the negative binomial random variable
is also reproductive with respect to parameter r. This means that the sum
of independent negative binomial random variables with the same probability
of success p is a negative binomial random variable. More precisely, if X1 ∼
NB(r1, p) and X2 ∼ NB(r2, p), then

X1 + X2 ∼ NB(r1 + r2, p).

2.2.6 Hypergeometric Distribution

Suppose we have a finite population consisting of N elements, where each ele-
ment can be classified into one of two distinct groups. Say, for example, that we
have N products of which D products are defective and the remaining N − D
are acceptable (nondefective). Suppose further that we wish to draw a random
sample of size n < N from this population without replacement. The random
variable X, which is the number of defective items in the sample, is called a
hypergeometric random variable and is denoted HG(N, p, n), where p = D/N is
the proportion of defective items in the population.

It is clear that the number of defective elements, X, cannot exceed either
the total number of defective elements D, or the sample size n. Also, it cannot
be less than 0 or less than n − (N − D). Therefore, the support of X is

max(0, n − qN) ≤ X ≤ min(n,D),

where q = 1 − p is the proportion of acceptable items in the population. The
probability mass function of X is

P (x) =

(
D
x

) (
N − D
n − x

)

(
N
n

) , max(0, n − qN) ≤ x ≤ min(n,Np). (2.25)

The numerator is the number of samples that can be obtained with x defective
elements and n−x nondefective elements. The denominator is the total number
of possible samples of size n that can be drawn. The mean and variance of
HG(N, p, n) are

µ = np and σ2 =
N − n

N − 1
n p (1 − p). (2.26)



36 Chapter 2. Discrete Probabilistic Models

When N tends to infinity this distribution tends to the binomial distribution.

Example 2.17 (Urn problem). An urn contains 20 balls, 5 white and 15
black. We draw a sample of size 10 without replacement. What is the probability
that the drawn sample contains exactly 2 white balls? Here N = 20, p = 5/20,
and n = 10. Letting X be the number of white balls, then X is HG(20, 1/4, 10).
From (2.25), we have

P (2) =

(
5
2

)(
15
8

)

(
20
10

) = 0.348.

2.2.7 Poisson Distribution

Suppose we are interested in the number of occurrences of an event over a
given interval of time or space. For example, let X be the number of traffic
accidents occurring during a time interval t, or the number of vehicles arriving
at a given intersection during a time interval of duration t. Then, X is a random
variable and we are interested in finding its pmf. The experiment here consists of
counting the number of times an event occurs during a given interval of duration
t. Note that t does not have to be time; it could be location, area, volume, etc.

To derive the pmf of X we make the following Poissonian assumptions:

1. The probability p of the occurrence of a single event in a short interval
d is proportional to its duration, that is, p = αd, where α is a positive
constant, known as the arrival or intensity rate.

2. The probability of the occurrence of more than one event in the same
interval is negligible.

3. The number of occurrences in one interval is independent of the number
of occurrences in other nonoverlapping intervals.

4. The number of events occurring in two intervals of the same duration have
the same probability distribution.

Now, divide the interval t into n small and equal subintervals of duration
d = t/n. Then, with the above assumptions, we may think of the n subintervals
as n identical and independent Bernoulli trials X1,X2, . . . ,Xn, with Pr(Xi =
1) = p for i = 1, 2, . . . , n. Letting X =

∑n
i=1 Xi, then X is a binomial random

variable with parameters n and p = αt/n. To guarantee that no more than
a single event occurs in a subinterval d, the interval t may have to be divided
into a very large number of intervals. So, we are interested in the pmf of X as
n → ∞. Under the above assumptions, one can show that

P (x) = lim
n→∞

(
n

x

)
px (1 − p)n−x =

e−αt(αt)x

x!
, x = 0, 1, . . . , λ > 0. (2.27)
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Figure 2.5: Some examples of probability mass functions of the Poisson random
variable with four different values of λ.

Letting λ = αt, we obtain

P (x) =
e−λλx

x!
, x = 0, 1, . . . , λ > 0. (2.28)

This random variable, which is the number of events occurring in period of a
given duration t, is known as a Poisson random variable with parameter λ = αt
and is denoted by P (λ). Note that the parameter λ is equal to the intensity α
times the duration t.

Figure 2.5 shows the graphs of the pmf of some Poisson random variables.
It can be seen that as the parameter λ gets larger, the pmf becomes more
symmetric.

The mean and variance of a P (λ) variable are

µ = λ and σ2 = λ. (2.29)

Like the binomial random variable, the Poisson random variables are also
reproductive, that is, if X1 ∼ P (λ1) and X2 ∼ P (λ2) are independent, then

X1 + X2 ∼ P (λ1 + λ2).

The Poisson random variable is particularly appropriate for modeling the
number of occurrences of rare events such as storms, earthquakes, and floods.
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Example 2.18 (Storms). Suppose that storms of a certain level occur once
every 50 years on the average. We wish to compute the probability of no such
storm will occur during a single year. Assuming that X has a Poisson random
variable with parameter λ, then λ = 1/50 = 0.02 and, using (2.28), we have

P (0) =
e−1/50(1/50)0

0!
= e−0.02 = 0.98.

That is, it is highly likely that no storms will occur in a single year.
For this model to be correct we need to check the assumptions of the above

Poisson model. The first two assumptions are reasonable, because if several
storms occur during a short interval, they could be considered as a single storm.
The third and fourth assumptions are not true for close intervals, but they are
true for far enough intervals.

Example 2.19 (Parking garage). A parking garage has three car entrances.
Assume that the number of cars coming into the garage using different entrances
are independent Poisson random variables with parameters λ1, λ2, and λ3.
Then, using the reproductivity property of Poisson random variables, the total
number of cars entering the garage is a Poisson random variable P (λ1+λ2+λ3).

The definition of reproductivity assumes that the random variables being
considered in the sum are independent. Then, the number of cars entering at
each entrance must be independent. This assumption must be checked before
the above Poisson model is used.

Poisson Approximation of the Binomial Distribution

If X is a B(n, p) random variable, but p is small, say p ≤ 0.01, and np ≤ 5, then
the pmf of X can be approximated by the pmf of the Poisson random variable
with λ = np, the mean of the binomial random variable, that is,

P (x) ≈ e−λ λx

x!
, x = 0, 1, . . . , n. (2.30)

This is why the Poisson process is known as the rare events process.

Example 2.20 (Storms). Consider the storms in Example 2.18, and suppose
that we are interested in the number of years with storms over a 40-year period.
Although X is B(40, 1/50), it can be approximated by a P (40/50) random
variable. For example, P (3) can be computed either exactly, using the binomial
pmf

P (x) =

(
40

3

) (
1

50

)3 (
1 − 1

50

)40−3

= 0.0374293,

or approximately, using the Poisson pmf,

P (x) ≈ (40/50)3e−40/50

3!
= 0.0383427.

The error of approximation in this case is 0.0374293−0.0383427 = −0.0009134.
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Table 2.4: Some Discrete Random Variables that Arise in Engineering Ap-
plications, Together with Their Probability Mass Functions, Parameters, and
Supports.

Distribution P (x) Parameters and Support

Bernoulli P (x) = px(1 − p)1−x 0 < p < 1
x = 0, 1

Binomial
(
n
x

)
px(1 − p)n−x

n = 1, 2, . . .
0 < p < 1

x = 0, 1, . . . , n

Geometric p(1 − p)x−1 0 < p < 1
x = 1, 2, . . .

Negative
Binomial

(
x−1
r−1

)
pr(1 − p)x−r 0 < p < 1

x = r, r + 1, . . .

Poisson
e−λλx

x!

λ > 0
x = 0, 1, . . .

Nonzero Poisson
e−λλx

x!(1 − e−λ)

λ > 0
x = 1, 2, . . .

2.2.8 Nonzero Poisson Distribution

In certain practical applications we are interested in the number of occurrences
of an event over a period of duration t, but we also know that at least one event
has to occur during the period. If the Poissonian assumptions hold, then it can
be shown that the random variable X has the following pmf

P (x) =
e−λλx

x!(1 − e−λ)
, x = 1, 2, . . . , λ > 0. (2.31)

This distribution is known as the nonzero or the zero-truncated Poisson distri-
bution and is denoted by P0(λ). The mean and variance of P0(λ) are

µ =
λ

1 − e−λ
and σ2 =

eλλ(−1 + eλ − λ)

(1 − eλ)2
.

A summary of the random variables we discussed in this section is given in
Table 2.4.

2.3 Multivariate Discrete Random Variables

In Section 2.2 we have dealt with random variables individually, that is, one
random quantity at a time. In some practical situations, we may need to deal
with several random quantities simultaneously. In this section we describe mod-
els that deal with multidimensional random variables. For a detailed discussion
on various multivariate discrete models, see the book by Johnson et al. (1997).
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Table 2.5: The Joint Probability Mass Function and the Marginal Probability
Mass Functions of (X1,X2) in Example 2.21.

X2

X1 1 2 3 P1(x1)
0 0.1 0.3 0.2 0.6
1 0.2 0.1 0.1 0.4

P2(x2) 0.3 0.4 0.3 1.0

2.3.1 Joint Probability Mass Function

Let X = {X1,X2, . . . ,Xn} be an n-dimensional discrete random variable, taking
values xi ∈ S(Xi), i = 1, 2, . . . , n. The pmf of this multivariate random variable
is denoted by P (x1, x2, . . . , xn), which means Pr(X1 = x1,X2 = x2, . . . ,Xn =
xn). This is called the joint probability mass function. The joint pmf has
n arguments, x1, x2, . . . , xn, one for each variable. When n = 2, we have a
bivariate random variable.

Example 2.21 (Bivariate pmf). Suppose that n = 2 and the supports of
X1 and X2 are S(X1) = {0, 1} and S(X2) = {1, 2, 3}, respectively. The joint
pmf can be displayed in a table such as the one given in Table 2.5. It has two
arguments, x1 = 0, 1 and x2 = 1, 2, 3. From Table 2.5 we see, for example, that
P (0, 1) = 0.1 and P (0, 3) = 0.2.

2.3.2 Marginal Probability Mass Function

From the joint pmf we can obtain marginal probability mass functions, one
marginal for each variable. The marginal pmf of X1, P1(x1), is shown in the
last column in Table 2.5. It is obtained by adding across the rows. Similarly,
the marginal pmf of X2, P2(x2), is shown in the last row in Table 2.5. It is
obtained by adding across the columns. More generally, the marginal of the jth
variable, Xj , is obtained by summing the joint pmf over all possible values of
all other variables. For example, the marginal pmf of X1 is

P1(x1) =
∑

x2∈S(X2)

. . .
∑

xn∈S(Xn)

P (x1, x2, . . . , xn), x1 ∈ S(X1) (2.32)

and the marginal of (X1,X2) is

P12(x1, x2) =
∑

x3∈S(X3)

. . .
∑

xn∈S(Xn)

P (x1, x2, . . . , xn), x1 ∈ S(X1); x2 ∈ S(X2).

(2.33)
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2.3.3 Conditional Probability Mass Function

In some situations we wish to compute the pmf of some random variables given
that some other variables are known to have certain values. For example, in
Example 2.21, we may wish to find the pmf of X2 given that X1 = 0. This
is known as the conditional pmf and is denoted by P (x2|x1), which means
Pr(X2 = x2|X1 = x1). The conditional pmf is the ratio of the joint pmf to
the marginal pmf, that is,

P (x2|x1) =
P (x1, x2)

P (x1)
, x2 ∈ S(X2), (2.34)

where P (x1, x2) is the joint density of X1 and X2 and x1 is assumed to be given.
Thus, for example, P (1|1) = 0.2/0.4 = 0.5, P (2|1) = 0.1/0.4 = 0.25, and

P (3|1) = 0.1/0.4 = 0.25. Note that

3∑

x2=1

P (x2|x1) = 1 ∀x1 ∈ S(X1)

because every conditional pmf is a pmf, that is, P (x2|x1) must satisfy (2.1).

2.3.4 Covariance and Correlation

We have seen that from the joint pmf one can obtain the marginal pmf for each
of the variables, P1(x1), P2(x2), . . . , Pn(xn). From these marginals, one can
compute the means, µ1, µ2, . . . , µn, and variances, σ2

1 , σ2
2 , . . . , σ2

n, using (2.4)
and (2.7), respectively. In addition to the means and variances, one can also
compute the covariance between every pair of variables. The covariance between
Xi and Xj , denoted by σij , is defined as

σij = E(Xi − µi)(Xj − µj) (2.35)

=
∑

xi∈S(Xi)

∑

xj∈S(Xj)

(xi − µi)(xj − µj)P (xi, xj), (2.36)

where P (xi, xj) is the joint pmf of Xi and Xj , which is obtained by summing
the joint pmf over all possible values of all variables other than Xi and Xj . Note
that

σii = E(Xi − µi)(Xi − µi) = E(Xi − µi)
2 = σ2

i ,

which shows that the covariance of a variable and itself is the variance of the
variable.

Example 2.22 (Means, variances, and covariances). Consider the joint
pmf in Table 2.5. The computations for the means, variances, and covariance
are shown in Tables 2.6 and 2.7, from which we can see that

µ1 = 0.4, µ2 = 2, σ2
1 = 0.240, σ2

2 = 0.6, and σ12 = −0.1. (2.37)
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Table 2.6: Computations of the Means and Variances.

Variable X1

x1 P (x1) x1P1(x1) x1 − µ1 (x1 − µ1)
2 (x1 − µ1)

2P1(x1)
0 0.6 0.0 −0.4 0.16 0.096
1 0.4 0.4 0.6 0.36 0.144

Total 1.0 0.4 0.240

Variable X2

x2 P (x2) x2P2(x2) x2 − µ2 (x2 − µ2)
2 (x2 − µ2)

2P2(x2)
1 0.3 0.3 −1 1 0.3
2 0.4 0.8 0 0 0.0
3 0.3 0.9 1 1 0.3

Total 1.0 2.0 0.6

Table 2.7: Computations of the Covariance Between X1 and X2.

x1 x2 P (x1, x2) x1 − µ1 x2 − µ2 (x1 − µ1)(x2 − µ2)P (x1, x2)

0 1 0.1 −0.4 −1 0.04
0 2 0.3 −0.4 0 0.00
0 3 0.2 −0.4 1 −0.08
1 1 0.2 0.6 −1 −0.12
1 2 0.1 0.6 0 0.00
1 3 0.1 0.6 1 0.06

1 −0.10

The covariance between two variables gives information about the direction
of the relationship between the two variables. If it is positive, the two variables
are said to be positively correlated and, if it is negative, they are said to be
negatively correlated. Because σ12 in the above example is negative, X1 and X2

are negatively correlated.

A graphical interpretation of the covariance between two variables X and Y
is as follows. Let us draw all points with positive probabilities in a Cartesian
plane. A typical point (x, y) is shown in Figure 2.6. A vertical line at x = µX

and a horizontal line at y = µY divide the plane into four quadrants. Note that
the absolute value of the product (x − µX)(y − µY ) is equal to the area of the
shaded rectangle shown in Figure 2.6. Note that this area is zero when x = µX

or y = µY . The area gets larger as the point (x, y) gets farther away from the
point (µX , µY ). Note also that the product (x − µX)(y − µY ) is positive in the
first and third quadrants and negative in the second and fourth quadrants. This
is indicated by the + and – signs in Figure 2.6. The covariance is the weighted
sum of these products with weights equal to Pr(X = x, Y = y). If the sum of the
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Figure 2.6: A graphical illustration of the covariance between X and Y .

weighted positive terms (those in the first and third quadrants) is equal to the
sum of the weighted negative terms (those in the second and fourth quadrants),
then the covariance is zero (the negative terms annihilate the positive ones). On
the other hand if sum of the weighted positive terms exceeds that of the sum
of the weighted negative terms, then the covariance is positive; otherwise it is
negative.

Although the covariance between two variables gives information about the
direction of the relationship between the two variables, it does not tell us much
about the strength of the relationship between the two variables because it
is affected by the unit of measurements. That is, if we change the unit of
measurement (e.g., from dollars to thousands of dollars), the covariance will
change accordingly.

A measure of association that is not affected by changes in unit of mea-
surement is the correlation coefficient. The correlation coefficient between two
variables Xi and Xj , denoted by ρij , is defined as

ρij =
σij

σiσj
, (2.38)

that is, it is the covariance divided by the product of the two standard deviations.
It can be shown that −1 ≤ ρij ≤ 1. The correlation ρij measures linear

association between the two variables. That is, if ρij = ±1, then one variable is
a linear function of the other. If ρij = 0, it means only that the two variables
are not linearly related (they may be nonlinearly related, however). In the
above example, ρ12 = −0.1/(

√
0.144240 × 0.6) = −0.264, hence X1 and X2 are

negatively, but mildly correlated.
All considerations made for the graphical interpretation of the covariance

are also valid for the correlation coefficient because of its definition. Figure 2.7
is an illustration showing the correspondence between the scatter diagram and
the values of σX , σY , and ρXY .

When we deal with a multivariate random variable X = {X1,X2, . . . ,Xk}, it
is convenient to summarize their means, variances, covariances, and correlations
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Figure 2.7: Graphical illustration of the correlation coefficient.

as follows. The means are displayed in a k × 1 vector and the variances and
covariances are displayed in a k × k matrix as follows:

µ =




µ1

µ2
...

µk


 , Σ =




σ2
1 σ12 . . . σ1k

σ21 σ2
2 . . . σ2k

...
...

. . .
...

σk1 σk2 . . . σ2
k


 , ρ =




1 ρ12 . . . ρ1k

ρ21 1 . . . ρ2k
...

...
. . .

...
ρk1 ρk2 . . . 1


 .

(2.39)
The vector µ is called the mean vector, the matrix Σ is called the variance-
covariance matrix or just the covariance matrix, and ρ is called the correlation
matrix. The covariance matrix contains the variances on the diagonal and the
covariances on the off-diagonal. Note that the covariance and correlation matri-
ces are symmetric, that is, σij = σji and ρij = ρji. Note also that the diagonal
elements of ρ are all ones because Xi has a perfect correlation with itself.
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For example, the means, variances, and covariance in (2.37) can be summa-
rized as

µ =

[
0.4
2.0

]
, Σ =

[
0.240 −0.1
−0.1 0.6

]
, and ρ =

[
1 −0.264

−0.264 1

]
.

2.4 Common Discrete Multivariate Models

In this section we deal with some multivariate models of interest.

2.4.1 Multinomial Distribution

We have seen in Section 2.2.3 that the binomial random variable results from
random experiments that each has two possible outcomes. If a random exper-
iment has more than two outcomes, the resultant random variable is called a
multinomial random variable. Suppose that we perform an experiment with k
possible outcomes r1, . . . , rk, with probabilities p1, . . . , pk, respectively. Since
the outcomes are mutually exclusive and collectively exhaustive, these proba-
bilities must satisfy

∑k
i=1 pi = 1. If we repeat this experiment n times and

let Xi be the numbers of times we obtain outcomes ri, for i = 1, . . . , k, then
X = {X1, . . . ,Xk} is a multinomial random variable, which is denoted by
M(n; p1, . . . , pk). The pmf of M(n; p1, . . . , pk) is

P (x1, x2, . . . , xk) =
n!

x1!x2! . . . xk!
px1
1 px2

2 . . . pxk

k , (2.40)

where n!/(x1!x2! . . . xk!) is the number of possible combinations that lead to
the desired outcome. Note that P (x1, x2, . . . , xk) means Pr(X1 = x1,X2 =
x2, . . . ,Xk = xk). Note also that the support of multinomial random variable
X, whose pmf is given by (2.40), is

S(X) = {x1, x2, . . . , xk : xi = 0, 1, . . . , n,

k∑

i=1

xi = n}. (2.41)

Example 2.23 (Different failure types). Suppose that we wish to de-
termine the strengths of six plates of fiberglass. Suppose also that there are
three possible types of failures. The probabilities of these types of failures are
0.2, 0.3, and 0.5, respectively. Let Xi be the number of plates with failure of
type i. Then, X = {X1,X2,X3} is M(6; 0.2, 0.3, 0.5). Thus, for example, the
probability of having 2, 1, and 3 failures of the three types is given by

P (2, 1, 3) =
6!

2!1!3!
0.22 0.31 0.53 = 0.09.

Example 2.24 (Traffic in a square). A car when arriving at a square
can choose among four different streets S1, S2, S3, and S4 with probabilities
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p1, p2, p3, and p4, respectively. Find the probability that of 10 cars arriving at
the square, 3 will take street S1, 4 will take street S2, 2 will take street S3, and
1 will take street S4.

Since we have four possible outcomes per car, the random variable of the
number of cars taking each of the four streets is M(10; p1, p2, p3, p4). Then, the
required probability is

P (3, 4, 2, 1) =
10!

3!4!2!1!
p3
1 p4

2 p2
3 p1

4.

In a multinomial random variable, the mean and variance of Xi, and the
covariance of Xi and Xj are

µi = npi, σ2
ii = npi(1 − pi), and σij = −npipj ,

respectively. Thus, all pairs of variables are negatively correlated. This is
expected because they are nonnegative integers that sum to n; hence, if one has
a large value, the others must necessarily have small values.

The multinomial family of random variables is reproductive with respect to
parameter n, that is, if X1 ∼ M(n1; p1, . . . , pk) and X2 ∼ M(n2; p1, ...., pk),
then

X1 + X2 ∼ M(n1 + n2; p1, . . . , pk).

2.4.2 Multivariate Hypergeometric Distribution

We have seen in Section 2.2.6 that the hypergeometric distribution arises from
sampling without replacement from a finite population with two groups (defec-
tive and nondefective). If the finite population consists of k groups, the resulting
distribution is a multivariate hypergeometric distribution. Suppose the popula-
tion consists of N products of which D1,D2, . . . ,Dk are of the k types, with∑k

i=1 Di = N . Suppose we wish to draw a random sample of size n < N from
this population without replacement. The random variable X = {X1, . . . ,Xk},
where Xi is the number of products of type i in the sample, is the multi-
variate hypergeometric variable and is denoted MHG(N, p1, . . . , pk, n), where
pi = Di/N is the proportion of products of type i in the population. The pmf
of MHG(N, p1, . . . , pk, n) is

P (x1, . . . , xk) =

(
D1

x1

)
· · ·

(
Dk

xk

)
(
N
n

) ,
k∑

i=1

xi = n,
k∑

i=1

Di = N. (2.42)

Example 2.25 (Urn problem). Suppose an urn contains 20 balls of which
5 are white, 10 are black, and 5 are red. We draw a sample of size 10 without
replacement. What is the probability that the drawn sample contains exactly 2
white, 5 black and 3 red balls? Here, N = 20, p1 = 5/20 = 1/4, p2 = 10/20 =
1/2, p3 = 5/20 = 1/4, and n = 10. Letting X = {X1,X2,X3} be the number
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of white, black and red balls, then X is MHG
(
20, 1

4 , 1
2 , 1

4 , 10
)
. From (2.42), we

then have

P (2, 5, 3) =

(
5
2

)(
10
5

)(
5
3

)
(
20
10

) =
6300

46189
= 0.136.

Exercises

2.1 Show that the mean and variance of a Bernoulli random variable, with
success probability p, are µ = p and σ2 = p(1 − p).

2.2 Show that the mean and variance of a B(n, p) random variable are µ = np
and σ2 = np(1 − p).

2.3 For the B(6, 0.2) random variable in Exercise 2.9, whose pmf is given in
(2.20), compute the probability of each of the following events:

(a) At least one structure is in poor condition.

(b) At most four structures are in poor conditions.

(c) Between two and four structures are in poor conditions.

2.4 Let X = X1 + . . . + Xn, where Xi, i = 1, . . . , n, are identical and inde-
pendent Bernoulli random variables with probability of success equal to p.
Use the reproductivity property of the binomial random variable to show
that X ∼ B(n, p).

2.5 Show that the pmf of any G(p) random variable is decreasing in x.

2.6 Suppose that the company in Example 2.14 wishes to fill two vacant po-
sitions.

(a) What is the probability that at least four interviews will be required
to fill the two vacant positions?

(b) If an interview costs the company $500 on the average, what is the
expected cost of filling the two vacant positions?

2.7 Prove the result in Equation (2.27).

2.8 Use (2.34) to show that the pmf of the nonzero Poisson random variable
is given by (2.31).

2.9 The probability of a river to be flooded at a certain location during a
period of 1 year is 0.02.

(a) Find the pmf of the number of floods to be registered during a period
of 20 years.

(b) Find the pmf of the number of years required until the first with a
flood.
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(c) Find the pmf of the number of years required until the fifth with a
flood.

2.10 Assume that the occurrence of earthquakes with intensity above a given
threshold is Poissonian with rate of two earthquakes per year. Compute:

(a) The probability of having no earthquakes in a period of 6 months
(the time a dam is being repaired).

(b) The pmf of the number of earthquakes occurring in a period of 5
years.

(c) Discuss the validity of the assumptions for using the Poisson model.

2.11 It is said that a system (e.g., a dam or a dike) has been designed for
the N -year if it withstands floods that occur once in N years, that is,
its probability of occurrence is 1/N in any year. Assuming that floods in
different years are independent, calculate:

(a) The probability of having a flood larger or equal to the N -year flood
during a period of 50 years.

(b) The probability of having one or more such a floods in 50 years.

(c) If a company designs 20 independent systems (located far enough)
for the 500-year flood, what is the cdf of the number of systems that
will fail in 50 years?

2.12 Compute the mean vector, covariance matrix, and correlation matrix for
each of the following multinomial random variables:

(a) The three variables in Example 2.23.

(b) The four variables in Example 2.24.

2.13 For the M(n; pi, . . . , pk) random variable, show that the correlation coef-
ficient between Xi and Xj is

ρij = −
√

pi pj/[(1 − pi)(1 − pj)].

2.14 The presence of cracks in a long cable is ruled by a Poisson process of
intensity of two cracks per meter. Twenty percent of them are of critical
size (large). Determine:

(a) The pmf of the number of cracks in a piece of 10 m.

(b) The length up to the first crack.

(c) The distance from the origin of the piece to the third crack.

(d) The number of cracks of critical size in the piece of 10 m.

2.15 The number of waves of height above 8 m at a given location and during
a storm follows a Poisson process of intensity of three waves per hour.
Determine:
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(a) The pmf of the number of waves of height above 8 m during a storm
of 5 hours.

(b) The time up to the first wave of height above 8 m.

(c) The time between the third and the sixth waves of height above 8 m.

(d) If a rouble mound breakwater fails after 12 such waves, obtain the
probability of failure of the breakwater during a storm of 2 hours
duration.

2.16 The number of important floods during the last 50 years at a given location
was 20. Determine:

(a) The pmf of the number floods during the next 10 years.

(b) The mean number of yearly floods required for having a probability
of 0.9 of no floods in the next 10 years.

2.17 Thirty percent of car accidents involve deaths (or fatal). Determine:

(a) The number of fatal accidents of a set of 20 accidents.

(b) The number of accidents up to a fatal accident.

(c) The number of accidents up to the fifth fatal accident.

2.18 Derive the mean vector, covariance matrix, and correlation matrix for the
multivariate hypergeometric distribution in (2.42).





Chapter 3

Continuous Probabilistic

Models

In Chapter 2 we discussed several commonly used discrete random variables.
This chapter deals with continuous random variables. We start in Section 3.1
with a discussion of some methods for defining the probability of univariate
continuous random variables that include probability density function, cumula-
tive distribution functions, and moments of random variables. Then, commonly
used continuous univariate random variables are presented in Section 3.2. They
are viewed with an eye on their application to extremes. Section 3.3 is de-
voted to truncated distributions, which have important applications. Section
3.4 present four important functions associated with random variables. These
are the survival, hazard, moment generating, and characteristic functions. Gen-
eral multivariate continuous random variables are dealt with in Section 3.5.
Finally, some commonly used multivariate models are presented in Section 3.6.

3.1 Univariate Continuous Random Variables

As in the case of discrete random variables, there are several alternative ways
for assigning and calculating probabilities associated with continuous random
variables; the most important of them are given below.

3.1.1 Probability Density Function

As mentioned in Chapter 2, continuous random variables take an uncountable
set of real values. Every continuous random variable has a probability density
function (pdf). The pdf of a continuous random variable X is denoted by fX(x).
For notational simplicity we sometimes use f(x) instead of fX(x). Note that
f(x) is not Pr(X = x), as in the discrete case. But it is the height of the
density curve at the point x. Also, if we integrate f(x) on a given set A, we
obtain Pr(X ∈ A).

51
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Every pdf f(x) must satisfy two conditions:

f(x) ≥ 0 ∀x (3.1)

and ∫

x∈S(X)

f(x)dx = 1, (3.2)

where S(X) is the support of the random variable X, the set of all values x for
which f(x) > 0.

3.1.2 Cumulative Distribution Function

Every random variable also has a cumulative distribution function (cdf). The
cdf of a random variable X, denoted by F (x), is a function that assigns to each
real value x the probability of X having values less than or equal to x, that is,

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t)dt, (3.3)

which implies that

f(x) =
dF (x)

dx
. (3.4)

The probability that the random variable X takes values in the interval (a, b],
with a ≤ b, is given by

Pr(a < X ≤ b) =

∫ b

a

f(x)dx = F (b) − F (a). (3.5)

Thus, Pr(a < X ≤ b) is the area under the pdf on top of the interval (a, b],
as can be seen in Figure 3.1, which shows the graphs of the pdf and cdf of a
continuous random variable X. Note that, while f(x) is the height of the density
curve at x, F (x) is the area under the curve to the left of x. From (3.2), the
area under the pdf of any continuous random variable is 1.

Note also that

Pr(X = x) = Pr(x < X ≤ x) = F (x) − F (x) = 0, (3.6)

that is, while it is possible for a continuous random variable X to take a given
value in its support, it is improbable that it will take this exact value. This is
due to the fact that there are uncountably many possible values.

The cdf has the following properties as a direct consequence of the definitions
of cdf and probability:

1. F (−∞) = 0 and F (∞) = 1.

2. F (x) is nondecreasing and right continuous.
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a b

f(a)

f(b)

F(a)

F(b)

a b

f(x) F(x)

xx

Pr(a < X < b)

Figure 3.1: Graphs of the pdf and cdf of a continuous random variable X. The
pdf, f(x), is the height of the curve at x, and the cdf, F (x), is the area under
f(x) to the left of x. Then Pr(a < X ≤ b) = F (b) − F (a) is the area under the
pdf on top of the interval (a, b].

3.1.3 Moments

Let g(X) be a function of a continuous random variable X. The expected value
of g(X) is defined by

E[g(X)] =

∫

x∈S(X)

g(x)f(x)dx. (3.7)

For example, letting g(X) = Xr, we obtain the rth moment of the continuous
random variable X,

E(Xr) =

∫

x∈S(X)

xrf(x)dx. (3.8)

When r = 1, we obtain the mean, µ, of the continuous random variable X,

µ = E(X) =

∫

x∈S(X)

x f(x)dx. (3.9)

Letting g(X) = (X − µ)r, we obtain the rth central moment,

E[(X − µ)r] =

∫

x∈S(X)

(x − µ)rf(x)dx. (3.10)

When r = 2, we obtain the second central moment of the continuous random
variable X, that is,

σ2 = E[(X − µ)2] =

∫

x∈S(X)

(x − µ)2f(x)dx, (3.11)
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which is known as the variance. The standard deviation, σ, of the random
variable X is the positive square root of its variance. The variance can also be
expressed as

σ2 = E(X2) − µ2, (3.12)

where

E(X2) =

∫

x∈S(X)

x2f(x)dx.

The expected value operator in the continuous case has the same properties
that it has in the discrete case (see page 25).

3.2 Common Continuous Univariate Models

In this section we present several important continuous random variables that
often arise in extreme value applications. For more detailed descriptions as
well as additional models, see, for example, the books by Christensen (1984),
Balakrishnan and Nevzorov (2003) Johnson et al. (1994, 1995), Ross (1992),
and Wackerly et al. (2002).

3.2.1 Continuous Uniform Distribution

The continuous uniform random variable on the interval [α, β], denoted by
U(α, β), has the following pdf

f(x) =
1

β − α
, α ≤ x ≤ β, (3.13)

from which it follows that the cdf can be written as

F (x) =





0, if x < α
x − α

β − α
, if α ≤ x < β,

1, if x ≥ β.

The mean and variance of X are

µ =
α + β

2
and σ2 =

(β − α)2

12
. (3.14)

A special case of U(α, β) is the standard uniform random variable, U(0, 1) ob-
tained by setting α = 0 and β = 1. The pdf and cdf of U(0, 1) are

f(x) = 1, 0 ≤ x ≤ 1, (3.15)

and

F (x) =





0, if x < 0
x, if 0 ≤ x < 1,
1, if x ≥ 1.

Figure 3.2 shows the pdf and cdf of the standard uniform random variable.
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1 1

10 10

f(x)

x x

F(x)

Figure 3.2: The pdf and cdf of the standard uniform random variable.

Example 3.1 (Birth time). If the times of birth are random variables
assumed to be uniform on the interval [0, 24], that is, all times in a given 24-
hour period are equally possible, then the time of birth X is a uniform random
variable, U(0, 24), with pdf

f(x) = 1/24, 0 ≤ x ≤ 24.

Note that the uniform model is valid so long as births occur naturally, that is,
no induced births, for example.

Example 3.2 (Accidents). Let X be the distance in km from a hospital to
the location where an accident occurs on a highway of 20 km length. Then, we
may assume that X is U(0, 20) random variable. The validity of this assumption
requires certain conditions such as the road be straight and homogeneous and
the drivers’ abilities are constant over the 20-km highway, see Example 3.21.

The family of uniform random variables is stable with respect to changes of
location and scale, that is, if X is U(α, β), then the variable Y = cX + d is
uniform U(cα + d, cβ + d).

Example 3.3 (Temperatures). Suppose that the temperature, in degrees
Celsius, at a given time and location is U(30, 40) random variable. Since
F = 1.8C + 32, where F and C are the temperatures measured in degrees
Fahrenheit and Celsius, respectively, then the temperature in degrees Fahren-
heit is an U(86, 104) random variable.

3.2.2 Exponential Distribution

Let X be the time between two consecutive Poisson events with intensity λ
events per unit of time (see Section 2.2.7) such as the time between failures of
machines or the time between arrivals at checkout counter. That is, we start at
the time when the first event occurs and measure the time to the next event. In
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Figure 3.3: An example of the pdf and cdf of two exponential random variables.

other words, X is the interarrival time. Then X is a continuous random variable.
What is the pdf and cdf of X? Consider the event that X exceeds x, that is,
the second event occurs after time x since the occurrence of the first event. The
probability of this event is Pr(X > x) = 1 − Pr(X ≤ x) = 1 − F (x), where
F (x) is the cdf of the random variable X. This event, however, is equivalent to
saying that no Poisson events have occurred before time x. Replacing λ by λx
in the Poisson pmf in (2.28), the probability of obtaining zero Poisson events is
P (0) = e−λx. Therefore, we have

1 − F (x) = e−λx,

from which it follows that the cdf of X is

F (x) =

{
0, if x < 0,
1 − e−λx, if x ≥ 0, λ > 0.

Taking the derivative of F (x) with respect to x, we obtain the pdf

f(x) =
dF (x)

dx
=

{
0, if x < 0,
λe−λx, if x ≥ 0.

(3.16)

The random variable X whose pdf is given in (3.16) is called an exponential
random variable with parameter λ. When X is replaced by −Y in (3.16), we
obtain the pdf of the reversed exponential random variable,

f(y) =

{
λeλy, if y < 0, λ > 0,
0, if y ≥ 0.

(3.17)

The graphs of the pdf and cdf of two exponential random variables are shown
in Figure 3.3. It can be shown that the mean and variance of the exponential
random variable are

µ =
1

λ
and σ2 =

1

λ2
. (3.18)

The pdf of the exponential distribution in (3.16) can also be expressed as

f(x) =

{
0, if x < 0,
1

δ
e−x/δ, if x ≥ 0, δ > 0.

(3.19)
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This is simply a reparameterization of (3.16), where λ is replaced by 1/δ. In
this form the cdf is

F (x) =

{
0, if x < 0,
1 − e−x/δ, if x ≥ 0, δ > 0,

and the mean and variance are simply µ = δ and σ2 = δ2, respectively.
Exponential random variables have the so-called memoryless or no-aging

property, that is,
Pr(X > a + b|X > a) = Pr(X > b).

In words, if X is associated with lifetime the probability of X exceeding a given
time b is the same no matter which time origin a is considered, from which the
terminology no-aging was derived.

Example 3.4 (Waiting time at an intersection). When a car arrives at
the intersection of two roads, it stops and then it needs a minimum time of t0
seconds without passing cars to initiate the movement. If the arrival time, X, is
assumed to be exponential with intensity λ cars/second, the probability of the
waiting time to be zero is given by

Pr(X > t0) = 1 − Pr(X ≤ t0) = 1 − F (t0) = e−λt0 .

Example 3.5 (Time between consecutive storms). Assume that the oc-
currence of storms is Poissonian with rate λ storms/year. Then, the time until
the occurrence of the first storm and the time between consecutive storms are
exponential random variables with parameter λ. For example, assume that
λ = 5 storms/year. Then, the probability of the time until the occurrence of
the first storm or the time between consecutive storms to be smaller than 1
month is

p = Pr(X < 1/12) = F (1/12) = 1 − e−λ/12 = 1 − e−5/12 = 0.3408.

For more properties and applications of the exponential distribution, the
interested reader may refer to the book by Balakrishnan and Basu (1995).

3.2.3 Gamma Distribution

The Gamma distribution is a generalization of the exponential distribution.
Consider a Poisson time process with intensity λ events per unit time. The
time it takes for the first event to occur is an exponential random variable with
parameter λ. Now, let X be the time up to the occurrence of θ Poisson events.
If θ = 1, then X is an exponential random variable, but if θ > 1, then X is a
Gamma random variable. What is then the pdf of a Gamma random variable?
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To derive the pdf of a Gamma random variable, we first introduce a useful
function called the Gamma function, which is defined as

Γ(θ) =

∫ ∞

0

yθ−1e−ydy. (3.20)

Some important properties of the Gamma function are

Γ(0.5) =
√

π, (3.21)

Γ(θ) = (θ − 1)Γ(θ − 1), if θ ≥ 1, (3.22)

Γ(θ) = (θ − 1)!, if θ is a positive integer. (3.23)

Now, if X is the time it takes for the θ Poisson events to occur, then the
probability that X is in the interval (x, x+dx) is Pr(x ≤ X ≤ x+dx) = f(x)dx.
But this probability is equal to the probability of having θ − 1 Poisson events
occurred in a period of duration x times the probability of the occurrence of
one event in a period of duration dx. Thus, we have

f(x)dx =
e−λx(λx)θ−1

(θ − 1)!
λ dx,

from which we obtain

f(x) =
λθxθ−1e−λx

(θ − 1)!
, 0 ≤ x < ∞. (3.24)

Using the property of the Gamma function in (3.23), Equation (3.24) can be
written as

f(x) =
λθxθ−1e−λx

Γ(θ)
, 0 ≤ x < ∞, (3.25)

which is valid for any real positive θ. The pdf in (3.25) is known as the Gamma
distribution with parameters θ and λ, and is denoted by G(θ, λ). Note that
when θ = 1, the pdf in (3.25) becomes (3.16), which is the pdf of the exponential
distribution. The pdf of some Gamma distributions are graphed in Figure 3.4.

In general, the cdf of the Gamma distribution

F (x) =

∫ x

0

f(t)dt =

∫ x

0

λθtθ−1e−λt

Γ(θ)
dt, (3.26)

which is called the incomplete Gamma function, does not have a closed form, but
can be obtained by numerical integration. For integer θ, (3.26) has a closed-form
formula (see Exercise 3.7).

The mean and variance of G(θ, λ) are

µ =
θ

λ
and σ2 =

θ

λ2
. (3.27)

The family of Gamma distributions has the following important properties:
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Figure 3.4: Examples of the pdf of some Gamma random variables.

1. It is reproductive with respect to parameter θ, that is, if X1 ∼ G(θ1, λ)
and X2 ∼ G(θ2, λ) are independent, then

X1 + X2 ∼ G(θ1 + θ2, λ).

2. It is stable with respect to scale changes, that is, if X is G(θ, λ), then cX
is G(θ, λ/c), see Example 3.20.

3. It is not stable with respect to changes of location. In other words, if X is
a Gamma random variable, then X + a is not a Gamma random variable.

Example 3.6 (Parallel system of lamps). A lamp, L, consists of a parallel
system of n individual lamps L1, . . . , Ln (see Fig. 3.5). A lamp is lit once the
previous one fails. Assuming no replacement after failure, the useful life of the
lamp is the sum of the lives of the individual lamps. If the life of each of the
individual lamps is assumed to be G(θ, λ), then the life of the lamp L is G(θ, nλ)
by Property 1.

Example 3.7 (Structure). Consider the structure in Figure 3.6, which
consists of three bars a, b, and c forming a right-angled triangle with sides 3, 4,
and 5 m, respectively.

The structure is subjected to a vertical pressure or load L. This creates
three axial forces (two compression forces Fa and Fb, and one traction force
Fc). If the force L is assumed to be G(2, 1), the axial loads Fa, Fb, and Fc are
all Gamma random variables. It can be shown that the equilibrium conditions
lead to the following system of linear equations:




cos x − cos y 0
sinx sin y 0

0 cos y −1







Fa

Fb

Fc


 =




0
L
0


 . (3.28)
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Figure 3.5: A lamp, L consisting of a system of n parallel lamps, L1, . . . , Ln.
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yx
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Figure 3.6: A three-bar structure subjected to a vertical force or load L.

Since cos x = 3/5, cos y = 4/5, sinx = 4/5, and sin y = 3/5, the solution of
(3.28) gives

Fa =
4

5
L, Fb =

3

5
L, and Fc =

12

25
L.

Now, since G(θ, λ) is stable with respect to scale changes, then cL is G(2, 1/c).
Therefore, Fa ∼ G(2, 5/4), Fb ∼ G(2, 5/3) and Fc ∼ G(2, 25/12).

Example 3.8 (Farmers subsidy). Farmers receive a monetary subsidy after
having three floods. Assume that the floods are Poisson events with rate 0.5
floods/year. Then, the time to the third flood is a G(3, 0.5). Thus, the mean
time until farmers receive subsidy is µ = θ/λ = 3/0.5 = 6 years. Also, the
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probability that a subsidy will be received after 10 years is

Pr(X > 10) = 1 − F (10) = 1 −
10∫

0

0.5(0.5x)2e−0.5x

2!
dx = 1 − 0.8753 = 0.1247.

3.2.4 Log-Gamma Distribution

The standard form of the log-gamma family of distributions has pdf

f(x) =
1

Γ(k)
ekx exp{−ex}, −∞ < x < ∞, k > 0. (3.29)

The pdf in (3.29) can be derived from the logarithmic transformation of gamma
distribution, and hence the name log-gamma distribution. A three-parameter
log-gamma family can be obtained from (3.29), by introducing a location pa-
rameter µ and a scale parameter σ, with pdf

f(x) =
1

σ Γ(k)
ek(x−µ)/σ exp{−e(x−µ)/σ}, −∞ < x, µ < ∞, σ > 0. (3.30)

The corresponding cdf is

F (x) = Iexp{(x−µ)/σ}(k),

where Iy(k) is the incomplete gamma ratio defined as

Iy(k) =
1

Γ(k)

∫ y

0

e−t tk−1 dt, 0 < y < ∞, k > 0.

The mean and variance of X are

E(X) = µ + σ ψ(k) and V ar(X) = σ2 ψ′(k), (3.31)

where ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
is the digamma function and ψ′(z) is its

derivative (trigamma function). Since, for large k, ψ(k) ∼ ln k and ψ′(k) ∼ 1/k,
Prentice (1974) suggested a reparameterized form of the log-gamma density in
(3.30) as

f(x) =
1

σ Γ(k)
kk− 1

2 e
√

k(x−µ)/σ exp{−ke(x−µ)/(σ
√

k)}, (3.32)

−∞ < x < ∞, −∞ < µ < ∞, σ > 0.

It can be shown that as k → ∞, the density in (3.32) tends to the Normal(µ, σ2)
density function.

Lawless (2003) and Nelson (2004) illustrate the usefulness of the log-gamma
density in (3.32) as a lifetime model. Inferential procedures for this model
have been discussed by Balakrishnan and Chan (1994, 1995b,a, 1998), DiCiccio
(1987), Lawless (1980), Prentice (1974), and Young and Bakir (1987).
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3.2.5 Beta Distribution

The Beta random variable is useful for modeling experimental data with range
limited to the interval [0, 1]. For example, when X is the proportion of impu-
rities in a chemical product or the proportion of time that a machine is under
repair, then, X such that 0 ≤ X ≤ 1 and a Beta distribution is used to model
experimental data collected on such variables. Its name is due to the presence
of the Beta function in its pdf. The Beta function is defined as

β(λ, θ) =

∫ 1

0

xλ−1(1 − x)θ−1 dx, λ > 0, θ > 0. (3.33)

Note that the Beta function is related to the Gamma function by

β(λ, θ) =
Γ(λ)Γ(θ)

Γ(λ + θ)
. (3.34)

The pdf of a Beta random variable is given by

f(x) =
xλ−1(1 − x)θ−1

β(λ, θ)
=

Γ(λ + θ)

Γ(λ)Γ(θ)
xλ−1(1 − x)θ−1, 0 ≤ x ≤ 1, (3.35)

where λ > 0 and θ > 0. The Beta random variable is denoted by Beta(λ, θ).
The cdf of the Beta(λ, θ) is

F (x) =

∫ x

0

f(t)dt =

∫ x

0

tλ−1(1 − t)θ−1

β(λ, θ)
dt = Ix(λ, θ), (3.36)

where Ix(λ, θ) is called the incomplete Beta ratio, which can not be given in
closed form, but can be obtained by numerical integration.

The mean and variance of the Beta random variable are

µ =
λ

λ + θ
and σ2 =

λθ

(λ + θ + 1)(λ + θ)2
,

respectively.
The fact that 0 ≤ X ≤ 1 does not restrict the use of the Beta random

variable because if Y is a random variable defined on the interval [a, b], then

X =
Y − a

b − a

defines a new variable such that 0 ≤ X ≤ 1. Therefore, the Beta density
function can be applied to a random variable defined on the interval [a, b] by
translation and a change of scale.

The interest in this variable is also based on its flexibility, because it can
take many different shapes, which can fit different sets of experimental data
very well. For example, Figure 3.7 shows different examples of the pdf of the
Beta distribution. Two particular cases of the Beta distribution are interesting.
Setting (λ = 1, θ = 1), gives the standard uniform random variable, U(0, 1),
while setting (λ = 2, θ = 1 or λ = 1, θ = 2) gives the triangular random variable
whose cdf is given by f(x) = 2x or f(x) = 2(1 − x), 0 ≤ x ≤ 1, respectively.
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Figure 3.7: Examples showing that the probability density functions of Beta
random variables take wide range of different shapes.

3.2.6 Normal or Gaussian Distribution

One of the most important distributions in probability and statistics is the
normal distribution (also known as the Gaussian distribution), which arises in
various applications. For example, consider the random variable, X, which is
the sum of n independently and identically distributed (iid) random variables
X1, . . . ,Xn. Then, by the central limit theorem, X is asymptotically (as n →
∞) normal, regardless of the form of the distribution of the random variables
X1, . . . ,Xn. In fact, the normal distribution also arises in many cases where the
random variables to be summed are dependent.

The normal random variable with mean µ and variance σ2 is denoted by
X ∼ N(µ, σ2) and its pdf is

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x − µ

σ

)2
]

, −∞ < x < ∞, (3.37)

where −∞ < µ < ∞ and σ > 0. The mean and variance of a normal ran-
dom variable are µ and σ2, respectively. Figure 3.8 is a graph of the pdf of a
N(50, 25). Note that the pdf is symmetric about the mean µ = 50. Also, the
pdf has two inflection points; one on each side of the mean µ and equi-distant
from µ. The standard deviation σ is equal to the distance between the mean
and the inflection point. Like any other continuous random variable, the area
under the curve is 1. The cdf of the normal random variable does not exist in
closed form, but can be obtained by numerical integration.

The effect of the parameters µ and σ on the pdf and cdf can be seen in
Figure 3.9, which shows the pdf and cdf of two normal random variables with
the same mean (zero) but different standard deviations. The higher the standard
deviation, the flatter the pdf.

If X is N(µ, σ2), then the random variable

Z =
X − µ

σ
(3.38)
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Figure 3.8: The pdf of N(µ, σ2), where µ = 50 and σ = 5.
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Figure 3.9: Some examples of normal pdfs and cdfs.

is N(0, 1). The normal random variable with mean 0 and standard deviation 1
is called the standard normal distribution. From (3.37), the pdf of Z is

φ(z) =
1√
2π

e−z2/2, −∞ < z < ∞, (3.39)

and the corresponding cdf is

Φ(z) =

z∫

−∞

1√
2π

e−x2/2dx, −∞ < z < ∞. (3.40)

The pdf and cdf of the standard normal random variable are shown in Figure
3.10. This cdf also does not exist in closed form. However, it has been computed
numerically and is given in the Appendix as Table A.1. Note that because of
the symmetry of the normal density, we have Φ(−z) = 1 − Φ(z).
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Figure 3.10: The pdf, φ(z), and the cdf, Φ(z), of the standard normal random
variable, N(0, 1).

The main interest of the change of variable in (3.38) is that we can use Table
A.1 to calculate probabilities for any other normal distribution. For example, if
X ∼ N(µ, σ2), then

Pr(X ≤ x) = Pr

(
X − µ

σ
≤ x − µ

σ

)
= Pr

(
Z ≤ x − µ

σ

)
= Φ

(
x − µ

σ

)
,

where Φ(z) is the cdf of the standard normal distribution in (3.40), which can
be obtained from Table A.1 in the Appendix.

Example 3.9 (Normal variable). Assume that a simple compression strength
is a normal random variable with mean µ = 200 kg/cm2 and a standard devia-
tion 40 kg/cm2. Then, the probability that the compression strength is at most
140 kg/cm2 is

Pr(X ≤ 140) = F (140) = Φ

(
140 − 200

40

)

= Φ(−1.5) = 1 − Φ(1.5) = 1 − 0.9332 = 0.0668,

where Φ(1.5) is obtained from Table A.1. Figure 3.11 shows that Pr(X ≤
140) = Pr(Z ≤ −1.5). This probability is equal to the shaded areas under the
two curves.

The family of normal distributions is reproductive with respect to the pa-
rameters µ and σ, that is, if X1 ∼ N(µ1, σ

2
1), X2 ∼ N(µ2, σ

2
2), and X1 and X2

are independent, then

X1 + X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

If the random variables Xj , j = 1, . . . , n, are independent and normal N(µj , σ
2
j ),

then the random variable

Y =

n∑

j=1

cjXj , cj ∈ IR , j = 1, 2, . . . , n (3.41)
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Figure 3.11: The pdf, f(x), where X ∼ N(200, 402), and the pdf, φ(z), where
Z ∼ N(0, 1). The shaded area under f(x) to the left of x = 140 is equal to the
shaded area under φ(z) to the left of z = −1.5.

is normal with

µ =

n∑

j=1

cjµj and σ2 =

n∑

j=1

c2
jσ

2
j .

This shows that the normal family is stable with respect to linear combinations.

Normal Approximation to the Binomial Distribution

We know from Section 2.2.3 that the mean and variance of a binomial random
variable are µ = np and σ2 = np(1− p). If the parameter n is large and neither
p nor (1 − p) are very close to zero, the variable

Z =
X − np√
np(1 − p)

(3.42)

is approximately N(0, 1). This allows approximating the binomial probabilities
using the normal probabilities. In practice, good approximations are obtained
if np, n(1 − p) > 5.

Example 3.10 (Normal approximation). Suppose that 30% of patients
entering a hospital with myocardial infarction dies in the hospital. If 2000
patients enter in one year and X is the number of these patients who will die
in the hospital, then X is B(2000, 0.3). Since n is large, np = 600 > 5, and
n(1 − p) = 1400 > 5, we can use the normal approximation to the binomial.
Since µ = 2000 × 0.3 = 600 patients and σ2 = 2000 × 0.3 × 0.7 = 420, then X
can be approximated by N(600, 420). Thus, for example, the probability that
a maximum of 550 patients die in the hospital is

Pr(X ≤ 550) ≈ Pr
(
Z ≤ (550 − 600)/

√
420

)

= Φ(−2.44) = 1 − Φ(2.44)
= 1 − 0.9927 = 0.0073,
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where Φ(2.44) is obtained from Table A.1 in the Appendix.

3.2.7 Log-Normal Distribution

A random variable X is log-normal when its logarithm, log(X), is normal. The
pdf of the log-normal random variable can be expressed as

f(x) =
1

xσ
√

2π
exp

[
−1

2

(
log(x) − µ

σ

)2
]

, x ≥ 0, (3.43)

where the parameters µ and σ are the mean and the standard deviation of
the initial normal random variable. The mean and variance of the log-normal
random variable are

eµ+σ2/2 and e2µ(e2σ2 − eσ2

). (3.44)

In some applications, the random variables of interest are defined to be the
products (instead of sums) of iid positive random variables. In these cases,
taking the logarithm of the product yields the sum of the logarithms of its
components. Thus, by the central limit theorem, the logarithm of the product
of n iid random variables is asymptotically normal.

The log-normal random variable is not reproductive with respect to its pa-
rameters µ and σ2, but stable with respect to products of independent variables,
that is, if X1 ∼ LN(µ1, σ

2
1) and X2 ∼ LN(µ2, σ

2
2), then

X1 × X2 ∼ LN(µ1 + µ2, σ
2
1 + σ2

2).

3.2.8 Logistic Distribution

A random variable X is said to have a logistic distribution if its cdf is given by:

F (x) =
1

1 + exp {−(x − α)/β} , β > 0, −∞ < x,α < ∞, (3.45)

where α and β are location and scale parameters, respectively. Note that the
logistic distribution (3.45) is symmetric about x = α and has a shape similar to
that of the normal distribution.

The use of logistic function as a growth curve can be justified as follows.
Consider the differential equation:

dF (x)

dx
= k [F (x) − a] [b − F (x)] , (3.46)

where k, a, and b are constants with k > 0 and b > a. In other words, the
rate of growth is equal to the excess over the initial asymptotic value a times
the deficiency compared with final asymptotic value b. The solution of the
differential equation (3.46) with a = 0 and b = 1 (the asymptotic limits of the
cdf) is

F (x) =
(
1 + ce−x/k

)−1

,
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where c is a constant. This is the same as the logistic distribution in (3.45) with
k = β and c = eα/β . Equation (3.46) is used as a model of autocatalysis (see
Johnson et al. (1995)).

From (3.45), the pdf of the logistic random variable is

f(x) =
exp {−(x − α)/β}

β [1 + exp {−(x − α)/β}]2
, β > 0, −∞ < x,α < ∞. (3.47)

The mean and variance of the logistic random variable are

µ = α and σ2 =
π2β2

3
. (3.48)

A simple relationship between the cdf (3.45) and the pdf (3.47) is

f(x) =
1

β
F (x)[1 − F (x)].

This relation is useful to establish several properties of the logistic distribution;
see, for example, Balakrishnan (1992).

3.2.9 Chi-Square and Chi Distributions

Let Y1, . . . , Yn be independent random variables, where Yi is distributed as
N(µi, 1). Then, the variable

X =

n∑

i=1

Y 2
i

is called a noncentral χ2 random variable with n degrees of freedom and non-
centrality parameter λ =

∑n
i=1 µ2

i . It is denoted as χ2
n(λ). When µi = 0 for all

i, then λ = 0 and we obtain the central χ2 random variable, which is denoted
by χ2

n. The pdf of the central χ2 random variable with n degrees of freedom is

f(x) =
x(n/2)−1 e−x/2

2n/2 Γ(n/2)
, x ≥ 0, (3.49)

where Γ(.) is the Gamma function defined in (3.20). The cdf F (x) can not be
given in closed form in general. However, it is available numerically and is given
in the Appendix as Table A.3. The mean and variance of a χ2

n random variable
are

µ = n + λ and σ2 = 2(n + 2λ). (3.50)

The χ2
n(λ) variable is reproductive with respect to n and λ, that is, if X1 ∼

χ2
n1

(λ1) and X2 ∼ χ2
n2

(λ2), then

X1 + X2 ∼ χ2
n1+n2

(λ1 + λ2).

The positive square root of a χ2
n(λ) random variable is called a χ random

variable and is denoted by χn(λ).
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3.2.10 Rayleigh Distribution

An interesting particular case of the χn random variable is the Rayleigh random
variable, which is obtained when n = 2. The pdf of the Rayleigh random
variable is given by

f(x) =
1

δ2
x exp

[
−1

2

(x

δ

)2
]
, δ > 0, x ≥ 0. (3.51)

The corresponding cdf is

F (x) = 1 − exp

[
−1

2

(x

δ

)2
]
. (3.52)

The mean and variance are

µ = δ
√

π/2 and σ2 = δ2(4 − π)/2. (3.53)

The Rayleigh distribution is used, for example, to model wave heights; see, for
example, Longuet-Higgins (1975).

3.2.11 Student’s t Distribution

Let Z be the normal N(λ, 1) and Y be a χ2
n. If Z and Y are independent, then

the random variable

X =
Z√
Y/n

is called the noncentral Student’s t random variable with n degrees of freedom
and noncentrality parameter λ and is denoted by tn(λ). When λ = 0, we obtain
the central Student’s t random variable, which is denoted by tn, and its pdf is

f(x) =
Γ(n + 1)/2

Γ(n/2)
√

nπ

(
1 +

x2

n

)−(n+1)/2

, −∞ < x < ∞, (3.54)

where Γ(.) is the Gamma function defined in (3.20). The cdf F (x) is not simple.
However, it is available numerically and is given in the Appendix as Table A.2.
The mean and variance of the central t random variable are µ = 0, for n > 1,
and σ2 = n/(n − 2), for n > 2, respectively.

3.2.12 F Distribution

Let Y1 be a χ2
m and Y2 be a χ2

n, where m and n are positive integers. If Y1 and
Y2 are independent, then the random variable

X =
Y1/m

Y2/n
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has an F distribution with m and n degrees of freedom, and is denoted by F(m,n).
The corresponding pdf is

f(x) =
Γ(m + n)

Γ(m/2)Γ(n/2

(m

n

)m/2 x(m/)−1

[1 + (m/n)x]
(m+n)/2

, x > 0, (3.55)

where Γ(.) is the Gamma function defined in (3.20). The cdf F (x) is available
numerically and three quantiles of which are given in Tables A.4–A.6 in the
Appendix. The mean and variance of F random variable are

µ =
n

n − 2
, for n > 2,

and

σ2 =
2n2(n + m − 2)

m(n − 2)2(n − 4)
, for n > 4,

respectively.

3.2.13 Weibull Distribution

The Weibull distribution appears very frequently in practical problems when we
observe data that represent minima values. The reason why this occurs is given
in Chapter 8, where it is shown that, for many parent populations with limited
left tail, the limit of the minima of independent samples converges to a Weibull
distribution. The pdf of the Weibull random variable is given by

f(x) =
β

δ
exp

[
−

(
x − λ

δ

)β
] (

x − λ

δ

)β−1

, x > λ, (3.56)

and the cdf by

F (x) = 1 − exp

[
−

(
x − λ

δ

)β
]

, x ≥ λ, (3.57)

with mean and variance

µ = λ + δΓ

(
1 +

1

β

)
and σ2 = δ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
. (3.58)

Also of interest is the reversed Weibull distribution with pdf

f(x) =
β

δ
exp

[
−

(
λ − x

δ

)β
] (

λ − x

δ

)β−1

, x < λ, (3.59)

and cdf

F (x) = exp

[
−

(
λ − x

δ

)β
]

, x ≤ λ, (3.60)

with mean and variance

µ = λ − δΓ

(
1 +

1

β

)
and σ2 = δ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
. (3.61)
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3.2.14 Gumbel Distribution

The Gumbel distribution appears very frequently in practical problems when
we observe data that represent maxima values. The reason why this occurs is
presented in Chapter 8, where it is shown that for many parent populations with
limited or unlimited left tail, the limit of the maxima of independent samples
converges to a Gumbel distribution. The pdf of the Gumbel random variable is
given by

f(x) =
1

δ
exp

[
λ − x

δ
− exp

(
λ − x

δ

)]
, −∞ < x < ∞, (3.62)

and the cdf by

F (x) = exp

[
− exp

(
λ − x

δ

)]
, −∞ < x < ∞, (3.63)

with mean and variance

µ = λ + 0.57772δ and σ2 =
π2δ2

6
. (3.64)

Also of interest is the reversed Gumbel distribution with pdf

f(x) =
1

δ
exp

[
x − λ

δ
− exp

(
x − λ

δ

)]
, −∞ < x < ∞, (3.65)

and cdf

F (x) = 1 − exp

[
− exp

(
x − λ

δ

)]
, −∞ < x < ∞, (3.66)

with mean and variance

µ = λ − 0.57772δ and σ2 = π2δ2/6. (3.67)

3.2.15 Fréchet Distribution

The Fréchet distribution appears very frequently in practical problems when
we observe data that represent maxima values. The reason why this occurs is
provided in Chapter 8, where it is shown that for many parent populations with
unlimited left tail, the limit of the maxima of independent samples converges to
a Fréchet distribution.

The pdf of the Fréchet random variable is given by

f(x) =
βδ

(x − λ)2
exp

[
−

(
δ

x − λ

)β
] (

δ

x − λ

)β−1

, x > λ, (3.68)

and the cdf by

F (x) = exp

[
−

(
δ

x − λ

)β
]

, x > λ, (3.69)
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with mean and variance

µ = λ + δΓ

(
1 − 1

β

)
, for β > 1, (3.70)

and

σ2 = δ2

[
Γ

(
1 − 2

β

)
− Γ2

(
1 − 1

β

)]
, for β > 2. (3.71)

Also of interest is the reversed Fréchet distribution with pdf

f(x) =
βδ

(λ − x)2
exp

[
−

(
δ

λ − x

)β
] (

δ

λ − x

)β−1

, x < λ, (3.72)

and cdf

F (x) = 1 − exp

[
−

(
δ

λ − x

)β
]

, x < λ, (3.73)

with mean and variance

µ = λ − δΓ

(
1 − 1

β

)
, for β > 1, (3.74)

and

σ2 = δ2

[
Γ

(
1 − 2

β

)
− Γ2

(
1 − 1

β

)]
, for β > 2. (3.75)

3.2.16 Generalized Extreme Value Distributions

The generalized extreme value distributions include all distributions that can be
obtained as the limit of sequences of maxima and minima values (see Chapter
8). The cdf of the maximal generalized extreme value distribution (GEVD) is
given by

H(x;λ, δ, κ) =





exp

{
−

[
1 − κ

(
x − λ

δ

)]1/κ
}

, 1 − κ

(
x − λ

δ

)
≥ 0, κ 6= 0,

exp

{
− exp

(
λ − x

δ

)}
, −∞ < x < ∞, κ = 0,

(3.76)
where the support is x ≤ λ + δ/κ if κ > 0, or x ≥ λ + δ/κ if κ < 0. The
corresponding p-quantile is

xp =





λ + δ [1 − (− log p)κ] /κ, if κ 6= 0,

λ − δ log(− log p), if κ = 0.
(3.77)

The Gumbel, reversed Weibull and Fréchet distributions are particular cases
of the maximal GEVD.
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Also of interest is the minimal GEVD with cdf, H(x;λ, δ, κ), which is given
by





1 − exp

{
−

[
1 + κ

(
x − λ

δ

)]1/κ
}

, 1 + κ

(
x − λ

δ

)
≥ 0, κ 6= 0,

1 − exp

[
− exp

(
x − λ

δ

)]
, −∞ < x < ∞,

(3.78)

where the support is x ≥ λ − δ/κ if κ > 0, or x ≤ λ − δ/κ if κ < 0.

The corresponding p-quantile is

xp =





λ − δ [1 − (− log(1 − p))κ] /κ, if κ 6= 0,

λ + δ log(− log(1 − p)), if κ = 0.
(3.79)

The reversed Gumbel, Weibull, and reversed Fréchet distributions are particular
cases of the minimal GEVD.

3.2.17 Generalized Pareto Distributions

The generalized Pareto distribution arises when you consider excesses of a ran-
dom variable above or below given thresholds (see Chapter 9). The cdf of the
generalized Pareto distribution is given by

F (x;λ, κ) =





1 −
(
1 − κx

λ

)1/κ

,
(
1 − κx

λ

)
≥ 0,

κ 6= 0, λ > 0,

1 − e−x/λ, x ≥ 0, κ = 0, λ > 0,

(3.80)

where λ and κ are scale and shape parameters, respectively. For κ 6= 0, the
range of x is 0 ≤ x ≤ λ/κ if κ > 0, and x ≥ 0 if κ ≤ 0.

Also of interest if the reversed generalized Pareto distribution with cdf

F (x;λ, κ) =





(
1 +

κx

λ

)1/κ

,
(
1 +

κx

λ

)
≥ 0, x ≤ 0,

κ 6= 0, λ > 0,

ex/λ, x ≤ 0, κ = 0, λ > 0,

(3.81)

where λ and κ are scale and shape parameters, respectively. For κ 6= 0, the
range of x is −λ/κ ≤ x ≤ 0 if κ > 0, and x < 0 if κ ≤ 0.

Finally, we conclude this section with a summary of all the univariate con-
tinuous distributions so far discussed in Tables 3.1, 3.2, and 3.3.
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Table 3.1: The Probability Density Functions of Some Continuous Random
Variables that Frequently Arise in Engineering Applications.

Distribution f(x)

Uniform (β − λ)−1

Exponential λe−λx

Gamma
λθxθ−1e−λx

Γ(θ)

Beta
xλ−1(1 − x)θ−1

β(λ, θ)

Normal
1

σ
√

2π
exp

[
− (x − µ)2

2σ2

]

Log-normal
1

xσ
√

2π
exp

[
− (log(x) − µ)2

2σ2

]

Logistic
exp {−(x − α)/β}

β [1 + exp {−(x − α)/β}]2

Central χ2 x(n/2)−1 e−x/2

2n/2 Γ(n/2)

Rayleigh δ−2x exp

[
−1

2

(x

δ

)2
]

Student’s t
Γ(n + 1)/2

Γ(n/2)
√

nπ

(
1 +

x2

n

)−(n+1)/2

3.3 Truncated Distributions

In this section, we introduce truncated distributions that are very useful when
dealing with extremes wherein only values above or below certain threshold
values are often of interest.

Definition 3.1 (Truncated Distributions) Let X be a random variable. We
call the random variables X|X ≤ x0, X|X > x0, and X|x0 < X ≤ x1 truncated
at x0 from the right, from the left, or truncated at x0 from the left and at x1

from the right, respectively.

The following theorem gives the corresponding cdfs as a function of the cdf
FX(x) of X.
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Table 3.2: The Probability Density Functions of Some Continuous Random
Variables that Frequently Arise in Engineering Applications.

Distribution f(x)

Weibull
β

δ
exp

[
−

(
x − λ

δ

)β
] (

x − λ

δ

)β−1

Reversed Weibull
β

δ
exp

[
−

(
λ − x

δ

)β
] (

λ − x

δ

)β−1

Gumbel
1

δ
exp

[
λ − x

δ
− exp

(
λ − x

δ

)]

Reversed Gumbel
1

δ
exp

[
x − λ

δ
− exp

(
x − λ

δ

)]

Fréchet
βδ

(x − λ)2
exp

[
−

(
δ

x − λ

)β
] (

δ

x − λ

)β−1

Reversed Fréchet
βδ

(λ − x)2
exp

[
−

(
δ

λ − x

)β
] (

δ

λ − x

)β−1

Maximal GPD
1

λ

(
1 − κx

λ

)1/κ−1

Minimal GPD
1

λ

(
1 +

κx

λ

)1/κ−1

Theorem 3.1 (Cdf of a truncated distribution) The cdf of the truncated
random variable X|X ≤ x0 is

FX|X≤x0
(x) =

{
FX(x)/FX(x0), if x < x0,

1, if x ≥ x0.
(3.82)

The cdf of the truncated random variable X|X > x0 is

FX|X>x0
(x) =

{
0, if x ≤ x0,
FX(x) − FX(x0)

1 − FX(x0)
, if x > x0,

(3.83)

Finally, the cdf of the truncated random variable X|x0 < X ≤ x1 is

FX|x0<X≤x1
(x) =





0, if x ≤ x0,
FX(x) − FX(x0)

FX(x1) − FX(x0)
, if x0 < x ≤ x1,

1, if x > 1.
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Table 3.3: The Means and Variances of Some Continuous Random Variables
that Frequently Arise in Engineering Applications.

Distribution Mean Variance

Uniform (λ + β)/2 (β − λ)2/12

Exponential 1/λ 1/λ2

Gamma θ/λ θ/λ2

Beta λ/(λ + θ) λθ/
[
(λ + θ + 1)(λ + θ)2

]

Normal µ σ2

Log-normal eµ+σ2/2 e2µ(e2σ2 − eσ2

)

Central χ2 n 2n

Rayleigh δ
√

π/2 δ2(4 − π)/2

Student’s t 0 n/(n − 2)

Weibull λ + δΓ

(
1 +

1

β

)
δ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]

Reversed Weibull λ − δΓ

(
1 +

1

β

)
δ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]

Gumbel λ + 0.57772δ π2δ2/6

Reversed Gumbel λ − 0.57772δ π2δ2/6

Fréchet λ + δΓ

(
1 − 1

β

)
δ2

[
Γ

(
1 − 2

β

)
− Γ2

(
1 − 1

β

)]

Reversed Fréchet λ − δΓ

(
1 − 1

β

)
δ2

[
Γ

(
1 − 2

β

)
− Γ2

(
1 − 1

β

)]

Logistic α π2β2/3

Proof. Because of the definition of conditional probability we have

FX|X≤x0
(x) = Pr(X ≤ x|X ≤ x0)

=
Pr ((X ≤ x) ∩ (X ≤ x0))

Pr(X ≤ x0)

=
Pr ((X ≤ x) ∩ (X ≤ x0))

FX(x0)

=





Pr(X ≤ x)

FX(x0)
=

FX(x)

FX(x0)
, if x < x0,

Pr(X ≤ x0)

FX(x0)
= 1, if x ≥ x0.
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For the left truncation we have

FX|X>x0
(x) = Pr(X ≤ x|X > x0)

=
Pr ((X ≤ x) ∩ (X > x0))

Pr(X > x0)

=
Pr(x0 < X ≤ x)

1 − FX(x0)

=

{
0, if x ≤ x0,
FX(x) − FX(x0)

1 − FX(x0)
, if x > x0.

Finally, for truncation on both sides, we have

FX|x0<X≤x1
(x) = Pr(X ≤ x|x0 < X ≤ x1)

=
Pr ((X ≤ x) ∩ (x0 < X ≤ x1))

Pr(x0 < X ≤ x1)

=
Pr(x0 < X ≤ min(x, x1))

FX(x1) − FX(x0)

=





0, if x ≤ x0,
FX(x) − FX(x0)

FX(x1) − FX(x0)
, if x0 < x ≤ x1,

1, if x > x1.

Example 3.11 (Lifetime). The remaining lifetime, X, in years of a patient
after suffering a heart attack has a cdf

FX(x) =





0, if x < 0,
1 − e−λx

1 − e−50λ
, if 0 ≤ x < 50,

1, if x ≥ 50.

If a given patient suffered a heart attack 30 years ago, determine the cdf of the
remaining lifetime.

Before solving this problem, it is worthwhile mentioning that the given vari-
able is a right-truncated exponential distribution, which implies that no patient
can survive above 50 years after suffering a heart attack.

Since the patient suffered a heart attack 30 years ago, we must determine
the cdf of the random variable (X − 30) conditioned by X ≥ 30. Then, we ask
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for the truncated distribution on the left at 30 and translated 30 units, that is,

FX(x) =





0, if x < 0,
e−30λ − e−λ(x+30)

e−30λ − e−50λ
, if 0 ≤ x < 20,

1, if x ≥ 20.

Example 3.12 (Hospital). Suppose that the age, X (in years) of patients
entering a hospital has the following pdf:

fX(x) =

{ π

200
sin

( πx

100

)
, if 0 ≤ x < 100,

0, otherwise.

Then, the pdf for the children younger than 5 years old that enter the hospital
is the same density but truncated on the right at X = 5. Thus, we have

fX(x) =





π sin (πx/100)

100 [1 − cos (5π/100)]
, if x < 5,

0, otherwise.

Similarly, the pdf for the patients above 60 years of age is the same density
but truncated on the left at X = 60. Thus, we have

fZ(z) =





π sin (πz/100)

100 [1 + cos (60π/100)]
, if 60 ≤ z < 100,

0, otherwise.

Example 3.13 (Screw strength). A factory producing screws states that
the strength of screws, R∗, in kg/cm2 has an exponential distribution E(λ). If
all the screws are subject to a quality test consisting of applying a test stress of
10 kg/cm2 and those failing are discarded, determine the pdf of the strength,
R, of the accepted screws.

Since after the test the screws with a strength less than 10 kg/cm2, are
discarded, the resulting strength is truncated on the left at 10 kg/cm2, so that
we have

fR(x) =





λe−λx

e−10λ
= λe−λ(x−10), if x > 10 kg/cm

2
,

0, otherwise.

Note that this is just an exponential distribution E(λ) with a location shift of
10kg/cm2.

3.4 Some Other Important Functions

In this section we present four important functions associated with random vari-
ables: the survival, hazard, moment generating and characteristics functions.



3.4. Some Other Important Functions 79

3.4.1 Survival and Hazard Functions

Let X be a nonnegative random variable with pdf f(x) and cdf F (x). This
happens, for example, when the random variable X is the lifetime of an object
(e.g., a person or a machine). We have the following definitions:

Definition 3.2 (Survival function) The function

S(x) = Pr(X > x) = 1 − F (x) (3.84)

is called the survival function.

The function S(x) is called a survival function because it gives the probability
that the object will survive beyond time x.

Definition 3.3 (Hazard function) The hazard function (hazard rate or mor-
tality function) is defined as

H(x) =
f(x)

Pr(X > x)
=

f(x)

1 − F (x)
. (3.85)

Assume that X is the lifetime of an element. Then, the hazard function can
be interpreted as the probability, per unit time, that the item will fail just after
time x given that the item has survived up to time x:

H(x) = lim
ε→0

Pr(x < X ≤ x + ε|X > x)

ε

=
limε→0

F (x + ε) − F (x)

ε
1 − F (x)

=

d

dx
F (x)

1 − F (x)
=

f(x)

1 − F (x)
.

In other words, the hazard function can be interpreted as the probability of
instantaneous failure given that the item has survived up to time x.

From (3.84) and (3.85), it can be seen that

f(x) = H(x)S(x), (3.86)

that is, the pdf is the product of the hazard and survival functions. There is also
a one-to-one correspondence between the cdf, F (x), and the hazard function,
H(x). To see this, note that

d

dx
log(1 − F (x)) = −H(x),

and integrating from 0 to x we have,

log(1 − F (x)) = −
∫ x

0

H(t)dt,
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and

F (x) = 1 − exp

{
−

∫ x

0

H(t)dt

}
. (3.87)

Consequently, there is a one-to-one correspondence between F (x) and H(x),
and so one can be obtained from the other.

Note also that a comparison between (3.84) and (3.87) suggests the following
relationship between the survival and hazard functions:

S(x) = exp

{
−

∫ x

0

H(t)dt

}
. (3.88)

Example 3.14 (Weibull). Consider a Weibull random variable with cdf

F (x) = 1 − exp(−xβ), β > 0, x > 0.

The corresponding pdf is given by

f(x) = βxβ−1 exp(−xβ).

Then, the hazard function is

H(x) =
f(x)

1 − F (x)
=

βxβ−1 exp(−xβ)

exp(−xβ)
= βxβ−1.

Note that H(x) is increasing, constant, or decreasing according to β > 1, β = 1,
or β < 1, respectively.

3.4.2 Moment Generating Function

As we have already seen in this chapter and in Chapter 2, every random vari-
able (discrete or continuous) has a cumulative distribution function F (x) and
an associated pmf (P (x) in the discrete case) or pdf (f(x) in the continuous
case). In addition to these functions, random variable have two other impor-
tant functions; the moment generating function (MGF) and the characteristic
function (CF). These are discussed below.

Definition 3.4 (Moment generating function) Let X be a unidimensional
random variable with distribution function F (x). The MGF of X, denoted by
M(t), is defined for the discrete case as

M(t) = E
(
etX

)
=

∑

x∈S(X)

etxP (x), (3.89)

where P (x) is the pmf of X and S(X) is the support of P (x). For the continuous
case, the MGF is defined as

M(t) = E
(
etX

)
=

∫ ∞

−∞
etxf(x)dx, (3.90)

where f(x) is the pdf of X and M(t) is a function of t.
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For simplicity of notation we shall use M(t) instead of M(t), unless otherwise
needed. The function M(t) is called the moment generating function because
it generates all the moments of the random variable X. Namely, the kth order
moment of the random variable X is given by

E(Xk) =
d(k)

dt
M(t)

∣∣∣∣
t=0

. (3.91)

In other words, the kth order moment of the random variable X is the kth
derivative of the MGF with respect to t, evaluated at t = 0.

Example 3.15 (The MGF of a binomial random variable). The MGF
of the binomial random variable B(n, p) is

M(t) =

n∑

x=0

etx

(
n

x

)
px qn−x =

n∑

x=0

(
n

x

)(
p et

)x
qn−x =

(
p et + q

)n
.

The first two derivatives of M(t) are

d

dt
M(t) = n

(
pet + (1 − p)

)n−1
pet

and

d(2)

dt
M(t) = n

(
pet + (1 − p)

)n−1
pet + n(n − 1)

(
pet + (1 − p)

)n−2
p2e2t,

respectively. Then, substituting zero for t in the above two equations, we obtain
the first two moments, that is,

E(X) = np (3.92)

and

E(X2) = np + n(n − 1)p2, (3.93)

from which the variance is obtained as

σ2 = E(X2) − [E(X)]2 = np(1 − p). (3.94)

The MGF for some other random variables are given in Table 3.4.

3.4.3 Characteristic Function

The MGF does not always exist, which means that not every random variable
has a MGF. A function that always exists is the characteristic function, which
is defined next.
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Table 3.4: Moment Generating Functions of Some Common Random Variables.

Discrete Distribution Continuous Distribution

Name M(t) Name M(t)

Dirac et Uniform
etb − eta

t(b − a)

Bernoulli pet + (1 − p) Exponential

(
1 −

t

λ

)
−1

Binomial
(
pet + (1 − p)

)n
Gamma

(
1 −

t

λ

)
−k

Geometric
pet

1 − (1 − p)et
Log-gamma etαΓ(1 + tβ)Γ(1 − tβ)

Negative
binomial

[
pet

1 − (1 − p)et

]r

Normal exp

{
tµ −

σ2t2

2

}

Poisson exp
{

λ(et − 1)
}

χ2 exp{tλ/(1 − 2t)}

(1 − 2t)n/2

Multinomial

[
k∑

j=1

pjetj

]n

Logistic etαΓ(1 + βt)Γ(1 − βt)

Definition 3.5 (Characteristic function) Let X be a unidimensional ran-
dom variable with distribution function F (x); its characteristic function, de-
noted by ψX(t), is defined for the discrete case as

ψX(t) =
∑

x∈S(X)

eitxP (x), (3.95)

where P (x) is the pmf of X and S(X) is the support of P (x). For the continuous
case, it is defined as

ψX(t) =

∫ ∞

−∞
eitxf(x)dx, (3.96)

where f(x) is the pdf of X. Note that, in both cases, ψX(t) is a complex function.

For simplicity of notation we shall use ψ(t) instead of ψX(t), unless otherwise
needed. Before we discuss the importance of the characteristic function, let us
derive it for some random variables.

Example 3.16 (Characteristic function of a discrete uniform random
variable). The characteristic function of the discrete uniform random variable
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(see Section 2.2.1, which has the pmf

P (x) =
1

n
, x = 1, 2, . . . , n,

is

ψ(t) =
∑

x

ei txP (x) =
∑

x

eitx 1

n
= (eit + e2it + . . . + enit)/n.

Example 3.17 (Characteristic function of a continuous uniform ran-
dom variable). The characteristic function of the continuous uniform random
variable, U(0, a), with pdf function

f(x) =
1

a
, 0 ≤ x ≤ a,

is

ψ(t) =

∫ a

0

eitx 1

a
dx =

1

a

eitx

it

∣∣∣∣
a

0

=
eita − 1

ita
.

Example 3.18 (Characteristic function of a binomial random vari-
able). The characteristic function of the binomial random variable B(n, p),
with pmf

P (x) =

(
n

x

)
px qn−x, x = 0, 1, . . . , n

is

ψ(t) =

n∑

x=0

eitx

(
n

x

)
px qn−x =

n∑

x=0

(
n

x

)(
p eit

)x
qn−x =

(
p eit + q

)n
.

Table 3.5 gives the characteristic functions of the most common distributions.
The characteristic function makes the calculations of moments easy. It also helps
sometimes in the identification of distributions of sums of independent random
variables.

The most important properties (applications) of the characteristic function
are:

1. The characteristic function always exists.

2. ψ(0) = 1.

3. −1 ≤ ψ(t) ≤ 1.
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Table 3.5: Characteristic Functions of Some Common Random Variables.

Discrete Distribution Continuous Distribution

Name ψ(t) Name ψ(t)

Dirac eit Uniform
eitb − eita

it(b − a)

Bernoulli peit + (1 − p) Exponential

(
1 −

it

λ

)
−1

Binomial
(
peit + (1 − p)

)n
Gamma

(
1 −

it

λ

)
−k

Geometric
peit

1 − (1 − p)eit
Log-gamma eitαΓ(1 + itβ)Γ(1 − itβ)

Negative
binomial

[
peit

1 − (1 − p)eit

]r

Normal exp

{
itµ −

σ2t2

2

}

Poisson exp
{

λ(eit − 1)
}

χ2 exp{itλ/(1 − 2it)}

(1 − 2it)n/2

Multinomial

[
k∑

j=1

pjeitj

]n

Logistic eitαΓ(1 + iβt)Γ(1 − iβt)

4. If Z = aX+b, where X is a random variable and a and b are real constants,
we have

ψZ(t) = eitbψX(at), (3.97)

where ψZ(t) and ψX(t) are the characteristic functions of Z and X, re-
spectively.

5. The characteristic function of the sum of two independent random vari-
ables is the product of their characteristic functions:

ψX+Y (t) = ψX(t)ψY (t). (3.98)

6. Suppose that X1, . . . ,Xn is a set of n independent random variables
with characteristic functions ψX1

(t), . . . , ψXn
(t), respectively. Let C =∑n

i=1 aiXi be a linear combination of the random variables. Then, the
characteristic function of C is given by

ψC(t) =

n∏

i=1

ψXi
(ait). (3.99)
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7. The characteristic function of the random variable R, which is the sum of
a random number N of identically and independently distributed random
variables X1, . . . ,XN is given by

ψR(t) = ψN

(
log ψX(t)

i

)
, (3.100)

where ψX(t), ψR(t) and ψN (t) are the characteristic functions of Xi, R,
and N , respectively.

Example 3.19 (Sum of normal random variables). Let Z1, . . . , Zn be
independent normal random variables N(0, 1) with characteristic function

ψZ(t) = e−t2/2.

Also, let S = Z1 + . . . + Zn and M = S/
√

n. Then, according to Property 5,
the characteristic function of S is

ψS(t) = [ψZ(t)]
n

,

and, according to Property 4, the characteristic function of M is

ψM (t) = ψS

(
t/
√

n
)

=
[
ψZ

(
t/
√

n
)]n

= exp

(
−1

2

(
t√
n

)2

n

)
= e−t2/2, (3.101)

which shows that M = (Z1 + . . .+Zn)/
√

n has the same characteristic function
as Zi.

Example 3.20 (Stability of the Gamma family with respect to scale
changes). Let X be a Gamma G(θ, λ) random variable with characteristic
function

ψX(t) =

(
1 − it

θ

)−λ

and Y = cX. Then, by Property 4 we have

ψY (t) = ψX(ct) = ψG(θ,λ)(ct) =

(
1 − ict

θ

)−λ

=

(
1 − it

θ/c

)−λ

= ψG(θ/c,λ)(t),

which shows that the random variable Y is G(θ/c, λ), that is, the Gamma family
is stable with respect to scale changes.

Example 3.21 (Stability of the uniform family). Let X be uniform
U(a, b), with characteristic function

ψX(t) =
eitb − eita

it(b − a)
.
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Then, by Property 4 the characteristic function of the random variable Y =
cX + d is

ψY (t) = eitd ψX(ct) = eitd eitbc − eitac

ict(b − a)

=
eit(cb+d) − eit(ca+d)

it(cb − ca)
=

eit(cb+d) − eit(ca+d)

it[(cb + d) − (ca + d)]
,

which shows that Y ∼ U(ca + d, cb + d).

As indicated, the kth order moment E(Xk) can be easily calculated from
the characteristic function as

E(Xk) =
ψ(k)(0)

ik
. (3.102)

Example 3.22 (Moments of the Bernoulli random variable). Since the
characteristic function of the Bernoulli random variable is

ψ(t) = peit + q,

using (3.102) we have

E(Xk) =
ψ(k)(0)

ik
=

pik

ik
= p.

This shows that all moments are equal to p.

Example 3.23 (Moments of the Gamma random variable). Since the
characteristic function of the Gamma G(θ, λ) random variable is

ψ(t) =

(
1 − it

θ

)−λ

,

its moments with respect to the origin are

E(Xk) =
ψ(k)(0)

ik
=

λ (λ + 1) . . . (λ + k − 1)

θk
.

3.5 Multivariate Continuous Random Variables

In Section 3.2 we dealt with random variables, one at a time. In some practical
situations, we may need to deal with several random variables simultaneously.
In this section, we describe models that deal with multidimensional random
variables.
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3.5.1 Joint Probability Density Function

Let X = {X1, . . . ,Xn} be n-dimensional continuous random variable, with sup-
port S(Xi), i = {1, 2, . . . , n}. The pdf of this multivariate random variable is
given by f(x1, . . . , xn). This is called the joint pdf. The joint pdf has n argu-
ments, x1, . . . , xn, one for each of the variables.

The pdf satisfies the following properties:

f(x1, . . . , xn) ≥ 0,

and ∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , xn)dx1 . . . dxn = 1.

Note that for any continuous n-dimensional random variable, we have Pr(X1 =
x1, . . . ,Xn = xn) = 0.

3.5.2 Joint Cumulative Distribution Function

The joint cdf is defined in an analogous manner to that used for the univariate
case:

F (x) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn) =

∫ xn

−∞
. . .

∫ x1

−∞
f(t1, . . . , tn)dt1 . . . dtn.

When n = 2, we have a bivariate random variable.

Example 3.24 (Bivariate cumulative distribution function). The cdf of
a bivariate random variable (X1,X2) is

F (x1, x2) =

∫ x2

−∞

∫ x1

−∞
f(t1, t2)dt1dt2.

The relationship between the pdf and cdf is

f(x1, x2) =
∂2F (x1, x2)

∂x1 ∂x2
.

Among other properties of a two-dimensional cdf, we mention the following:

1. F (∞,∞) = 1.

2. F (−∞, x2) = F (x1,−∞) = 0.

3. F (x1 + a1, x2 + a2) ≥ F (x1, x2), where a1, a2 ≥ 0.

4. P (a1 < X1 ≤ b1, a2 < X2 ≤ b2) = F (b1, b2) − F (a1, b2) − F (b1, a2) +
F (a1, a2). This formula is illustrated in Figure 3.12.
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A

b1 X1
a1

X2

a2

b2

Figure 3.12: An illustration of computing the probability of a rectangle in terms
of the joint cdf associated with its vertices.

3.5.3 Marginal Probability Density Functions

From the joint pdf we can obtain marginal probability density functions, one
marginal for each variable. The marginal pdf of one variable is obtained by
integrating the joint pdf over all other variables. Thus, for example, the marginal
pdf of X1, is

f(x1) =

∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , xn)dx2 . . . dxn.

A multidimensional random variable is said to be continuous if its marginals are
continuous.

The probabilities of any set B of possible values of a multidimensional con-
tinuous variable can be calculated if the pdf, written as f(x) or f(x1, . . . , xn),
is known just by integrating it in the set B. For example, the probability that
Xi belongs to a given region, say, ai < Xi ≤ bi for all i, is the integral

Pr(a1 < X1 ≤ b1, . . . , an < Xn ≤ bn) =

∫ bn

an

. . .

∫ b1

a1

f(x1, . . . , xn)dx1 . . . dxn.

3.5.4 Conditional Probability Density Functions

We define the conditional pdf for the case of two-dimensional random variables.
The extension to the n-dimensional case is straightforward. For simplicity of no-
tation we use (X,Y ) instead of (X1,X2). Let then (X,Y ) be a two-dimensional
random variable. The random variable Y given X = x is denoted by (Y |X = x).
The corresponding probability density and distribution functions are called the
conditional pdf and cdf, respectively. The following expressions give the condi-
tional pdf for the random variables (Y |X = x) and (X|Y = y):

f(Y |X=x)(y|x) =
f(X,Y )(x, y)

fX(x)
, fX(x) > 0,
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and

f(X|Y =y)(x|y) =
f(X,Y )(x, y)

fY (y)
, fY (y) > 0.

It may also be of interest to compute the pdf conditioned on events different
from Y = y. For example, for the event Y ≤ y, we get the conditional cdf:

F(X|Y ≤y)(x, y) = Pr(X ≤ x|Y ≤ y) =
Pr(X ≤ x, Y ≤ y)

Pr(Y ≤ y)
=

F(X,Y )(x, y)

FY (y)
.

The corresponding pdf is given by

f(X|Y ≤y)(x, y) =
∂

∂x
F(X|Y ≤y)(x, y) =

∂

∂x

F(X,Y )(x, y)

FY (y)
.

Two random variables X and X are said to be independent if

f(Y |X=x)(y|x) = fY (y), (3.103)

or
f(X|Y =y)(x) = fX(x), (3.104)

otherwise, they are said to be dependent. This means that X and Y are inde-
pendent if the conditional pdf is equal to the marginal pdf. Note that (3.103)
and (3.104) are equivalent to

f(X,Y )(x, y) = fX(x)fY (y), (3.105)

that is, if two variables are independent, then their joint pdf is equal to the
product of their marginals. This is also true for n > 2 random variables. That
is, if X1, . . . ,Xn are independent random variables, then

f(x1, . . . , xn) = fX1
(x1) . . . fXn

(xn). (3.106)

3.5.5 Covariance and Correlation

Using the marginal pdfs, fX1
(x1), . . . , fXn

(xn), we can compute the means,
µ1, . . . , µn, and variances, σ2

1 , . . . , σ
2
n using (3.9) and (3.11), respectively. We

can also compute the covariance between every pair of variables. The covariance
between Xi and Xj , denoted by σij , is defined as

σij =

∫

xi∈S(Xi)

∫

xj∈S(Xj)

(xi − µi)(xj − µj)f(xi, xj)dxjdxi, (3.107)

where f(xi, xj) is the joint pdf of Xi and Xj , which is obtained by integrating
the joint pdf over all variables other than Xi and Xj . As in the discrete case,
the correlation coefficient is

ρij =
σij

σiσj
. (3.108)
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For convenience, we usually arrange the means, variances, covariances, and
correlations in matrices. The means are arranged in a column vector and the
variances and covariances are arranged in a matrix as follows:

µ =




µ1

µ2
...

µn


 and Σ =




σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n
...

...
. . .

...
σn1 σn2 . . . σnn


 , (3.109)

where we use σii instead of σ2
i , for convenience. The vector µ is known as

the mean vector and the matrix Σ is known as the variance-covariance matrix.
Similarly, the correlation coefficients can be arranged in the following matrix:

ρ =




1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n
...

...
. . .

...
ρn1 ρn2 . . . 1


 , (3.110)

which is known as the correlation matrix. Note that both Σ and ρ are symmetric
matrices. The relationship between them is

ρ = DΣ D, (3.111)

where D is a diagonal matrix whose ith diagonal element is 1/
√

σii.

3.5.6 The Autocorrelation Function

In this section we introduce the concept of autocorrelation function, that will
be used in dependent models to be described later in Chapter 8.

Definition 3.6 (Autocorrelation function) Let X1, . . . be a set of random
variables with the same mean and variance, and given by E(Xi) = µ and
Var(Xi) = σ2

X . The covariance between the random variables Xi and Xi+k sep-
arated by k intervals (of time), which under the stationarity assumption must
be the same for all i, is called the autocovariance at lag k and is defined by

γk = cov(Xi,Xi+k) = E[(Xi − µ)(Xi+k − µ)]. (3.112)

The autocorrelation function at lag k is

ρk =
E[(Xi − µ)(Xi+k − µ)]√

E[(Xi − µ)2]E[(Xi+k − µ)2]
=

γk

σ2
X

. (3.113)

3.5.7 Bivariate Survival and Hazard Functions

Let (X,Y ) be a bivariate random variable, where X and Y are nonnegative
lifetime random variables, and let F (x, y) be an absolutely continuous bivariate
distribution function with density function f(x, y).
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Definition 3.7 The bivariate survival function is given by

S(x, y) = Pr(X > x, Y > y). (3.114)

Thus, the bivariate survival function gives the probability that the object X
will survive beyond time x and the object will survive beyond time y.

Definition 3.8 (Bivariate hazard function) The bivariate hazard function
or bivariate failure rate is given by

H(x, y) =
f(x, y)

Pr(X > x, Y > y)
. (3.115)

The above definition is due to Basu (1971). From (3.114) and (3.115), we see
that

H(x, y) =
f(x, y)

S(x, y)
. (3.116)

Note that if X and Y are independent random variables, then we have

H(x, y) = HX(x)HY (y),

where HX(x) and HY (y) are the corresponding univariate hazard functions.
Similar to the univariate case, H(x, y) can be interpreted as the probability
of failure of both items in the intervals of time [x, x + ε1) and [y, y + ε2), on
condition that they did not fail before time x and Y , respectively:

H(x, y) = lim
x→ε1,y→ε2

Pr(x < X ≤ x + ε1, y < Y ≤ y + ε2|X > x, Y > y)

ε1ε2

=
f(x, y)

Pr(X > x, Y > y)
.

Unlike in the univariate case, the bivariate hazard function does not define
F (x, y), and other types of hazard functions may be taken into consideration.

Example 3.25 (Bivariate survival function). Consider a bivariate ran-
dom variable with bivariate survival function

S(x, y) = Pr(X > x, Y > y) = (1 + x + y)
−α

, α > 0, x, y > 0,

where α > 0. The joint pdf is

f(x, y) =
∂2S(x, y)

∂x∂y
= α(α + 1) (1 + x + y)

−(α+2)
,

and the bivariate hazard function is

H(x, y) =
f(x, y)

Pr(X > x, Y > y)
= α(α + 1) (1 + x + y)

−2
.
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3.5.8 Relationship Between Bivariate CDF and Survival

Functions

Let (X,Y ) be a bivariate random variable with joint cdf

F (x, y) = Pr(X ≤ x, Y ≤ y),

and joint survival function

S(x, y) = Pr(X > x, Y > y).

The relationship between S(x, y) and F (x, y) is given by (see Fig. 3.12)

S(x, y) = 1 + F (x, y) − FX(x) − FY (y), (3.117)

where FX(x) and FY (y) are the cdf of the marginals.

3.5.9 Joint Characteristic Function

The characteristic function can be generalized to n dimensions as follows.

Definition 3.9 (n-dimensional characteristic function) Let X = (X1, . . .,
Xn) be a n-dimensional random variable. Its characteristic function is defined
as

ψX(t) =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
ei(t1x1+...+tnxn)dFX(x1, . . . , xn),

where FX(x1, . . . , xn) is the cdf of X and t = (t1, . . . , tn).

3.6 Common Continuous Multivariate Models

3.6.1 Bivariate Logistic Distribution

The bivariate logistic distribution with joint cdf,

F (x, y) =
1

1 + e−(x−λ)/σ + e−(y−δ)/τ
, −∞ < x, y < ∞, (3.118)

where −∞ < λ, δ < ∞ and σ, τ > 0, was introduced by Gumbel (1961). The
corresponding joint density function is

f(x, y) =
2e−(x−λ)/σ−(y−δ)/τ

στ
[
1 + e−(x−λ)/σ + e−(y−δ)/τ

]3 , −∞ < x, y < ∞. (3.119)

From Equation (3.118), by letting x or y go to ∞, we obtain the marginal
cumulative distribution functions of X and Y :

FX(x) =
1

1 + e−(x−λ)/σ
and FY (y) =

1

1 + e−(y−δ)/τ
, (3.120)
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which are univariate logistic distributions. The conditional density function of
X|Y is

fX|Y (x|y) =
2e−(x−λ)/σ(1 + e−(y−δ)/τ )2

σ
[
1 + e−(x−λ)/σ + e−(y−δ)/τ

]3 , (3.121)

and the conditional mean of X given Y = y is

E(X|Y = y) = λ + σ − σ log(1 + e−(y−δ)/τ ). (3.122)

3.6.2 Multinormal Distribution

Let X = (X1, . . . ,Xn) be an n-dimensional normal random variable, which is
denoted by N(µ,Σ), where µ and Σ are the mean vector and covariance matrix,
respectively. The pdf of X is given by

f(x) =
1

(2π)n/2
√

det(Σ)
exp

[
−(x − µ)T Σ−1(x − µ)/2

]
,

where x = (x1, . . . , xn) and det(Σ) is the determinant of Σ. The following
theorem gives the conditional mean and variance-covariance matrix of any con-
ditional variable, which is normal.

Theorem 3.2 (Conditional mean and covariance matrix) Let Y and Z
be two sets of random variables having a multivariate normal distribution with
mean vector and covariance matrix given in partitioned forms by

µ =

(
µY

µZ

)
and Σ =

(
ΣY Y ΣY Z

ΣZY ΣZZ

)
,

where µY and ΣY Y are the mean vector and covariance matrix of Y ; µZ and
ΣZZ are the mean vector and covariance matrix of Z; and ΣY Z is the covariance
of Y and Z. Then the conditional pdf of Y given Z = z is multivariate normal
with mean vector µY |Z=z and covariance matrix ΣY |Z=z, where

µY |Z=z = µY + ΣY Z Σ−1
ZZ (z − µZ), (3.123)

ΣY |Z=z = ΣY Y − ΣY Z Σ−1
ZZ ΣZY .

For other properties of multivariate normal random variables, see any multi-
variate analysis book such as Rencher (2002) or the multivariate distribution
theory book by Kotz et al. (2000).

3.6.3 Marshall-Olkin Distribution

Due to its importance, we include here the Marshall-Olkin distribution (see
Marshall and Olkin (1967)), which has several interesting physical interpreta-
tions. One such interpretation is as follows. Suppose we have a system with
two components in series. Both components are subject to a Poissonian pro-
cesses of fatal shocks, such that if a component is affected by a shock it fails.



94 Chapter 3. Continuous Probabilistic Models

Component 1 is subject to a Poissonian process with intensity λ1, Component
2 is subject to a Poissonian process with intensity λ2, and both components are
subject to a Poissonian process with intensity λ12. Let N1(x;λ1), N2(y;λ2),
and N12(max(x, y);λ12), be the number of shocks associated with first, second,
and third Poissonian processes during a period of duration x, y, and max(x, y),
respectively. Then, N1(x;λ1), N2(y;λ2), and N12(max(x, y);λ12) are Poisson
random variables with means xλ1, yλ2, and max(x, y)λ12, respectively. Thus, it
follows from the pdf of the Poisson random variable in (2.28) that the bivariate
survival function in (3.114) in this case becomes

S(x, y) = Pr(X > x, Y > y)
= Pr [N1(x;λ1) = 0, N2(y;λ2) = 0, N12(max(x, y);λ12) = 0]
= exp [−λ1x − λ2y − λ12 max(x, y)] .

This model has another interpretation using nonfatal shocks. Consider the
same model as before, but now the shocks are not fatal. Once a shock coming
from the Poisson process with intensity λ1 has occurred, there is a probability
p1 of failure of Component 1, once a shock coming from the Poisson process
with intensity λ2 has occurred, there is a probability p2 of failure of Component
2. Finally, once a shock coming from the Poisson process with intensity λ12

has occurred, there are probabilities p00, p01, p10, and p11 of failure of both
components, only Component 1, only Component 2, and no failure, respectively.
In this case we have

S(x, y) = Pr (X > x, Y > y)
= exp [−δ1x − δ2y − δ12 max(x, y)] ,

(3.124)

where

δ1 = λ1p1 + λ12p01, δ2 = λ2p2 + λ12p10, and δ12 = λ12p00. (3.125)

The following is a straightforward generalization of this model to n dimensions:

S(x1, . . . , xn) = exp

[
−

n∑
i=1

λixi −
∑
i<j

λij max(xi, xj)

− ∑
i<j<k

λijk max(xi, xj , xk) − . . . − λ12...n max(x1, . . . , xn)

]
.

3.6.4 Freund’s Bivariate Exponential Distribution

Freund (1961) constructed an alternate bivariate exponential model in the fol-
lowing manner. Suppose a system has two components (C1 and C2) with their
lifetimes X1 and X2 having exponential densities

fXi
(x) = θi exp{−θi x}, x ≥ 0, θi > 0 (i = 1, 2). (3.126)

The dependence between X1 and X2 is introduced by the assumption that when
Component Ci (with lifetime Xi) fails, the parameter for X3−i changes from θ3−i
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to θ′3−i (for i = 1, 2). In this set-up, the joint density function of X1 and X2 is

fX1,X2
(x1, x2) = θ1 θ′2 exp {−θ′2 x2 − γ2 x1} for 0 ≤ x1 < x2

= θ′1 θ2 exp {−θ′1 x1 − γ1 x2} for 0 ≤ x2 < x1,

(3.127)

where γi = θ1 + θ2 − θ′i (i = 1, 2). The corresponding joint survival function is

SX1,X2
(x1, x2) =

1

γ2

{
θ1 e−θ′

2x2−γ2x1 + (θ2 − θ′2) e−(θ1+θ2)x2

}
0 ≤ x1 < x2

=
1

γ1

{
θ2 e−θ′

1x1−γ1x2 + (θ1 − θ′1) e−(θ1+θ2)x1

}
0 ≤ x2 < x1.

(3.128)

It should be noted that, under this model, the probability that Component
Ci is the first to fail is θi/(θ1 + θ2), i = 1, 2, and that the time to first failure
is distributed as Exp(θ1 + θ2). Further, the distribution of the time from first
failure to failure of the other component is a mixture of Exp(θ′1) and Exp(θ′2)
with proportions θ2/(θ1 + θ2) and θ1/(θ1 + θ2), respectively.

Block and Basu (1974) constructed a system of absolutely continuous bivari-
ate exponential distributions by modifying the above presented Marshall-Olkin’s
bivariate exponential distributions (which do have singular part). This system
is a reparameterization of Freund’s bivariate exponential distribution in (3.128)
with

λi = θ1 + θ2 − θ′3−i (i = 1, 2) and λ12 = θ′1 + θ′2 − θ1 − θ2.

For an elaborate discussion on various forms of bivariate and multivariate expo-
nential distributions and their properties, one may refer to Chapter 47 of Kotz
et al. (2000).

Exercises

3.1 Show that:

(a) The mean and variance of the uniform U(λ, β) random variable are

µ =
λ + β

2
and σ2 =

(β − λ)2

12
. (3.129)

(b) The mean and variance of an exponential random variable with pa-
rameter λ are

µ =
1

λ
and σ2 =

1

λ2
. (3.130)

3.2 The simple compression strength (measured in kg/cm2) of a given concrete
is a normal random variable:
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(a) If the mean is 300 kg/cm2 and the standard deviation is 40 kg/cm2,
determine the 15th percentile.

(b) If the mean is 200 kg/cm2 and the standard deviation is 30 kg/cm2,
give the percentile associated with a strength of 250 kg/cm2.

(c) If the mean is 300 kg/cm2, obtain the standard deviation if the 80th
percentile is 400 kg/cm2.

(d) If an engineer states that 400 kg/cm2 is the 20th percentile in the
previous case, is he right?

3.3 The occurrence of earthquakes of intensity above five in a given region is
Poissonian with mean rate 0.5 earthquakes/year.

(a) Determine the pdf of the time between consecutive earthquakes.

(b) If an engineering work fails after five earthquakes of such an intensity,
obtain the pdf of the lifetime of such a work in years.

(c) Obtain the pmf of the number of earthquakes (of intensity five or
larger) that occur in that region during a period of 10 years.

3.4 The arrivals of cars to a gas station follow a Poisson law of mean rate five
cars per hour. Determine:

(a) The probability of five arrivals between 17.00 and 17.30.

(b) The pdf of the time up to the first arrival.

(c) The pdf of the time until the arrival of the 5th car.

3.5 If the height T , of an asphaltic layer is normal with mean 6 cm and
standard deviation 0.5 cm, determine:

(a) The pdf value fT (5).

(b) The probability Pr(T ≤ 2.5).

(c) The probability Pr(|T − 6| < 2.5).

(d) The probability Pr(|T − 6| < 2.5|T ≤ 5).

3.6 Show that, as k → ∞, the log-gamma density in (3.32) tends to the
Normal(µ, σ2) density function.

3.7 Show that the cdf of Gamma in (3.26) has the following closed form for
integer θ:

F (x) = 1 −
θ−1∑

y=0

e−xxy

y!
, (3.131)

which shows that F (x) is related to the Poisson probabilities.
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3.8 Starting with the gamma pdf

1

Γ(k)
e−y yk−1, y > 0, k > 0,

show that the pdf in (3.29) is obtained by a logarithmic transformation.

3.9 A random variable X has the density in (3.29). Show that Y = −X has
the pdf

f(y) =
1

Γ(k)
e−ky exp{−e−y}, −∞ < y < ∞, k > 0,

which includes the Gumbel extreme value distribution in (3.65) as a special
case. [Hint: The shape parameter k = 1.]

3.10 A random variable X has the pdf in (3.30). Show that the MGF of X is

E
(
etX

)
= etµ Γ(k + tσ)/Γ(k). (3.132)

3.11 Show that a generalized Pareto distribution truncated from the left is also
a generalized Pareto distribution.

3.12 The grades obtained by students in a statistics course is a random variable
with cdf

F (x) =





0, if x < 0,
x

10
, if 0 ≤ x < 10,

1, if x ≥ 10.

(a) Obtain the cdf of the students with grade below 5.

(b) If the students receive at least one point just for participating in the
evaluation, obtain the new cdf for this case.

3.13 Obtain the hazard function of the exponential distribution. Discuss the
result.

3.14 A cumulative distribution function F (x) is said to be an increasing (de-
creasing) hazard function (IHF and DHF, respectively) distribution if its
hazard function is nondecreasing (nonincreasing) in x. Show that the
following properties hold:

(a) If Xi, i = 1, 2, are IHF random variables with hazard functions given
by Hi(x), i = 1, 2, then the random variable X = X1 + X2 is also
IHF with hazard function HX(x) ≤ min{H1(x),H2(x)}.

3.15 Let X be a random variable with survival function defined by (see
Glen and Leemis (1997))

S(x) = Pr(X > x) =
arctan[α(φ − x)] + (π/2)

arctan(αφ) + (π/2)
, x ≥ 0,

where α > 0 and −∞ < φ < ∞.
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i. Show that S(x) is a genuine survival function, that is, it satisfies
the conditions S(0) = 1, limx→∞ S(x) = 0 and S(x) is nonin-
creasing.

ii. Show that the hazard function

H(x) =
α

{arctan[α(φ − x)] + (π/2)}{1 + α2(x − φ)2} , x ≥ 0,

has an upside-down bathtub form.

(b) A mixture of DHF distributions is also DHF. This property is not
necessarily true for IHF distributions.

(c) Parallel and series systems of identical IHF units are IHF. For the
series systems, the units do not have to have identical distributions.

3.16 Use MGFs in Table 3.4 to derive the mean and variance of the correspond-
ing random variables in Table 3.3. [Hint: Find the first two derivatives of
the MGF.]

3.17 Use CFs in Table 3.5 to derive the mean and variance of the corresponding
random variables in Table 3.3. [Hint: Find the first two derivatives of the
CF.]

3.18 Let X and Y be independent random variables.

(a) Show that the characteristic function of the random variable Z =
aX + bY is ψZ(t) = ψX(at)ψY (bt), where ψZ(t) is the characteristic
function of the random variable Z.

(b) Use this property to establish that a linear combination of normal
random variables is normal.

3.19 Use the properties of the characteristic function to show that a linear
combination of independent normal random variables is another normal
random variable.

3.20 Let X1 and X2 be iid random variables with Gumbel distribution given
by

Fi(xi) = exp[− exp(−xi)], −∞ < xi < ∞; i = 1, 2.

Show that the random variable X = X1 − X2 has a logistic distribution
with cdf

FX(x) =
1

1 + e−x
, −∞ < x < ∞.

Hint: Use the characteristic function.

3.21 Consider a Gumbel bivariate exponential distribution defined by

Pr(X > x, Y > y) = exp(−ε1x − ε2y − γxy), x, y > 0,

where ε1, ε2 > 0 and 0 ≤ γ ≤ ε1ε2.
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(a) Obtain the marginal distributions and show that X and Y are inde-
pendent if and only if γ = 0.

(b) Show that the bivariate hazard function is given by

H(x, y) = (ε1 + γx)(ε2 + γy) − γ.

3.22 The bivariate survival function of the Morgenstern distribution is

S(x, y) = exp(−x − y) {1 + α [1 − exp(−x)] [1 − exp(−y)]} .

Obtain:

(a) The cdf FX,Y (x, y).

(b) The marginal cdfs FX(x) and FY (y).

(c) The conditional cdfs FX|Y =y(x|y) and FY |X=x(y|x).

3.23 The bivariate survival function of the Gumbel type I distribution is

S(x, y) = exp(−x − y + θxy).

Obtain:

(a) The cdf FX,Y (x, y).

(b) The marginal cdfs FX(x) and FY (y).

(c) The conditional cdfs FX|Y =y(x|y) and FY |X=x(y|x).

3.24 Show that the joint survival function corresponding to (3.127) is as given
in (3.128).

3.25 Show that, when θ1 + θ2 6= θ′i (i = 1, 2), the marginal density function of
Xi (i = 1, 2) is

fXi
(x)=

1

θ1+θ2−θ′i

{
(θi−θ′i)(θ1+θ2) e−(θ1+θ2)x+θ′iθ3−ie

−θ′
ix

}
, x ≥ 0,

which is indeed a mixture of two exponential distributions if θi > θ′i.

3.26 For the bivariate exponential distribution in (3.127), show that the joint
MGF of (X1,X2) is

E
(
es1X1+s2X2

)
=

1

θ1 + θ2 − s1 − s2

{
θ2

1 − s1/θ′1
+

θ1

1 − s2/θ′2

}
.

Find E(Xi), Var(Xi), Cov(X1, X2), and Corr(X1, X2).


