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2.1 Introduction

In Chapter 1 we dealt with linear programming problems where the variables
involved were real numbers. However, in many cases of real life, some variables
are not real but integers, or they are even more restricted, as binary variables,
that take values 0 or 1 only. We shall see in Chapter 7 that using integer
variables adds more difficulties to the linear programming problem, because of
the lack of continuity.

In this chapter we give some real examples of integer linear programming
problems (ILPP), in some of which we use binary variables.

2.2 The 0–1 Knapsack Problem

An important class of integer programming problems are those where the vari-
ables of the problem can take only two values. This situation can be formulated
using the 0–1 variables. Each value is associated with one of the possibilities of
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a binary choice:

x =

{
1 if the event occurs
0 otherwise

A classical problem involving this type of variable is the 0–1 knapsack problem.
Consider a person who must pack a hike. Assume that there exist a set of items
that have a utility for this person, and there exist a limitation on the number of
items the person can carry. The problem consists of choosing a subset of items
to maximize the sum of the utilities while not exceeding the carrying capacity
of the hiker.

The problem has the following elements:

1. Data

n: the number of objects

aj : the weight of the object j

cj : the utility of object j

b: the capacity of the knapsack (hiker)

2. Variables

xj =

{
1 if the object j is put in the knapsack
0 otherwise

(2.1)

3. Constraints. The capacity is not exceeded:

n∑

j=1

ajxj ≤ b

4. Function to be maximized. The objective of this problem is to maxi-
mize the utility, which can be stated as

Z =

n∑

j=1

cjxj

Example 2.1 (The ship owner). A ship owner has a freighter with a capac-
ity of 700 tons. The firm transports containers of different weights for a specific
route. On the current trip the ship owner could ship some of the following
containers:

Container c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Weight 100 155 50 112 70 80 60 118 110 55
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The decisionmaker’s firm would determine the freight such that it maximizes
the transported load.

This problem could be formulated as a 0–1 knapsack problem. The variables
are:

xj =

{
1 if container j is shipped
0 otherwise

The objective is to maximize the freight that will be transported by the freighter:

Z = 100x1 + 155x2 + 50x3 + 112x4 + 70x5

+80x6 + 60x7 + 118x8 + 110x9 + 55x10

and the constraint is that the freight cannot exceed the capacity of the ship:

100x1 + 155x2 + 50x3 + 112x4 + 70x5 + 80x6

+60x7 + 118x8 + 110x9 + 55x10 ≤ 700

Note that here ai = ci; ∀i, because the utility coincides with the weight.
The optimal freight consists of using the containers: c1, c3, c4, c5, c6, c7, c8, c9.

The optimal value is 700, which means that the ship is full.

2.3 Identifying Relevant Symptoms

Let D = {D1, D2, . . . , Dn} be a given set of possible diseases, and assume that
physicians, when identifying the diseases associated with a set of patients, usu-
ally base their decisions on a set of symptoms S = {S1, S2, . . . , Sm}. Assume
that we want to identify a minimal subset of symptoms Sa ⊂ S, such that all
diseases can be perfectly distinguished from each other according to the levels of
symptoms in Sa. Finding the minimum set of symptoms is important because
it implies minimizing the cost of the diagnosis process.

The problem has the following elements:

1. Data

D: the set of diseases

S: the set of symptoms

n: the number of diseases (cardinal of D)

m: the number of symptoms (cardinal of S)

cij : the level of symptom j associated with disease i

dikj : discrepancy between diseases i and k due to symptom j

a: the minimum required discrepancy level (to be explained below)



        

28 Chapter 2. Mixed-Integer Linear Programming

2. Variables

xj =

{
1 if the symptom j belongs to Sa
0 otherwise

(2.2)

3. Constraints. The subset Sa must be sufficient for a clear distinction of
all diseases:

m∑

j=1

xjdikj ≥ a; ∀i, k ∈ {1, 2, . . . , n}, i 6= k (2.3)

where

dikj =

{
1 if cij 6= ckj
0 if cij = ckj

(2.4)

measures the discrepancy between diseases Di and Dk in terms of the
symptoms in Sa, and a > 0 is the discrepancy level we desire. Note that
the larger the value of a, the larger the number of required symptoms
(cardinal of Sa). In this case

m∑

j=1

xjdikj

coincides with the number of symptoms in S0 that take different levels for
diseases Di and Dk, and a is the corresponding minimum number, for any
pair (Di, Dk) of diseases, that are required to have an acceptable subset
Sa. This means that a − 1 symptoms can be missing and we still can
differentiate any pair of diseases (Di, Dk).

4. Function to be minimized. The objective of this problem is to minimize
the number of selected symptoms, the cardinal of the set S0:

Z =

m∑

j=1

xj .

The problem as stated above allows us to determine a minimal subset S0,
associated with a = 0, of symptoms of the set S which allows identification of
the diseases in the set D. However, if the diseases are to be identified with some
missing information, the set S0 can become useless. So, we normally use a > 0.

Once we have selected the relevant symptoms to identify all diseases, we can
determine the relevant symptoms associated with disease i. This can be done
by minimizing

Z =

m∑

j=1

xj

subject to
m∑

j=1

xjdikj > a; k ∈ {1, 2, . . . , n}, i 6= k (2.5)
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Table 2.1: Symptoms associated with all diseases in Example 2.2

Symptoms
Disease S1 S2 S3 S4 S5 S6 S7 S8

D1 2 3 1 1 1 2 1 2
D2 1 1 1 1 3 1 2 1
D3 3 4 2 3 2 2 3 2
D4 2 2 2 2 2 1 2 3
D5 1 1 1 2 1 1 1 2

Table 2.2: Relevant symptoms for all diseases in Example 2.2 for a = 1

Disease Relevant symptoms
D1 {2}
D2 {5}
D3 {2}
D4 {2}
D5 {2, 5}

In other words, we find the minimal subset of Sai ⊆ S such that disease i has
different symptoms when compared with all other diseases. This subset is called
the set of relevant symptoms for disease i.

Example 2.2 (Identifying relevant symptoms). Assume that we have
the set of diseases D = {D1, D2, D3, D4, D5} and the set of symptoms S =
{S1, S2, . . . , S8}. Assume also that the symptoms associated with the different
diseases are those listed in Table 2.1.

Then, minimizing the sum Z =
∑m
j=1 xj subject to (2.3), and two values

of a, we conclude that the set of symptoms {2, 5} is a minimal sufficient set of
symptoms able to distinguish the 5 diseases. However, if we use a discrepancy
level of a = 3, the required set is {1, 2, 4, 5, 7}. Note that in this case we can
have two missing symptoms and the diagnostic would be still correct.

Finally, Table 2.2 shows the required set of relevant symptoms for each
disease and a = 1. Note in Table 2.1 that symtom 2 is sufficient to identify
diseases D1, D3, and D4, and that symptom 5 is sufficient to identify disease
D2. However, we need symptoms 2 and 5 to identify disease D5.

2.4 The Academy Problem

The Academy of Engineering has m members and is involved in the process
of selecting r new members among a set of J candidates. To this end, each
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actual member is allowed to support from a minimum of 0 to a maximum
of r candidates. The r candidates with the largest number of supports are
incorporated to the academy.

Before the final selection process, a previous test is performed to know the
degree of support of each candidate. In this process each actual member can
assign the scores in the list p to a maximum of S candidates, but need not to
assign all scores.

Only the sum of scores of each candidate is known. The problem consists of
knowing the minimum and maximum number of final supports of each candidate
based on the results of the test, assuming that assigning a score to one candidate
is equivalent to supporting such candidate by the actual member assigning the
score.

The problem has the following elements:

1. Data

I: the actual number of members in the Academy of Engineering

J : the number of candidates

S: the number of different scores that can be assigned

ps: the s-th score

Cj : the total score associated with candidate j

2. Variables

xijs: a binary variable that takes value 1 if member i assigns score ps to
candidate j; otherwise, it takes value 0

3. Constraints

• Each member can assign at the most one score to each candidate:

S∑

s=1

xijs ≤ 1; ∀i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J}

• Each member can assign score ps to at most one candidate:

J∑

j=1

xijs ≤ 1; ∀i ∈ {1, 2, . . . , I}, s ∈ {1, 2, . . . , S}

• The total score obtained by each candidate must be the given value:

I∑

i=1

S∑

s=1

psxijs = Cj ; ∀j ∈ {1, 2, . . . , J}
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Table 2.3: Total scores received by the 8 candidates in Example 2.3

Candidate 1 2 3 4 5 6 7 8
Received score 71 14 139 13 137 18 24 8

4. Function to be optimized. The objective of this problem consists of
minimizing and maximizing this function for each candidate:

Zj =

I∑

i=1

S∑

s=1

xijs, j ∈ {1, 2, . . . , J} (2.6)

Example 2.3 (Academy problem). Assume that the Academy of Engineer-
ing has 20 members and that r = 4 new members are to be selected among J = 8
candidates, and that p ≡ {10, 8, 3, 1}, which implies S = 4.

The available information consists of the last row in Table 2.3, namely, the
total scores received by each candidate in the first round, and we look for the
number of supports of each candidate (see the second last row in Table 2.4).

The actual scores received by each candidate from each actual member are
those given in Table 2.4 (note that this information is not available, but has
been given only for illustration).

If we minimize and maximize (2.6) for all candidates, we get the results
shown in Table 2.5. The following conclusions can be drawn from this table:

1. Only candidates 3 and 5 have at least 15 guaranteed supports. Note that
the next one, candidate 1, has only 8 guaranteed supports.

2. It is not clear from Table 2.5 that candidates 3 and 5 enter the academy,
since candidates 6, 1 and 7 have a maximum of 18, 20, and 20 guaranteed
supports, and they can get only 15, 16, or 17.

3. To know, before the final election, whether candidate 3 enters the academy,
it is necessary to add new constraints to the problem. For example, adding
that the total number of supports of candidates 1, 5, 6, and 7 are larger
than the total number of supports of candidate 3:

I∑
i=1

S∑
s=1

xi1s ≥
I∑
i=1

S∑
s=1

xi3s

I∑
i=1

S∑
s=1

xi5s ≥
I∑
i=1

S∑
s=1

xi3s

I∑
i=1

S∑
s=1

xi6s ≥
I∑
i=1

S∑
s=1

xi3s

I∑
i=1

S∑
s=1

xi7s ≥
I∑
i=1

S∑
s=1

xi3s
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Table 2.4: Scores received by the 8 candidates in Example 2.3

Candidate
Actual member 1 2 3 4 5 6 7 8

1 3 – 10 – 8 1 – –
2 1 – 10 – 8 3 – –
3 – 1 – 3 10 – 8 –
4 – 3 10 – 8 1 – –
5 3 – 8 – 10 – 1 –
6 1 – 10 – 8 – 3 –
7 10 – 8 – 3 1 – –
8 3 – 10 1 8 – – –
9 8 – 3 – 10 1 – –
10 – 3 10 – 1 – 8 –
11 8 – 1 – 10 – 3 –
12 – – – – 10 – – –
13 – – 10 – 8 – – –
14 10 – – 1 3 – – 8
15 3 – 10 – 8 – 1 –
16 10 – 1 – 8 – 3 –
17 1 3 10 8 – – – –
18 1 3 8 – 10 – – –
19 1 – 10 – 3 8 – –
20 8 1 10 – 3 – – –

Number of supports 15 6 17 4 19 7 6 1
Total score 71 14 139 13 137 18 24 8

Table 2.5: Actual and bounds for the number of supports for the 8 candidates
in Example 2.3

Candidate
Supports 1 2 3 4 5 6 7 8
Minimum 8 3 15 2 15 2 3 1
Maximum 20 14 20 13 20 18 20 8
Actual 15 6 17 4 19 7 6 1
Scores 71 14 139 13 137 18 24 8

Since this leads to an unfeasible problem, then we can guarantee that
candidate 3 enters the Academy of Engineering.
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2.5 School Timetable Problem

This example is a simple instance of the “school timetable problem”. It consists
of allocating classrooms and teaching hours for the subjects of one academic
program divided in blocks.

We assume that nc classrooms and nh teaching hours are available, respec-
tively, to teach ns subjects. These subjects are grouped by (1) academic blocks
and (2) instructors. Binary variable v(s, c, h) is equal to 1 if subject s is taught
in classroom c at hour h, and 0 otherwise.

We denote the set of all subjects, by Ω, the set of the ni subjects taught by
instructor i, by Ωi, and the set of the nb subjects grouped in academic block b,
by ∆b. Indices s, c, h, i, and b indicate respectively subject, classroom, hour,
instructor and block.

The problem has the following elements:

1. Data

nc: the number of classrooms

nh: the number of available teaching hours

ns: the number of subjects

ni: the number of subjects taught by instructor i

nb: the number of academic blocks

Ω: the set of all subjects to be taught

Ωi: the set of subjects taught by instructor i

∆b: the set of subjects belonging to academic block b

2. Variables

v(s, c, h): a binary variable that takes value 1 if subject s is taught in classroom
c at hour h, and 0 otherwise

3. Constraints

(a) Every instructor teaches all his/her subjects:

∑

s∈Ωi

nc∑

c=1

nh∑

h=1

v(s, c, h) = ni, ∀i (2.7)

(b) Every instructor teaches at most 1 subject every hour:

∑

s∈Ωi

nc∑

c=1

v(s, c, h) ≤ 1, ∀h, ∀i (2.8)
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(c) Every subject is taught once:

nc∑

c=1

nh∑

h=1

v(s, c, h) = 1, ∀s (2.9)

(d) In every classroom–hour combination at most 1 subject is taught:

∑

s∈Ω

v(s, c, h) ≤ 1, ∀c, ∀h (2.10)

(e) At every hour, at most 1 subject of any academic block is taught:

∑

s∈∆b

nc∑

c=1

v(s, c, h) ≤ 1, ∀h, ∀b (2.11)

4. Function to be optimized. Formulating an appropriate objective func-
tion to be minimized is not an easy task. However, in this example we
consider a very simple objective function. The target is to produce a
compact timetable. It can be formulated by minimizing

∑

s∈Ω

nc∑

c=1

nh∑

h=1

(c+ h) v(s, c, h)

subject to constraints (2.7)–(2.10).

This optimization function has been chosen because it penalizes the v(s, c, h)
variables taking on value 1 for high values of c and h. Thus, it tries to
compact the teaching classrooms and hours. The smallest the classroom
number and the hour the better.

Example 2.4 (School timetable problem). Consider 3 classrooms, 5 teach-
ing hours, 8 subjects, 2 instructors, and 2 course blocks. The set of all subjects
is Ω = {s1, s2, . . . , s8}, the set of subjects of instructor 1 is Ω1 = {s1, s2, s8}, the
set of subjects of instructor 2 is Ω2 = {s3, s4, s5, s6, s7}, the set of subjects of
academic block 1 is ∆1 = {s1, s2, s3, s4}, and the subjects of academic block 2 is
∆2 = {s5, s6, s7, s8}. Note that Ω1∪Ω2 = Ω and Ω1∩Ω2 = ∅, and ∆1∪∆2 = Ω
and ∆1 ∩∆2 = ∅.

The solution is provided in the tables below:

h = 1 h = 2 h = 3 h = 4 h = 5
c = 1 s7 s6 s3 s4 s5

c = 2 s2 s1 s8 – –
c = 3 – – – – –

The schedule for instructor 1 is
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h = 1 h = 2 h = 3 h = 4 h = 5
c = 1 – – – – –
c = 2 s2 s1 s8 – –
c = 3 – – – – –

The schedule for instructor 2 is

h = 1 h = 2 h = 3 h = 4 h = 5
c = 1 s7 s6 s3 s4 s5

c = 2 – – – – –
c = 3 – – – – –

The schedule for academic block 1 is

h = 1 h = 2 h = 3 h = 4 h = 5
c = 1 – – s3 s4 –
c = 2 s2 s1 – – –
c = 3 – – – – –

The schedule for academic block 2 is

h = 1 h = 2 h = 3 h = 4 h = 5
c = 1 s7 s6 – – s5

c = 2 – – s8 – –
c = 3 – – – – –

2.6 Models of Discrete Location

In this example we describe one of the discrete location models or, more precisely,
the capacitated facility location problem. This deals with deciding where to
locate facilities within a finite set of sites, taking into account the needs of the
clients to be served, and optimizing certain economic criteria. Usually, setting
up a facility involves significant costs that do not depend on the production
level of the facility.

The problem is motivated by a number of potential applications. For exam-
ple, several plants are to be set up at some points of a transportation system
to maximize the benefit by means of minimizing the production and shipment
costs. Figure 2.1 shows a solution to the problem of locating plants that provide
service to a set of clients.

Thus, the main elements in this problem are

1. Data

I: a set {1, . . . , n} of n clients

J : a set {1, . . . ,m} of m sites where facilities can be located
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Figure 2.1: Solution of the example of the capacitated facility location problem.

fj : the fixed cost of the opening facility placed at j for j ∈ J
cij : the profit per unit of sale of the goods originated at facility j to client

i. Usually, the cij depend on the production costs at facility j, the
demand and selling price for client i, and the transportation costs
between client i and facility j

uj : the capacity of the facility located at j

bi: the demand of the ith client

2. Variables. The variables involved in this problem are the following:

yj : a binary variable to model the choice of “opening” a facility at the
site j. This is defined as follows:

yj =

{
1 if facility j is open
0 otherwise

(2.12)

xij : the quantity of commodities sent from facility j to client i.

3. Constraints. The constraints in this problem are as follows. Each client’s
demand must be satisfied:

∑

j∈J
xij = bi, ∀i ∈ I (2.13)

Since a client i cannot be served from j unless a facility is placed at j, we
have the following constraints:

∑

i∈I
xij ≤ ujyj , ∀j ∈ J (2.14)

These linear inequalities take into account that the client i can be served
from j only if a facility is located at node j, since yj = 0 implies that
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Table 2.6: City demands

City Demand
C1 1.5
C2 2.0
C3 3.0
C4 4.0
C5 2.5
C6 1.0
C7 2.0

xij = 0, ∀i and yj = 1 yields the constraint
∑
i∈I xij ≤ uj , which means

that the production level of the facility j cannot exceed its capacity. In
addition, the variable constraints are

yj ∈ {0, 1}, ∀j ∈ J (2.15)

xij ≥ 0 ∀i ∈ I, ∀j ∈ J (2.16)

4. Function to be optimized. In the so-called strong formulation of the
uncapacitated facility location problem we maximize

Z =
∑

i∈I

∑

j∈J
cijxij −

∑

j∈J
fjyj (2.17)

In this model, the allocation problem in the case of unlimited capacity of the
sites is solved easily. In reality, in the presence of a feasible set of locations,
the allocation problem is solved by means of assigning each client to the most
profitable open facility. However, it may be unrealistic to assume that a facility
can supply any number of clients. Thus, limited capacities must be dealt with.

Example 2.5 (Location of industrial plants). A company wishes to build
various industrial plants to supply 7 cities with a certain product. The de-
mand of these cities based on demographic factors and social characteristics is
estimated. These values are shown in Table 2.6.

A study has indicated 6 possible sites for these industrial plants. It is sup-
posed that all the plants have the same characteristics. The maximum produc-
tion capacity per plant is 6 units. The cost of investment recovering has been
calculated in 10 monetary units for the period of study.

Table 2.7 shows the profit achieved by selling, to city i, one unit manufac-
tured in one plant located at site j.

The decisionmaker needs to determine the amount of plants and their lo-
cations, so that the cities demand is satisfied, and locations are such that the
demands are satisfied, and a maximum financial benefit is obtained. The opti-
mization problem associated with this decision process consists of maximizing
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Table 2.7: Benefits according to different locations

Cities (Ci)
Locations (Lj) C1 C2 C3 C4 C5 C6 C7

L1 4.0 4.5 2.5 0.5 1.0 0.5 −3.5
L2 4.0 4.5 2.5 4.2 3.5 1.5 −0.5
L3 3.5 5.0 4.0 3.5 4.5 1.5 0.0
L4 1.3 3.0 5.0 3.3 5.5 1.8 1.3
L5 0.5 1.0 1.5 5.0 4.0 5.5 3.0
L6 −1.0 0.0 1.5 3.3 4.0 4.5 2.0

the total benefit including amortization costs, subject to the constraints. So,
the problem can be stated as follows, by maximizing

Z =

7∑

i=1

6∑

j=1

cijxij −
6∑

j=1

10yj

subject to
6∑
j=1

x1j = 1.5;
6∑
j=1

x2j = 2.0

6∑
j=1

x3j = 3.0;
6∑
j=1

x4j = 4.0

6∑
j=1

x5j = 2.5;
6∑
j=1

x6j = 1.0

6∑
j=1

x7j = 2.0

(2.18)

and
6∑
i=1

xij ≤ 6yj ; j = 1, . . . , 7 (2.19)

yj ∈ {0, 1}; j = 1, . . . , 6

xij ≥ 0; i = 1, . . . , 7; j = 1, . . . , 6
(2.20)

where (2.18) and (2.19) are the demand and the production capacity constraints,
respectively.

The solution of this problem is plotted in Figure 2.1 consists of placing 3
industrial plants in locations L2, L4, and L3, and the production distribution
by cities is the Table 2.8.
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Table 2.8: Amount of production of each operating plant to be provided to each
city

Cities
Locations C1 C2 C3 C4 C5 C6 C7

L2 1.5 2.0 1.0
L4 3.0 2.5
L5 3.0 1.0 2.0

2.7 Unit Commitment of Thermal Power Units

The cost of starting up an electric power thermal unit after being offline for a
couple of days is approximately half the cost of buying a 100 m2 apartment in a
distinguished neighborhood. Therefore, the planning of the startups and shut-
downs of any thermal unit should be done carefully. The electric power thermal
unit commitment problem consists of determining, for a planning horizon, the
startup and shutdown schedule of every unit so that the electric demand is served
and total operating costs are minimized, while satisfying different technical and
security constraints.

A typical planning horizon is one day divided in hours. If time intervals are
denoted by k, the planning horizon consists of the periods

k = 1, 2, . . . ,K (2.21)

where K is typically equal to 24.

The startup cost is an exponential function of the time the unit has been
offline, but it will be considered constant (this is a reasonable simplification in
most cases). Every time a unit is started up, its startup cost is incurred, and
this can be expressed as

Cjyjk (2.22)

where Cj is the startup cost of unit j and yjk is a binary variable that is equal
to 1 if unit j is started up at the beginning of period k and 0, otherwise.

The shutdown cost can be expressed in a similar fashion as the startup cost;
thus

Ejzjk (2.23)

where Ej is the shutdown cost of unit j and zjk a binary variable that is equal
to 1 if unit j is shut down at the beginning of period k, and 0 otherwise.

The running costs consist of a fixed cost and a variable cost. The fixed cost
can be expressed as

Aj vjk, (2.24)
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where Aj is the fixed cost of unit j and vjk is a binary variable that is equal to
1 if unit j is online during period k and 0, otherwise.

The variable cost can be considered proportional to the unit output power:1

Bj pjk (2.25)

where Bj is the variable cost of unit j and pjk the output power of unit j during
period k.

Thermal units cannot operate below a minimum output power and above a
maximum output power. These technical constraints can be expressed as

P j vjk ≤ pjk ≤ P j vjk (2.26)

where P j and P j are respectively the minimum and maximum output powers
of unit j.

The left-hand side of the preceding constraint expresses that if unit j is online
during period k (vjk = 1), its output power should be above the minimum out-
put power. Analogously, the right-hand-side of the constraint above expresses
that if unit j is online during period k (vjk = 1), its output power should be
below the maximum output power. If vjk = 0, the preceding constraint forces
pjk = 0.

From one time period to the next one, any power unit cannot increase its
output power above a maximum power increment, called the rampup limit. This
can be written as

pjk+1 − pjk ≤ Sj (2.27)

where Sj is the maximum rampup power increment of unit j.
For the first period of the planning horizon the above constraint becomes

pj1 − P 0
j ≤ Sj (2.28)

where P 0
j is the output power of unit j just before the first period of the planning

horizon.
Similarly, any power unit cannot decrease its output power above a maximum

power decrement, which is called the rampdown power limit. Therefore

pjk − pjk+1 ≤ Tj (2.29)

where Tj is the maximum rampdown power decrement of unit j.
For the first period of the time horizon, the constraint above becomes

P 0
j − pj1 ≤ Tj (2.30)

Any unit that is online can be shut down but not started up, and analogously,
any unit that is offline can be started up but not shut down. This can be
expressed as

1A more precise modeling requires the variable cost to be a quadratic or cubic function of
the power output.
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yjk − zjk = vjk − vjk−1 (2.31)

For the first period the above constraint becomes

yj1 − zj1 = vj1 − V 0
j (2.32)

where V 0
j is a binary constant that is equal to 1 if unit j is online the period

preceding the first period of the planning horizon, and 0 otherwise. The reader
is encouraged to verify these two conditions using examples.

In every period the power demand should be satisfied, so

J∑

j=1

pjk = Dk (2.33)

where J is the number of power units and Dk the demand in period k.
For security reasons, the total output power available online should be larger

than the actual demand by a specified amount. This is formulated as

J∑

j=1

P jvjk ≥ Dk +Rk (2.34)

where Rk is the amount of required reserve (over the demand) in period k.
The main elements in this problem are:

1. Data

K: the number of time intervals

Cj : the startup cost of unit j

Ej : the shutdown cost of unit j

Aj : the fixed cost of unit j

Bj : the variable cost of unit j

P j : the minimum output power of unit j

P j : the maximum output power of unit j

Sj : the maximum rampup power increment of unit j

P 0
j : the output power of unit j just before the first period of the planning

horizon

Tj : the maximum rampdown power decrement of unit j

V 0
j : a binary constant that is equal to 1; if unit j is online the period

preceding the first period of the planning horizon, and 0, otherwise

J : the number of power units

Dk: the demand in period k

Rk: the amount of required reserve (over the demand) in period k
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2. Variables. The variables involved in this problem are the following:

yjk: a binary variable that is equal to 1, if unit j is started up at the
beginning of period k and 0, otherwise

zjk: a binary variable that is equal to 1, if unit j is shut down at the
beginning of period k, and 0, otherwise

vjk: a binary variable that is equal to 1, if unit j is online during period
k and 0, otherwise

pjk: the output power of unit j during period k

3. Constraints. The constraints in this problem are as follows. Any unit
at any time should operate above its minimum output power and below
its maximum output power, then

P jvjk ≤ pjk ≤ P jvjk ∀j, k (2.35)

Rampup constraints should be satisfied:

pjk+1 − pjk ≤ Sj , ∀j, k = 0, . . . ,K − 1 (2.36)

where
pj0 = P 0

j

Rampdown constraints should also be satisfied:

pjk − pjk+1 ≤ Tj , ∀j, k = 0, . . . ,K − 1 (2.37)

The logic of status changes (from online to offline and vice versa) should
be preserved; therefore

yjk − zjk = vjk − vjk−1, ∀j, k = 1, . . . ,K (2.38)

where
vj0 = V 0

j , ∀j

The demand should be satisfied in every period; thus

J∑

j=1

pjk = Dk, ∀k (2.39)

Finally, security constraints should be satisfied in all periods of the plan-
ning horizon; then

J∑

j=1

P j vjk ≥ Dk +Rk, ∀k. (2.40)
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4. Function to be minimized. The objective of the unit commitment
problem is to minimize total costs; the objective is therefore to minimize

Z =

K∑

k=1

J∑

j=1

[Aj vjk +Bj pjk + Cj yjk + Ej zjk] (2.41)

The problem illustrated in (2.35)–(2.41) is a simplified version of the electric
power thermal unit commitment problem. It should be noted that it is a binary
mixed-integer linear programming problem.

Example 2.6 (Unit commitment). A 3-hour planning horizon is consid-
ered. The demands in these hours are respectively 150, 500, and 400. Reserves
are respectively 15, 50, and 40. Three power units are considered. Data for
these units are given below:

Power unit number 1 2 3
Maximum output power 350 200 140
Minimum output power 50 80 40
Rampup limit 200 100 100
Rampdown limit 300 150 100
Fixed cost 5 7 6
Startup cost 20 18 5
Shutdown cost 0.5 0.3 1.0
Variable cost 0.100 0.125 0.150

All units are offline before the planning horizon.
The unit output powers for the optimal solution are

Hour
Unit 1 2 3

1 150 350 320
2 — 100 080
3 — 050 —

Total 150 500 400

The minimum cost is 191. Unit 1 is started up a the beginning of hour 1 and
remains online for the 3 hours. Unit 2 is started up at the beginning of hour 2
and remains on line during hours 2 and 3. Unit 3 is started up at the beginning
of hour 2 and shut down at the beginning of hour 3.

Exercises

2.1 Walter builds two types of transformers and has available 6 tons of ferro-
magnetic material and 28 hours of working time. Transformer 1 requires 2
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tons of ferromagnetic material and 7 hours of work, and transformer 2 re-
quires 1 unit of ferromagnetic material and 8 hours of work. Selling prices
of transformers 1 and 2 are respectively 120 and 80 thousand Eurodol-
lars. How many transformers or each type should manufacture Walter to
maximize his benefits? Solve the problem graphically and analytically.

2.2 Consider a transportation network where several cities are connected by
roads. The problem becomes one of finding the shortest route between
two cities. We assume that the distance between two directly connected
cities is known. Formulate this problem using integer linear programming
(The Shortest Path Problem).

2.3 Consider a salesperson who wants to find the minimum cost tour that
visits each of n given cities exactly once and returns to the originating
city. Formulate this problem as an integer linear programming problem
(The Traveling Salesperson Problem).

2.4 Consider the problem of finding the maximum number of paths in a com-
munication network from the origin p to destination q such that they are
link-disjoint. That means that two different paths do not have common
links. Formulate this problem as an integer linear programming problem.

2.5 Given a connected graph G = (N ,A), where N is the set of nodes, A is the
set of links, and a special set of “terminal vertices” T = {t1, t2, . . . tk} ⊂
N , the network reliability problem consists of evaluating the probability of
communication between the elements of T under a random degradation
of the network. Let p(e) be the probability of link e to be operative.
The network reliability is the probability of all pairs of terminals being
connected at least by an operative path. Consider the problem that one
has to design the least-cost network that satisfies the requirement of a
given reliability. This design consists of the selection of a subset of links
of the original network. More specifically, consider as the original network
the one shown in Figure 2.2 with terminal nodes T = {1, 2} and assume
that the desired network reliability is 0.90. The reliability and cost of the
links are given in Table 2.9. Formulate the corresponding problem as an
integer linear programming problem.

2.6 An electricity producer should plan its hourly energy production to max-
imize its profits from selling energy during a planning horizon of a given
number of hours. Formulate a mixed-integer linear programming problem
taking into account that:

(a) The producer does not produce before the planning horizon.

(b) Hourly energy prices can be forecasted and are considered known.

(c) If running, the minimum and maximum energy productions of the
producer are known quantities, and the minimum is greater than
zero.
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Figure 2.2: Network topology.

Table 2.9: Reliability and cost of the components of the network of Figure 2.2

Link Reliability (p(ei)) Cost
e1 0.90 1.90
e2 0.85 1.85
e3 0.95 1.95
e4 0.70 1.70
e5 0.80 1.80
e6 0.90 1.90
e7 0.90 1.90
e8 0.50 1.35
e9 0.60 1.45
e10 0.60 1.20
e11 0.30 1.30
e12 0.90 1.90

(d) Energy productions in two consecutive hours cannot differ in more
that a prespecified amount.

(e) Producer production cost is linear.

2.7 The manufacture of the two parts, A and B, of a certain machine requires
the processes L, S, D, M , and G. The time of each process to operate
on each part and the number of available processes are given in Table
2.10 (hours per unity). Each one can be used during 8 hours, 30 days per
month.

(a) Determine the optimal production strategy to maximize the total
number of parts A and B manufactured in a month.

(b) If the number of parts A must be equal to the number of parts B,
what is the optimal strategy?
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Table 2.10: Times required for different processes

Process
Part L S D M G
A 0.6 0.4 0.1 0.5 0.2
B 0.9 0.1 0.2 0.3 0.3
Availability 10 3 4 6 5

2.8 A hospital manager should plan the working timetable for the hospital
staff. Determine the minimum weekly cost associated with the staff of
this hospital if

(a) The daily working time is structured in 3 shifts.

(b) In every shift there should be at least 1 physician, 2 (male) nurses,
and 3 assistants.

(c) The maximum total number of employees needed on every shift is 10.

(d) The salaries are: $50/shift for a physician, $20/shift for a nurse, and
$10/shift for an assistant.

(e) The total number of employees is: 15 physicians, 36 nurses, and 49
assistants.

(f) Each employee should rest during at least two consecutive shifts.


