
    

Chapter 12

Applications

This chapter is from the book:

Castillo, E., Conejo A.J., Pedregal, P., Garćıa, R. and Alguacil, N. (2002).
Building and Solving Mathematical Programming Models in Engineering and
Science, Pure and Applied Mathematics Series, Wiley, New York.

Copyright 2002 by John Wiley and Sons, Inc.

This material is used by permission of John Wiley and Sons, Inc.

In this chapter we provide some applications to illustrate the power of math-
ematical programming combined with a tool, such as GAMS, that allows one
to solve, in an efficient and easy way, the stated problems. We start in Section
12.1, giving an application to neural and functional networks. In Section 12.2
we present an automatic mesh generation method that can be useful in finite
element methods and in all methods that require describing surfaces by means
of triangular elements. In Section 12.3 we give some applications to probability.
In Section 12.4 we show how to solve some regression models, that are difficult
to solve using standard regression techniques. In Section 12.5 we present some
applications to continuous optimization problems, as the braquistochrone, the
hanging cable, the problems of optimal control of hitting a target and of an har-
monic oscillator, and the transportation and the unit commitment problems.
In Section 12.6 we provide applications to transportation systems. Finally, in
Section 12.7 an application to power systems is provided.

12.1 Applications to Artificial Intelligence

In this section we show how mathematical programming can be applied to deal
with neural and functional network problems. This application is based on
Castillo et al. [20].
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Figure 12.1: A one-layer neural network with its neural function.

Neural networks consist of one or several layers of neurons connected by
links. Each neuron computes a scalar output from a linear combination of
inputs, coming from the previous layer, using a given scalar function.

Consider the one-layer neural network in Figure 12.1, where the neural func-
tion f is assumed to be invertible.

The typical problem of neural networks consists of learning the thresholds
and weights given a set of data

D ≡ {(x1s, x2s, . . . , xIs, ys)|s = 1, 2, . . . , S}
which contains the set of inputs (x1s, x2s, . . . , xIs) and the corresponding out-
puts ys for a collection of S measurements.

The set of equations giving the outputs as a function of the inputs is

ys = f(w0 +

I∑

i=1

wixis) + δs; s = 1, 2, . . . , S (12.1)

where w0 and wi; i = 1, 2, . . . , I are the neuron threshold values and weights,
respectively, and δs measures the error associated with the output ys.

Three possibilities for learning the thresholds and weights are given below:

Option 1. Minimize

Q1 =

S∑

s=1

δ2
s =

S∑

s=1

(
ys − f(w0 +

I∑

i=1

wixis)

)2

(12.2)

which is the sum of squared errors measured in the output scale (the units of
the ys). Unfortunately, this leads to a nonlinear problem, due to the presence
of the usually nonlinear neural function f . Thus, Q1 is not guaranteed to have
a global optima. In fact, it usually has many local optima.

Option 2. Minimize the sum of squared errors:

Q2 =
S∑
s=1

ε2s =
S∑
s=1

(
w0 +

I∑
i=1

wixis − f−1(ys)

)2

, (12.3)
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This option measures the errors in terms of the input scale (units of the xis).
The advantage is that we have a standard least-squares minimization, that can
be written as a system of linear equations (linear problem).

Option 3. Alternatively, we can minimize the maximum absolute error:

min
w

{
max
s

∣∣∣∣∣w0 +

I∑

i=1

wixis − f−1(ys)

∣∣∣∣∣

}
(12.4)

which can be stated as the following linear programming problem. Minimize ε
subject to

w0 +
I∑
i=1

wixis − ε ≤ f−1(ys)

−w0 −
I∑
i=1

wixis − ε ≤ −f−1(ys)





; s = 1, 2, . . . , S (12.5)

which global optimum can be easily obtained using linear programming tech-
niques.

12.1.1 Learning the Neural Functions

An important improvement is obtained if we learn the f−1 function instead of as-
suming that it is known. When the neural functions are learned instead of being
given, we say that we are “in front” of a functional network. More precisely, f−1

can be assumed to be a convex combination of a set {φ1(x), φ2(x), , . . . , φR(x)}
of invertible basic functions:

f−1(x) =

R∑

r=1

αrφr(x) (12.6)

where {αr; r = 1, 2, . . . , R} is the corresponding set of coefficients, which has
to be chosen for the resulting function f−1 to be invertible. Without loss of
generality, it can be assumed to be increasing.

Thus, we can consider two more options:

Option 4. Minimize, with respect to wi; i = 0, 1, . . . , I and αr; r = 1, 2, . . . , R,
the function

Q4 =
S∑
s=1

ε2s =
S∑
s=1

(
w0 +

I∑
i=1

wixis −
R∑
r=1

αrφr(ys)

)2

(12.7)

subject to
R∑
r=1

αrφr(ys1) ≤
R∑
r=1

αrφr(ys2); ∀ys1 < ys2 (12.8)
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which forces the candidate function f−1 to increase in the corresponding inter-
val, and

R∑
r=1

αrφr(y0) = 1 (12.9)

which avoids the zero function as the optimum.

Option 5. Alternatively, we can minimize the maximum absolute error:

Q5 = min
w,α

{
max
s

∣∣∣∣∣w0 +

I∑

i=1

wixis −
R∑

r=1

αrφr(ys)

∣∣∣∣∣

}
(12.10)

which can be stated as the following linear programming problem. Minimize ε
subject to

w0 +
I∑
i=1

wixis −
R∑
r=1

αrφr(ys)− ε ≤ 0

−w0 −
I∑
i=1

wixis +
R∑
r=1

αrφr(ys)− ε ≤ 0

R∑
r=1

αrφr(ys1) ≤
R∑
r=1

αrφr(ys2); ∀ys1 < ys2

R∑
r=1

αrφr(y0) = 1

(12.11)

which has a global optimum easily obtainable.

To use the network, that is, to calculate the outputs for given inputs, it is
necessary to know f(x). However, this method only gives the function f−1. One
possible and efficient way to obtain f(x) when f−1() is given is the bisection
method.

The four main elements of the neural and functional networks problem are

1. Data.

S: number of data vectors

I: dimension of data input vectors

xis: vectors of input data (x1s, x2s, . . . , xIs); s = 1, 2, . . . , S

ys: output data ys; s = 1, 2, . . . , S

2. Variables.

w0: neuron threshold value

wi: neuron weight for the component i of the input vector

ε: maximum error (it is a nonnegative variable that has sense only for
option 3)
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3. Constraints. For options 1 and 2 there are no constraints. For Option 3
the constraints are

w0 +
I∑
i=1

wixis − ε ≤ f−1(ys)

−w0 −
I∑
i=1

wixis − ε ≤ −f−1(ys)





; s = 1, . . . , S (12.12)

In the case of option 4 we have

R∑
r=1

αrφr(ys1) ≤
R∑
r=1

αrφr(ys2); ∀ys1 < ys2

R∑
r=1

αrφr(y0) = 1

and for option 5, to the last two constraints we must add

w0 +
I∑
i=1

wixis −
R∑
r=1

αrφr(ys)− ε ≤ 0

−w0 −
I∑
i=1

wixis +
R∑
r=1

αrφr(ys)− ε ≤ 0

4. Function to be optimized. We have the following cases:

Option 1. Minimize

Q1 =

S∑

s=1

δ2
s =

S∑

s=1

(
ys − f(w0 +

I∑

i=1

wixis)

)2

(12.13)

Option 2. Minimize

Q2 =
S∑
s=1

ε2s =
S∑
s=1

(
w0 +

I∑
i=1

wixis − f−1(ys)

)2

(12.14)

Option 3 and 5. Minimize ε.

Option 2. Minimize

Q4 =
S∑
s=1

ε2s =
S∑
s=1

(
w0 +

I∑
i=1

wixis −
R∑
r=1

αrφr(ys)

)2

Once these four elements have been identified, we are ready to solve the
problem.

Example 12.1 (Neural network). Consider de data in the first three columns
of Table 12.1, which gives the outputs ys obtained for the corresponding inputs
{x1s, x2s} for s = 1, . . . , 30. The data have been simulated from the model

ys = (0.3 + 0.3x1s + 0.7x2s)
2

+ εs
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where xis ∼ U(0, 0.5) and εs ∼ U(−0.005, 0.005).
With the aim of learning the relation ys = q(x1, x2), from these data, we de-

cide to use a one-layer neural network with two inputs {x1, x2} and one output
y, and use the three options with known neuron function, and the two options
where the neuron function is learned, described above. For the sake of illustra-
tion, a neural function f(x) = arctan(x), and the following basic functions have
been used:

{φ1(x), φ2(x), φ3(x)} = {√x, x, x2}

The following input GAMS code was used to solve this problem. Note that
five different models with five different objective functions have been used. Note
also the implementation of the bisection method.

$title Neural networks (neural2)

SETS

S number of data vectors/1*30/

I dimension of data input vectors/1*2/

J number of different learning functions/1*5/

R number of basic functions/1*3/;

ALIAS(S,S1)

PARAMETERS

X(I,S) input data vectors

Y(S) output data

powers(R) exponents of x in the basic functions

/1 0.5

2 1

3 2/;

X(I,S)=uniform(0,1)*0.5;

Y(S)=sqr(0.3+0.3*X(’1’,S)+0.7*X(’2’,S))+(uniform(0,1)-0.5)*0.01;

PARAMETERS

aux auxiliary parameter

x1 auxiliary parameter

x2 auxiliary parameter

x3 auxiliary parameter

f1 auxiliary parameter

f2 auxiliary parameter

f3 auxiliary parameter

ymin minimum value of Y(S)

ymax maximum value of Y(S)

acterror maximum prediction error

maxerror maximum allowed error for the bisection method;

maxerror=0.00001;

VARIABLES

z1 function1 to be optimized

z2 function2 to be optimized

z3 function3 to be optimized

z4 function21 to be optimized

z5 function21 to be optimized
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W0 threshold value

W(I) weight associated with component i of input

alfa(R) coefficients of the neural function;

POSITIVE VARIABLES

epsilon error;

EQUATIONS

Q1 definition of z1

Q2 definition of z2

Q3 definition of z3

Q4 definition of z4

Q5 definition of z5

const1(S) upper error bound

const2(S) lower error bound

const3(S) upper error bound

const4(S) lower error bound

normalized normalized values

increasing(S,S1) the f function must be increasing;

Q1..z1=e=sum(S,sqr(Y(S)-arctan(W0+sum(I,W(I)*X(I,S)))));

Q2..z2=e=sum(S,sqr(W0+sum(I,W(I)*X(I,S))-sin(Y(S))/cos(Y(S))));

Q3..z3=e=epsilon;

Q4..z4=e=sum(S,sqr(W0+sum(I,W(I)*X(I,S))

-sum(R,alfa(R)*Y(S)**(powers(R)))));

Q5..z5=e=epsilon;

const1(S)..W0+sum(I,W(I)*X(I,S))-epsilon=l=sin(Y(S))/cos(Y(S));

const2(S)..-W0-sum(I,W(I)*X(I,S))-epsilon=l=-sin(Y(S))/cos(Y(S));

const3(S)..W0+sum(I,W(I)*X(I,S))

-sum(R,alfa(R)*Y(S)**(powers(R)))-epsilon=l=0.0;

const4(S)..-W0-sum(I,W(I)*X(I,S))

+sum(R,alfa(R)*Y(S)**(powers(R)))-epsilon=l=0.0;

normalized..sum(R,alfa(R)*Y(’1’)**(powers(R)))=e=1;

increasing(S,S1)$(Y(S)<Y(S1))..sum(R,alfa(R)*Y(S)**(powers(R)))

=l=sum(R,alfa(R)*Y(S1)**(powers(R)));;

MODEL reg1/Q1/;

MODEL reg2/Q2/;

MODEL reg3/Q3,const1,const2/;

MODEL reg4/Q4,normalized,increasing/;

MODEL reg5/Q5,const3,const4,normalized,increasing/;

file out/neural3.out/;

put out;

put "Data"/;

ymin=0.0;

ymax=0.0;

loop(S,

loop(I,put X(I,S):12:3," & ";);

put Y(S):12:3,"\\"/;

if(ymin<Y(S),ymin=Y(S));

if(ymax>Y(S),ymax=Y(S));

);

loop(J,

if(ord(J) eq 1, SOLVE reg1 USING nlp MINIMIZING z1;

put "z1=",z1.l:12:9/;);
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if(ord(J) eq 2, SOLVE reg2 USING nlp MINIMIZING z2;

put "z2=",z2.l:12:9/;);

if(ord(J) eq 3, SOLVE reg3 USING lp MINIMIZING z3;

put "z3=",z3.l:12:9/;);

if(ord(J) eq 4, SOLVE reg4 USING nlp MINIMIZING z4;

put "z4=",z4.l:12:9/;);

if(ord(J) eq 5, SOLVE reg5 USING lp MINIMIZING z5;

put "z5=",z5.l:12:9/;);

put "Weights:"/;

put W0.l:12:3;

loop(I,put " & ",W.l(I):12:3;);

put " "/;

if(((ord(J) eq 4) or (ord(J) eq 5)),

put "Alfas:"/;

loop(R,put " & ",alfa.l(R):12:3;);

put " "/;

);

acterror=-10000;

put "Data and fitted values:"//;

loop(S,

aux=W0.l+sum(I,W.l(I)*X(I,S));

if(ord(J) le 3,

f1=arctan(aux);

else

x1=ymin-(ymax-ymin)*0.1;

x2=ymax+(ymax-ymin)*0.1;

f1=sum(R,alfa.l(R)*abs(x1)**(powers(R)))-aux;

f2=sum(R,alfa.l(R)*abs(x2)**(powers(R)))-aux;

if(f1*f2>0.0,

put "ERROR IN BISECTION "," S=",S.tl:3," aux=",

aux:12:3," f1=",f1:12:3," f2=",f2:12:3/;

else

while(abs(x1-x2)>maxerror,

x3=(x1+x2)*0.5;

f3=sum(R,alfa.l(R)*x3**(powers(R)))-aux;

if(f3*f1>0.0,

x1=x3;f1=f3;

else

x2=x3;f2=f3;

);

);

);

f1=((x1+x2)*0.5);

);

loop(I,put X(I,S):12:3," & ";);

aux=(f1-Y(S));

if(abs(aux)>acterror,acterror=abs(aux));

put Y(S):12:3," & ",aux:12:3"\\"/;

);

put "Maximum error=",acterror:12:9/;

);

The corresponding errors are shown in Table 12.1. Finally, Table 12.2 shows
the threshold values, the weights, and the α coefficients (only for options 4 and
5), together with the optimal values of the corresponding objective functions.
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Table 12.1: Input and output data for a one-layer neural network

Input Output εs Errors
x1s x2s ys Q1 Q2 Q3 Q4 Q5

0.086 0.055 0.129 -0.023 -0.024 -0.020 0.009 0.004
0.422 0.251 0.360 0.005 0.007 0.012 0.007 0.008
0.275 0.080 0.193 -0.002 -0.003 0.002 -0.004 -0.004
0.151 0.436 0.426 -0.015 -0.014 -0.006 -0.002 -0.008
0.146 0.133 0.187 0.000 -0.001 0.005 -0.001 -0.003
0.112 0.143 0.183 0.000 -0.001 0.005 0.001 -0.001
0.175 0.297 0.315 0.006 0.006 0.013 -0.002 -0.002
0.428 0.361 0.466 -0.024 -0.022 -0.016 -0.004 -0.008
0.034 0.314 0.280 0.008 0.008 0.015 -0.003 -0.005
0.250 0.232 0.287 0.010 0.010 0.016 -0.001 0.000
0.499 0.207 0.351 0.007 0.008 0.013 0.006 0.009
0.289 0.059 0.181 -0.002 -0.002 0.002 0.000 -0.001
0.496 0.157 0.308 0.013 0.014 0.018 0.005 0.009
0.381 0.023 0.190 -0.007 -0.008 -0.004 -0.007 -0.006
0.065 0.169 0.191 -0.002 -0.003 0.003 -0.003 -0.006
0.320 0.091 0.214 0.000 0.000 0.004 -0.007 -0.006
0.080 0.323 0.300 0.008 0.009 0.016 0.000 -0.002
0.125 0.280 0.281 0.011 0.011 0.018 0.000 0.000
0.334 0.385 0.451 -0.021 -0.019 -0.013 -0.004 -0.008
0.218 0.149 0.216 0.008 0.008 0.013 -0.001 -0.001
0.180 0.331 0.340 0.006 0.007 0.014 0.004 0.002
0.176 0.378 0.376 0.002 0.003 0.010 0.007 0.004
0.066 0.314 0.289 0.009 0.009 0.017 -0.001 -0.003
0.075 0.142 0.178 -0.007 -0.009 -0.003 -0.003 -0.006
0.295 0.043 0.172 -0.003 -0.004 0.000 0.002 0.001
0.415 0.051 0.209 0.007 0.007 0.010 0.000 0.001
0.115 0.321 0.311 0.008 0.008 0.015 0.000 -0.001
0.333 0.273 0.347 0.006 0.007 0.012 0.004 0.005
0.388 0.016 0.181 -0.002 -0.002 0.001 0.000 0.000
0.152 0.396 0.393 -0.009 -0.008 -0.001 -0.003 -0.007

Maximum absolute error 0.024 0.024 0.019 0.009 0.009

A simple comparison shows that the errors for the objective functions, Q4

and Q5, where the neural functions have been learned, lead to smaller errors,
as expected.
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Table 12.2: Values of the objective functions, threshold values, weights, and
coefficients associated with the five options

Objective function Threshold Weights Alphas
Q w0 w1 w2 α1 α2 α3

Q1 = 0.00292 0.032 0.353 0.803 − − −
Q2 = 0.00375 0.029 0.358 0.812 − − −
Q3 = 0.01978 0.034 0.354 0.823 − − −
Q4 = 0.00086 0.940 0.369 0.847 4.199 −4.238 2.384
Q5 = 0.00988 0.924 0.415 0.912 4.200 −4.269 2.596

12.2 Applications to CAD

In this section we discuss an application to automatic mesh generation.
Automatic mesh generation is an area that has attracted the interest of many

researchers. The most common mesh generation procedures include triangle, in
two dimensions, and tetrahedral and hexahedral, in three dimensions, genera-
tion methods. Most generation problems involve building partitioning elements
on arbitrary three-dimensional surfaces. The main surface mesh generation
techniques belong to three main groups:

1. Parametric space based techniques. Since surfaces in parametric
form have an u−v representation, one can use standard techniques to mesh
the u−v parametric region, and then move to the associated x−y−z space
(see, for example, Cuilliere [29], and Farouki [36]). The main shortcoming
of a direct application of this technique is that the resulting elements can
be poorly shaped. Thus, some modifications are normally required.

2. Direct techniques. These methods proceed by advancing through the
surface itself, by generating elements based on previously generated ele-
ments, and using surface normals and tangents to compute the direction
of the advancing front.

3. Optimization-based methods. These methods are based on optimizing
a quality function subject to some constraints. Nodes are moved in a
direction such that an improvement of the objective function is obtained
(Canann et al. [19], Freitag [42] and Li [67]).

In addition to the mesh generation problem, since most mesh generation
techniques output meshes that are not optimal, some postprocessing to improve
the quality of the elements is normally required. The two main categories of
mesh improvement are

1. Smoothing. This consists of adjusting node locations without altering
connectivities.
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Figure 12.2: Topology of the selected mesh.

2. Polishing. This consists of changing the topology or the elements con-
nectivities. Polishing methods use some quality criteria to operate, and
can be combined with smoothing techniques (see Freitag [44]).

3. Refinement. This consists of reducing the element size. The reduction
in size may be required to reproduce better the local reality, or to improve
the quality of the elements. In fact, refinement can be seen as a mesh
generation. Thus, mesh generation techniques are applicable here.

12.2.1 Automatic Mesh Generation

In this section we describe how to generate or improve a mesh using an op-
timization based method. This application is based on Castillo and Mı́nguez
[23].

The method starts from a given projected mesh topology (the projection of
the surface mesh on the X–Y plane), as that shown in Figure 12.1. In this
projection, the corner nodes are assumed to be fixed, the boundary nodes can
move in the boundary, and the interior nodes are free to move in any direction.
The surface triangularization is selected for minimizing the standard deviation
or variance of the triangle areas. Thus, we look for one mesh with the maximum
similarity in terms of the triangle areas. In other words, we minimize

Q =

m∑

i=1

[a(i)− ā]
2

m

subject to the boundary constraints, where a(i) is the area of the triangle i, ā
is the corresponding mean, and m is the number of triangles.
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In summary, we proceed as follows:

Step 1. The topology of the mesh is defined by a projected mesh. A com-
pact definition of one possible and simple mesh is given in Table 12.3, where
(xmin, ymin) and (xmax, ymax) are the left-top and right-bottom corner coordi-
nates, and n is the number of nodes per column (n = 12 for the mesh in Figure
12.2). The resulting mesh has n2 nodes and 2(n− 1)2 elements.

The following three main components of the mesh are defined:

(a) Node coordinates

(b) Nodes belonging to each element

(c) Boundary nodes

Step 2. The surface to be triangulated is defined by its corresponding equations.

Step 3. The degrees of freedom of all the nodes are defined. Figure 12.3 shows
the degrees of freedom of the different sets of nodes. Some nodes corresponding
to the corner nodes are fixed, having no degrees of freedom. Some nodes, the
boundary no corner nodes, have 1 degree of freedom, which is shown by an arrow
indicating the free directions of their possible displacements. Finally, the rest,
the interior nodes, have 2 degrees of freedom, marked by two arrows showing
their possible displacements.

Step 4. The objective function Q is minimized subject to the boundary con-
straints, and the final projected and surface meshes are obtained (see Figure
12.4).

To avoid overlapping of triangles, we can force the total area of the projected
mesh to remain constant and equal to the initial one. This simple constraint
avoids stability problems caused by the overlapping of triangles.

Example 12.2 (Surface triangulation). Consider the surface with equation

z =
xy(x2 − y2)

x2 + y2

defined on the square

{(x, y)| − 2 ≤ x ≤ 2; −2 ≤ y ≤ 2}

Applying the proposed method with a rectangular net of size n = 12, and

(xmin, ymin) = (−2,−2); (xmax, ymax) = (2, 2)

the triangulated surface in Figure 12.4 is obtained. Note that the triangles in
the vertical projection have been adapted to get 3D triangles with similar area.
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Table 12.3: Parametric definition of a rectangular net

Coordinates of node k
xk xmin + floor((k − 1)/n))(xmax − xmin)/(n− 1)
yk ymin +mod(k − 1, n)(ymax − ymin)/(n− 1)

Nodes of element i for i even
First node (floor((i-1)/(2(n-1))))n+floor(mod((i-1),(2(n-1)))/2+1)
Second node (floor((i-1)/(2(n-1))))n+floor(mod((i-1),(2(n-1)))/2+1)+1
Third node (floor((i-1)/(2(n-1))))n+floor(mod((i-1),(2(n-1)))/2+1)+n+1

Nodes of element i for i odd
First node (floor((i-1)/(2(n-1))))n+floor(mod((i-1),(2(n-1)))/2+1)
Second node (floor(i-1)/(2(n-1))))n+floor(mod((i-1),(2(n-1)))/2+1)+n
Third node (floor((i-1)/(2(n-1))))n+floor(mod((i-1),(2(n-1)))/2+1)+n+1

Boundary elements
Lower side n(j − 1) + 1; j = 1, 2, . . . , n
Upper side nj; j = 1, 2, . . . , n
Right-hand side n2 − n+ j; j = 1, 2, . . . , n
Left-hand side j; j = 1, 2, . . . , n

$title Mesh

SETS

I number of elements/1*242/

J number of nodes per element/1*3/

K number of nodes/1*144/

N number of nodes per row/1*12/

D space dimension/1*2/

XFIXED(K) nodes with fixed X

YFIXED(K) nodes with fixed Y;

ALIAS(K,K1,K2);

PARAMETER

t number of squares per dimension

m number of elements per column

xmin minimum value of coordinate x

xmax maximum value of ccordinate x

ymin minimum value of coordinate y

ymax maximum value of ccordinate y

COORD(K,D) coordinates of the initial mesh nodes;

t=card(N);

xmin=-2;

xmax=2;

ymin=-2;

ymax=2;

m=2*t-2;
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Figure 12.3: Illustration of how the net is generated, showing the degrees of
freedom of the nodes.

XFIXED(K)=no;

loop(N,

XFIXED(K)$(ord(K) eq ord(N))=yes;

XFIXED(K)$(ord(K) eq ord(N)+t*t-t)=yes;

YFIXED(K)$(ord(K) eq t*ord(N))=yes;

YFIXED(K)$(ord(K) eq (ord(N)-1)*t+1)=yes;

);

COORD(K,’1’)=xmin+floor((ord(K)-1)/t)*(xmax-xmin)/(t-1);

COORD(K,’2’)=ymin+mod(ord(K)-1,t)*(ymax-ymin)/(t-1);

PARAMETER

EL(I,J);

loop(I,
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Figure 12.4: Example of a triangulated surface showing the basic mesh and the
mesh leading to a minimum variance of triangle areas.

if(mod(ord(I),2) eq 0,

EL(I,’1’)=(floor((ord(I)-1)/m))*t+floor(mod((ord(I)-1),m)/2+1);

EL(I,’2’)=(floor((ord(I)-1)/m))*t+floor(mod((ord(I)-1),m)/2+1)+1;

EL(I,’3’)=(floor((ord(I)-1)/m))*t+floor(mod((ord(I)-1),m)/2+1)+t+1;

else

EL(I,’1’)=(floor((ord(I)-1)/m))*t+floor(mod((ord(I)-1),m)/2+1);

EL(I,’2’)=(floor((ord(I)-1)/m))*t+floor(mod((ord(I)-1),m)/2+1)+t;

EL(I,’3’)=(floor((ord(I)-1)/m))*t+floor(mod((ord(I)-1),m)/2+1)+t+1;

);

);

VARIABLES

z1 function to be optimized
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X(K) coordinate of node K

Y(K) coordinate of node K

Z(K) coordinate of node K

area(I) area of element I

mean mean area of elements;

X.l(K)=COORD(K,’1’);

Y.l(K)=COORD(K,’2’);

X.fx(XFIXED)=COORD(XFIXED,’1’);

Y.fx(YFIXED)=COORD(YFIXED,’2’);

EQUATIONS

Q objective function to be optimized

Carea(I)

Cf(K) points are in surface

Cmean;

Q..z1=e=sum(I,sqr(area(I)-mean))/card(I);

Carea(I)..area(I)=e=sum((K,K1,K2)$((EL(I,’1’)

=ord(K)) and (EL(I,’2’)=ord(K1)) and (EL(I,’3’)=ord(K2))),

sqr((Y(K1)-Y(K))*(Z(K2)-Z(K))-(Y(K2)-Y(K))*(Z(K1)-Z(K)))+

sqr((Z(K1)-Z(K))*(X(K2)-X(K))-(Z(K2)-Z(K))*(X(K1)-X(K)))+

sqr((X(K1)-X(K))*(Y(K2)-Y(K))-(X(K2)-X(K))*(Y(K1)-Y(K))));

Cf(K)..Z(K)=e=(X(K)*Y(K)*(sqr(X(K))-sqr(Y(K))))/(sqr(X(K))+sqr(Y(K)));

Cmean..mean=e=sum(I,area(I))/card(I);

MODEL mallas/ALL/;

SOLVE mallas USING nlp MINIMIZING z1;

file out/mallas3.out/;

put out;

if((card(I) ne (2*(t-1)*(t-1))),

put "Error, card(I) must be equal to ",(2*(t-1)*(t-1)):8:0/;

else

if((card(K) ne t*t),

put "Error, card(K) must be equal to ",(t*t):8:0/;

else

put "z1=",z1.l:12:8," mean=",mean.l:12:8, " cpu=",mallas.resusd:9:2,

" modelstat=",mallas.modelstat:3:0," solvestat=",mallas.solvestat:3:0/;

loop(K,

put "X(",K.tl:3,")=",COORD(K,’1’):12:8," Y(",K.tl:3,")=",COORD(K,’2’):12:8/;

);

loop(I,

put "I=",i.tl:3," Nodes=",EL(I,’1’):5:0," ",EL(I,’2’):5:0," ",EL(I,’3’):5:0/;

);

loop(K,

put "K=",K.tl:3," X=",X.l(K):12:6," Y=",Y.l(K):12:6," Z=",Z.l(K):12:6/;

);

loop(I,
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put "I=",I.tl:3," area=",area.l(I):12:6/;

);

put "COORDINATES"/;

put "{";

loop(K,

if(ord(K)<card(K),

put "{",X.l(K):12:8,",",Y.l(K):12:8,",",Z.l(K):12:8,"},"/;

else

put "{",X.l(K):12:8,",",Y.l(K):12:8,",",Z.l(K):12:8,"}}"/;

);

);

put "ELEMENTS"/;

put "{";

loop(I,

if(ord(I)<card(I),

put "{",EL(I,’1’):5:0,",",EL(I,’2’):5:0,",",EL(I,’3’):5:0,"},"/;

else

put "{",EL(I,’1’):5:0,",",EL(I,’2’):5:0,",",EL(I,’3’):5:0,"}}"/;

););););

12.3 Applications to Probability

In this section we present some applications relevant to probability. We deal
with the problem of compatibility of conditional distributions, which arises in
many fields of applications, as artificial intelligence and expert systems, for
example. The assessment of probabilities is crucial in probability based models
arising in these areas. This assessment can be done by considering the joint
distributions of the variables involved or, more easily, by considering several
sets of conditional distributions and/or marginal ones, because they are of lower
dimensions. However, conditionals probabilities are closely interrelated and,
consequently, they cannot be freely assessed. Even for a qualified expert, the
chances of violating the probability axioms during the assessment process are
close to one. So, the problem of compatibility must be dealt with, and the help
of a computer is unavoidable in practice. In this section, we show how this
problem can be solved using linear programming techniques (see Arnold et al.
[1, 2, 3, 4, 5] for a more complete treatment of this problem).

12.3.1 Compatibility of Conditional Probability Matrices

Consider a bidimensional discrete random variable (X,Y ), with domain N =
{(xi, yj)|i = 1, 2, . . . , I; j = 1, 2, . . . , J}, where X and Y take possible values x1,
x2, . . . xI and y1, y2, . . . , yJ , respectively.

Let P be its joint probability matrix with pij = Prob[X = xi, Y = yj ]. The
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column vectors

pi. =
J∑
j

pij

p.j =
I∑
i

pij

where the dot is used to refer to sum in the corresponding index, give the
probabilities of X and Y , respectively, after ignoring the other variable, and are
called marginal probabilities of X and Y , respectively.

The conditional probability matrices A and B are defined as

aij = Prob[X = xi|Y = yj ] =
pij
p.j

(12.15)

and
bij = Prob[Y = yj |X = xi] =

pij
pi.

(12.16)

respectively, and give the probabilities of one variable when the value of the
other variable has been fixed.

Note that A and B exists only if

Prob[Y = yj ] =

I∑

i

pij = p.j 6= 0

and

Prob[X = xi] =

J∑

j

pij = pi. 6= 0

respectively.
From (12.15) and (12.16) it follows that the columns of A and the rows of

B sum to 1. Thus, valid conditional probability matrices A and B must have
nonnegative elements such that A has columns and B has rows that sum to 1.

If the joint probabilities pij are given, the conditional probability matrices
A and B can be obtained using (12.15) and (12.16), respectively. However,
obtaining the matrix P from A and B is not a trivial task. In fact, A and B
can be chosen in such form that there is no P satisfying (12.15) and (12.16).
In this case we say that A and B are incompatible. If, on the other hand, this
matrix P exists, we say that A and B are compatible.

Consequently, A and B are compatible if and only if a joint distribution P
with A and B as its associated conditionals exists, that is, such that

pij = aijp.j ; ∀i, j (12.17)

pij = bijpi.; ∀i, j (12.18)

pij ≥ 0, ∀i, j, (12.19)

I∑

i=1

J∑

j=1

pij = 1 (12.20)



         

12.3. Applications to Probability 389

Balow we give three possible methods to determine the compatibility of A
and B:

Method 1 (based on P). Seek a joint probability matrix P satisfying

pij − aij
I∑
i=1

pij = 0, ∀i, j

pij − bij
J∑
j=1

pij = 0, ∀i, j
I∑
i=1

J∑
j=1

pij = 1

pij ≥ 0, ∀i, j

(12.21)

In this method P is directly sought, and it involves 2|N | + 1 equations in |N |
unknowns, where |N | is the cardinality of the domain set N of (X,Y ).

Method 2 (based on the two marginals). Seek two probability vectors τ
and η satisfying

ηjaij − τibij = 0, ∀i, j
I∑
i=1

τi = 1

J∑
j=1

ηj = 1

τi ≥ 0, ∀i, ηj ≥ 0, ∀j

(12.22)

In this method we seek the two marginal probability vectors, τ and η, which,
combined with A and B, give P (pij = ηjaij = τibij). This involves |N | + 2
equations in I + J unknowns.

Method 3 (based on one marginal). Seek one probability vector τ satisfying

aij
I∑
k=1

τkbkj − τibij = 0, ∀i, j
I∑
i=1

τi = 1

τi ≥ 0, ∀i

(12.23)

In this method, we seek the X-marginal τ which, combined with B, gives P
(pij = τibij). It involves |N |+ 1 equations in I unknowns.

All three methods involve linear equations to be solved subject to non-
negativity constraints. However, since system (12.23) is the one that involves a
smaller number of variables, it is probably the one we will use to try to solve
our problem.
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Example 12.3 (Compatibility). Consider the matrices A and B:

A =




0.0667 0.1905 0.3750 0.1176 0.0769 0.1111
0.1333 0.1905 0.0000 0.1765 0.3846 0.3333
0.3333 0.1905 0.1250 0.1765 0.0769 0.1111
0.2000 0.0952 0.2500 0.1176 0.0769 0.1111
0.2000 0.1905 0.1250 0.1765 0.3077 0.2222
0.0667 0.1429 0.1250 0.2353 0.0769 0.1111




(12.24)

B =




0.0833 0.3333 0.2500 0.1667 0.0833 0.0833
0.1176 0.2353 0.0000 0.1765 0.2941 0.1765
0.3333 0.2667 0.0667 0.2000 0.0667 0.0667
0.2727 0.1818 0.1818 0.1818 0.0909 0.0909
0.1765 0.2353 0.0588 0.1765 0.2353 0.1176
0.0909 0.2727 0.0909 0.3636 0.0909 0.0909




(12.25)

The following GAMS code generates a random joint probability matrix and
the corresponding conditionals. Next, it obtains the joint probability based on
A and B using methods 1–3.

$title Compatibility Method I

SETS

I number of rows/1*6/

J number of columns/1*6/;

ALIAS(I,I1);

ALIAS(J,J1);

PARAMETER

PP(I,J) Joint probability matrix used to generate conditionals

A(I,J) conditional probability of X given Y

B(I,J) conditional probability of Y given X;

PP(I,J)=round(uniform(0,5));

PP(I,J)=PP(I,J)/sum((I1,J1),PP(I1,J1));

A(I,J)=PP(I,J)/sum(I1,PP(I1,J));

B(I,J)=PP(I,J)/sum(J1,PP(I,J1));

VARIABLE

z value of the objective function;

POSITIVE VARIABLES

P(I,J) Joint probability looked for

TAU(I) Marginal probability of X

ETA(J) Marginal probability of Y;

EQUATIONS

ZDEF1 Function to be optimized in model 1

ZDEF2 Function to be optimized in model 2

ZDEF3 Function to be optimized in model 3

CONST11(I,J)

CONST12(I,J)

CONST2(I,J)

CONST3(I,J)
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NORM1 P add up to one

NORM2 TAU add up to one

NORM3 ETA add up to one;

ZDEF1..z=e=P(’1’,’1’);

ZDEF2..z=e=TAU(’1’);

CONST11(I,J)..P(I,J)-A(I,J)*sum(I1,P(I1,J))=e=0;

CONST12(I,J)..P(I,J)-B(I,J)*sum(J1,P(I,J1))=e=0;

CONST2(I,J)..ETA(J)*A(I,J)-TAU(I)*B(I,J)=e=0;

CONST3(I,J)..A(I,J)*sum(I1,TAU(I1)*B(I1,J))-TAU(I)*B(I,J)=e=0;

NORM1..sum((I,J),P(I,J))=e=1;

NORM2..sum(I,TAU(I))=e=1;

NORM3..sum(J,ETA(J))=e=1;

MODEL model1/ZDEF1,CONST11,CONST12,NORM1/;

MODEL model2/ZDEF2,CONST2,NORM2,NORM3/;

MODEL model3/ZDEF2,CONST3,NORM2/;

file out/comp1.out/;

put out;

put "Initial Matrix PP:"/;

loop(I,loop(J,put PP(I,J):7:4;);put ""/;);

put "Matrix A:"/;

loop(I,loop(J,put A(I,J):7:4;);put ""/;);

put "Matrix B:"/;

loop(I,loop(J,put B(I,J):7:4;);put ""/;);

SOLVE model1 USING lp MINIMIZING z;

put "Final Matrix P Obtained by Model 1:"/;

loop(I,loop(J,put P.l(I,J):7:4;);put ""/;);

put "z=",z.l," modelstat=",model1.modelstat," solvestat=",model1.solvestat/;

SOLVE model2 USING lp MINIMIZING z;

put "Final Matrix P Obtained by Model 2:"/;

loop(I,loop(J,put (TAU.l(I)*B(I,J)):7:4;);put ""/;);

put "z=",z.l," modelstat=",model2.modelstat," solvestat=",model2.solvestat/;

SOLVE model3 USING lp MINIMIZING z;

put "Final Matrix P Obtained by Model 3:"/;

loop(I,loop(J,put (TAU.l(I)*B(I,J)):7:4;);put ""/;);

put "z=",z.l," modelstat=",model3.modelstat," solvestat=",model3.solvestat/;

The solution of this problem is the joint probability matrix

P =




0.0120 0.0482 0.0361 0.0241 0.0120 0.0120
0.0241 0.0482 0.0000 0.0361 0.0602 0.0361
0.0602 0.0482 0.0120 0.0361 0.0120 0.0120
0.0361 0.0241 0.0241 0.0241 0.0120 0.0120
0.0361 0.0482 0.0120 0.0361 0.0482 0.0241
0.0120 0.0361 0.0120 0.0482 0.0120 0.0120




(12.26)

Since the corresponding programming problem has a solution, the condi-
tional probability matrices A and B are compatible.

Example 12.4 (Incompatibility). Consider the matrices A and B:
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A =




1
2

1
2 0

0 1
2

1
2

1
2 0 1

2


 , (12.27)

B =




1
3

2
3 0

0 1
3

2
3

1
3 0 2

3


 . (12.28)

Since the corresponding programming problem has no solution, the conditional
probability matrices A and B are incompatible.

The reader is encouraged to modify the previous GAMS program to check
that this problem is infeasible.

12.3.2 ε Compatibility

In Section 12.3.1 we described three linear equation formulations for the search
for a matrix P compatible with given conditional matrices A and B. If, instead
of exact compatibility, we are willing to accept approximate compatibility, we
can replace Methods 1–3 by the following revised versions:

Revised method 1. Seek a probability matrix P to minimize ε subject to

|pij − aij
I∑
i=1

pij | ≤ εγij , ∀i, j

|pij − bij
J∑
j=1

pij | ≤ εγij , ∀i, j
I∑
i=1

J∑
j=1

pij = 1

pij ≥ 0, ∀i, j

(12.29)

Revised method 2. Seek two probability vectors, τ and η, to minimize ε
subject to

|ηjaij − τibij | ≤ εγij , ∀i, j
I∑
i=1

τi = 1

J∑
j=1

ηj = 1

τi ≥ 0, ηj ≥ 0, ∀i, j

(12.30)

Revised method 3. Seek one probability vector τ to minimize ε subject to

|aij
I∑
i=1

τibij − τibij | ≤ εγij , ∀i, j
I∑
i=1

τi = 1

τi ≥ 0, ∀i

(12.31)
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where γij are numbers that measure the relative importance of the errors we
are willing to accept for the corresponding values pij of the joint probabilities,
and ε measures the global degree of incompatibility. Note that if ε = 0, we have
compatibility; otherwise we do not.

Our aim is to obtain the matrices P, τ and η that minimize ε, namely, the
degree of incompatibility.

The associated problem is a LPP because each of the constraints involving
absolute values in (12.29)–(12.31) can be replaced by two linear inequality con-
straints (see Chapter 13). So, all constraints can be written as linear constraints.

Example 12.5 (A compatible example). Consider the following matrices
A and B:

A =




0.1429 0.3333 0.2727 0.1667
0.1429 0.0833 0.1818 0.3333
0.0000 0.2500 0.4545 0.2500
0.7143 0.3333 0.0909 0.2500


 (12.32)

B =




0.1000 0.4000 0.3000 0.2000
0.1250 0.1250 0.2500 0.5000
0.0000 0.2727 0.4545 0.2727
0.3846 0.3077 0.0769 0.2308


 (12.33)

The GAMS code to build de joint and conditional probability matrices, and
solve this problem by the revised methods 1–3 is:

$title Compatibility Methods 1, 2 and 3

SETS

I number of rows/1*4/

J number of columns/1*4/;

ALIAS(I,I1);

ALIAS(J,J1);

PARAMETER

PP(I,J) Joint probability matrix used to generate conditionals

A(I,J) conditional probability of X given Y

B(I,J) conditional probability of Y given X;

PP(I,J)=round(uniform(0,5));

PP(I,J)=PP(I,J)/sum((I1,J1),PP(I1,J1));

A(I,J)=PP(I,J)/sum(I1,PP(I1,J));

B(I,J)=PP(I,J)/sum(J1,PP(I,J1));

* The line below modifies the B matrix to get incompatibility

VARIABLE

z value of the objective function

epsilon Maximum error in joint probability;

POSITIVE VARIABLES

P(I,J) Joint probability looked for

TAU(I) Marginal probability of X
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ETA(J) Marginal probability of Y;

EQUATIONS

ZDEF1 Function to be optimized in model 1

ZDEF2 Function to be optimized in model 2

ZDEF3 Function to be optimized in model 3

CONST111(I,J)

CONST112(I,J)

CONST121(I,J)

CONST122(I,J)

CONST21(I,J)

CONST22(I,J)

CONST31(I,J)

CONST32(I,J)

NORM1 P add up to one

NORM2 TAU add up to one

NORM3 ETA add up to one;

ZDEF1..z=e=epsilon;

CONST111(I,J)..P(I,J)-A(I,J)*sum(I1,P(I1,J))=l=epsilon;

CONST112(I,J)..-epsilon=l=P(I,J)-A(I,J)*sum(I1,P(I1,J));

CONST121(I,J)..P(I,J)-B(I,J)*sum(J1,P(I,J1))=l=epsilon;

CONST122(I,J)..-epsilon=l=P(I,J)-B(I,J)*sum(J1,P(I,J1));

CONST21(I,J)..ETA(J)*A(I,J)-TAU(I)*B(I,J)=l=epsilon;

CONST22(I,J)..-epsilon=l=ETA(J)*A(I,J)-TAU(I)*B(I,J);

CONST31(I,J)..A(I,J)*sum(I1,TAU(I1)*B(I1,J))-TAU(I)*B(I,J)=l=epsilon;

CONST32(I,J)..-epsilon=l=A(I,J)*sum(I1,TAU(I1)*B(I1,J))-TAU(I)*B(I,J);

NORM1..sum((I,J),P(I,J))=e=1;

NORM2..sum(I,TAU(I))=e=1;

NORM3..sum(J,ETA(J))=e=1;

MODEL model1/ZDEF1,CONST111,CONST112,CONST121,CONST122,NORM1/;

MODEL model2/ZDEF1,CONST21,CONST22,NORM2,NORM3/;

MODEL model3/ZDEF1,CONST31,CONST32,NORM2/;

file out/comp1.out/;

put out;

put "Initial Matrix PP:"/;

loop(I,loop(J,put PP(I,J):7:4," & ";);put ""/;);

put "Matrix A:"/;

loop(I,loop(J,put A(I,J):7:4," & ";);put ""/;);

put "Matrix B:"/;

loop(I,loop(J,put B(I,J):7:4," & ";);put ""/;);

SOLVE model1 USING lp MINIMIZING z;

put "Final Matrix P Obtained by Model 1:"/;

loop(I,loop(J,put P.l(I,J):7:4," & ";);put ""/;);

put "z=",z.l:12:8," modelstat=",model1.modelstat," solvestat=",model1.solvestat/;

SOLVE model2 USING lp MINIMIZING z;

put "Final Matrix P Obtained by Model 2:"/;

loop(I,loop(J,put (TAU.l(I)*B(I,J)):7:4," & ";);put ""/;);

put "z=",z.l:12:8," modelstat=",model2.modelstat," solvestat=",model2.solvestat/;

SOLVE model3 USING lp MINIMIZING z;

put "Final Matrix P Obtained by Model 3:"/;

loop(I,loop(J,put (TAU.l(I)*B(I,J)):7:4," & ";);put ""/;);

put "z=",z.l:12:8," modelstat=",model3.modelstat," solvestat=",model3.solvestat/;
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The solution of this problem, which coincides with those for the three meth-
ods, is ε = 0 and the resulting joint probability matrix

P =




0.0238 0.0952 0.0714 0.0476
0.0238 0.0238 0.0476 0.0952
0.0000 0.0714 0.1190 0.0714
0.1190 0.0952 0.0238 0.0714


 (12.34)

Example 12.6 (An incompatible example). If we modify the first row
of the B matrix in Example 12.5 [in (12.33)], by removing the asterisk in the
comment line, we get the output file:

Initial Matrix PP:

0.0238 & 0.0952 & 0.0714 & 0.0476 &

0.0238 & 0.0238 & 0.0476 & 0.0952 &

0.0000 & 0.0714 & 0.1190 & 0.0714 &

0.1190 & 0.0952 & 0.0238 & 0.0714 &

Matrix A:

0.1429 & 0.3333 & 0.2727 & 0.1667 &

0.1429 & 0.0833 & 0.1818 & 0.3333 &

0.0000 & 0.2500 & 0.4545 & 0.2500 &

0.7143 & 0.3333 & 0.0909 & 0.2500 &

Matrix B:

0.2500 & 0.2500 & 0.2500 & 0.2500 &

0.1250 & 0.1250 & 0.2500 & 0.5000 &

0.0000 & 0.2727 & 0.4545 & 0.2727 &

0.3846 & 0.3077 & 0.0769 & 0.2308 &

Final Matrix P Obtained by Model 1:

0.0403 & 0.0630 & 0.0539 & 0.0494 &

0.0289 & 0.0165 & 0.0549 & 0.1231 &

0.0000 & 0.0579 & 0.1177 & 0.0784 &

0.1329 & 0.0858 & 0.0129 & 0.0843 &

z= 0.01139203 modelstat= 1.00 solvestat= 1.00

Final Matrix P Obtained by Model 2:

0.0478 & 0.0478 & 0.0478 & 0.0478 &

0.0335 & 0.0335 & 0.0670 & 0.1340 &

0.0000 & 0.0678 & 0.1131 & 0.0678 &

0.1124 & 0.0899 & 0.0225 & 0.0674 &

z= 0.02107728 modelstat= 1.00 solvestat= 1.00

Final Matrix P Obtained by Model 3:

0.0559 & 0.0559 & 0.0559 & 0.0559 &

0.0309 & 0.0309 & 0.0618 & 0.1237 &

0.0000 & 0.0524 & 0.0873 & 0.0524 &

0.1295 & 0.1036 & 0.0259 & 0.0777 &

z= 0.02502453 modelstat= 1.00 solvestat= 1.00

which shows the initial P , A, and B matrices and the P matrices resulting
from methods 1–3. Note that the A and B matrices are incompatible, where
ε values for methods 1, 2, and 3 are 0.01139203, 0.02107728, and 0.02502453,
respectively.
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12.4 Regression Models

The second problem we deal with is the regression problem. Least-squares meth-
ods have succeeded because of the nice mathematical behavior of the associated
quadratic function, which has derivatives and lead to simple systems of equa-
tions. However, other interesting methods, such as those based on absolute
values or maxima, in spite of its importance, are rarely used because of the
nonexistence of derivatives of the associated functions. Fortunately, linear pro-
gramming techniques allow dealing with these problems in a very satisfactory
way, as it is shown in this section.

Consider the standard linear model

y = Zβ + ε (12.35)

or, equivalently
yi = zTi β + εi, i = 1, . . . , n (12.36)

where y = (y1, . . . , yn)T is an n × 1 vector of response variables, Z is an n × p
matrix of predictor variables, zTi is the ith row in Z, β is a p × 1 vector of
regression coefficients or parameters, and ε = (ε1, . . . , εn)T is an n× 1 vector of
random errors.

The most popular methods for estimating the regression parameters β are

1. The least squares (LS) method. This method minimizes

n∑

i=1

(yi − ztiβ)2 (12.37)

This is the standard regression model, and can be easily solved using standard
and well known techniques. This method penalizes large errors with respect to
small errors because the errors are squared; that is, large errors are enlarged
and small errors are reduced. So, this method must be used when the user is
concerned about large errors but does not care about small errors.

2. The least-absolute-value (LAV) method. This method minimizes (see,
for example, Arthanari and Dodge [6])

n∑

i=1

|yi − ztiβ| (12.38)

This method minimizes the sum of the distances between observed and pre-
dicted values instead of their squares. However, because of the presence of the
absolute-value function, it is difficult to solve using standard regression tech-
niques. This method treats all errors equally. Thus, this method must be used
when the user is concerned about any level of error. In fact, what is important
is the sum of all absolute errors, not a single error.



         

12.4. Regression Models 397

3. The minimax (MM) method. It minimizes

max
i
|yi − ztiβ|, (12.39)

This method minimizes the maximum of the distances between observed and
predicted values. So the user must be concerned only on the maximum error.
However, because of the presence of the maximum function, it has the same
difficulties as the previous method.

The estimates of β for the last two methods can be obtained by solving
some simple linear programming problems. The LAV estimate of β, β̂, can
be obtained by solving the following linear programming problem (LPP) (see
Castillo et al. [22]). Minimize

n∑

i=1

εi (12.40)

subject to

yi − ztiβ ≤ εi, i = 1, . . . , n (12.41)

ztiβ − yi ≤ εi, i = 1, . . . , n

εi ≥ 0, i = 1, . . . , n

Similarly, the MM estimate of β, β̃, can be obtained by solving the following
LPP. Minimize

ε (12.42)

subject to

yi − ztiβ ≤ ε, i = 1, . . . , n (12.43)

ztiβ − yi ≤ ε, i = 1, . . . , n

ε ≥ 0

Let β̂(i) and β̃(i) be the LAV and MM estimators of β when the ith obser-
vation is omitted, respectively. The influence of the ith observation on the LAV
estimators can be measured by

di(LAV ) = ||ŷ − ŷ(i)|| (12.44)

where ŷ = Zβ̂ is the vector of fitted value, ŷ(i) = Zβ̂(i) is the vector of fitted
value computed when the i observation is omitted. Thus, di(LAV ) is the norm
of the difference between the vectors of predicted values based on the full and
reduced data, respectively.

Similarly, the influence of the ith observation on the MM estimators can be
measured by

di(MM) = ||ỹ − ỹ(i)|| (12.45)

where ỹ = Zβ̃ and ỹ(i) = Zβ̃(i) Finally, di(LS) can be defined in a similar way.
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To compute di(LAV ) or di(MM), one needs to solve n+ 1 linear program-
ming problems, unless one uses some sensitivity tools, that save computational
time.

The following example illustrated the different sensitivities (robustness) of
the three methods with respect to outliers.

Example 12.7 (Robustness with respect to outliers). Consider the data
in Table 12.4, which has been simulated with the model

Yi = 0.2 + 0.1Z1 − 0.3Z2 + 0.4Z3 − 0.2Z4 + εi

where εi ∼ U(0, 0.05) and the data points 7, 15 and 16 have been modified to
be converted in outliers by

Y7 = 0.2 + 0.1Z1 − 0.3Z2 + 0.4Z3 − 0.2Z4 − 0.05× 2
Y15 = 0.2 + 0.1Z1 − 0.3Z2 + 0.4Z3 − 0.2Z4 + 0.05× 2
Y16 = 0.2 + 0.1Z1 − 0.3Z2 + 0.4Z3 − 0.2Z4 − 0.05× 2

The three models – LAV, MM, and LS, in (12.37), (12.38), and (12.39),
respectively – have been used to fit the data points. To this end, the following
GAMS code was used:

$ title Regression

SETS

I number of data points /1*30/

P Number of parameters/1*5/

J number of regression models/1*3/

SS(I) subset of data points used in analysis;

PARAMETER

C(P) regression coefficients used in the simulation

/1 0.2

2 0.1

3 -0.3

4 0.4

5 -0.2/;

PARAMETER

Z(I,P) observed and predicted variables;

Z(I,P)=uniform(0,1);

Z(I,’1’)=C(’1’)+sum(P$(ord(P)>1),C(P)*Z(I,P))+uniform(0,1)*0.05;

Z(’7’,’1’)=C(’1’)+sum(P$(ord(P)>1),C(P)*Z(’7’,P))-0.05*2;

Z(’15’,’1’)=C(’1’)+sum(P$(ord(P)>1),C(P)*Z(’15’,P))+0.05*2;

Z(’16’,’1’)=C(’1’)+sum(P$(ord(P)>1),C(P)*Z(’16’,P))-0.05*2;

PARAMETER

Y(I) Observed values

Y1(I) Fitted values with all data points

Y2(I) Fitted values with one data point removed

z0 auxiliary value;

Y(I)=Z(I,’1’);
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POSITIVE VARIABLES

EPSILON1(I) error associated with data I

EPSILON error;

VARIABLES

z1 objective function value

z2 objective function value

z3 objective function value

BETA(P);

EQUATIONS

dz1 objective function 1 value definition

dz2 objective function 2 value definition

dz3 objective function 3 value definition

lower1(I) lower bound of error

upper1(I) upper bound of error

lower2(I) lower bound of error

upper2(I) upper bound of error;

dz1..z1=e=sum(SS,EPSILON1(SS));

dz2..z2=e=EPSILON;

dz3..z3=e=sum(SS,sqr(Y(SS)-sum(P,Z(SS,P)*BETA(P))));

lower1(SS)..Y(SS)-sum(P,Z(SS,P)*BETA(P))=l=EPSILON1(SS);

upper1(SS)..-Y(SS)+sum(P,Z(SS,P)*BETA(P))=l=EPSILON1(SS);

lower2(SS)..Y(SS)-sum(P,Z(SS,P)*BETA(P))=l=EPSILON;

upper2(SS)..-Y(SS)+sum(P,Z(SS,P)*BETA(P))=l=EPSILON;

MODEL regreslav/dz1,lower1,upper1/;

MODEL regresMM/dz2,lower2,upper2/;

MODEL regresLS/dz3/;

file out/regress1.out/;

put out;

put "Data"/;

loop(I,

put I.tl:3;

loop(P,put " & ",Z(I,P):8:4;);

put "\\"/;

);

Z(I,’1’)=1.0;

loop(J,

SS(I)=yes;

if(ord(J) eq 1,SOLVE regreslav USING lp MINIMIZING z1;Z0=z1.l);

if(ord(J) eq 2,SOLVE regresMM USING lp MINIMIZING z2;Z0=z2.l);

if(ord(J) eq 3,SOLVE regresLS USING nlp MINIMIZING z3;Z0=z3.l);

put "All data points z0=",z0:12:8 ;

loop(P,put " & ",BETA.l(P):10:5;);

put "\\"/;

Y1(I)=sum(P,Z(I,P)*BETA.l(P));

loop(I,

SS(I)=no;

if(ord(J) eq 1,SOLVE regreslav USING lp MINIMIZING z1;Z0=z1.l);

if(ord(J) eq 2,SOLVE regresMM USING lp MINIMIZING z2;Z0=z2.l);
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Table 12.4: Simulated data points

i Yi Z1i Z2i Z3i Z4i

1 0.2180 0.8433 0.5504 0.3011 0.2922
2 -0.0908 0.3498 0.8563 0.0671 0.5002
3 0.2468 0.5787 0.9911 0.7623 0.1307
4 0.3431 0.1595 0.2501 0.6689 0.4354
5 0.1473 0.3514 0.1315 0.1501 0.5891
6 0.3076 0.2308 0.6657 0.7759 0.3037
7 0.3981 0.5024 0.1602 0.8725 0.2651
8 0.2089 0.5940 0.7227 0.6282 0.4638
9 0.0879 0.1177 0.3142 0.0466 0.3386
10 0.3795 0.6457 0.5607 0.7700 0.2978
11 0.2259 0.7558 0.6274 0.2839 0.0864
12 -0.0147 0.6413 0.5453 0.0315 0.7924
13 0.3731 0.1757 0.5256 0.7502 0.1781
14 0.1575 0.5851 0.6212 0.3894 0.3587
15 0.5829 0.2464 0.1305 0.9334 0.3799
16 0.3781 0.3000 0.1255 0.7489 0.0692
17 0.3163 0.0051 0.2696 0.4999 0.1513
18 0.0804 0.3306 0.3169 0.3221 0.9640
19 0.3913 0.3699 0.3729 0.7720 0.3967
20 -0.0961 0.1196 0.7355 0.0554 0.5763
21 0.1868 0.0060 0.4012 0.5199 0.6289
22 0.0703 0.3961 0.2760 0.1524 0.9363
23 0.2184 0.1347 0.3861 0.3746 0.2685
24 0.1059 0.1889 0.2975 0.0746 0.4013
25 0.1961 0.3839 0.3241 0.1921 0.1124
26 0.3889 0.5114 0.0451 0.7831 0.9457
27 0.2762 0.6073 0.3625 0.5941 0.6799
28 0.2523 0.1593 0.6569 0.5239 0.1244
29 0.1535 0.2281 0.6757 0.7768 0.9325
30 0.1480 0.2971 0.1972 0.2463 0.6465

if(ord(J) eq 3,SOLVE regresLS USING nlp MINIMIZING z3;Z0=z3.l);

put "Removing point ",I.tl:3," z0=",z0:12:8;

loop(P,put " & ",BETA.l(P):10:5;);

put "\\"/;

Y2(I)=sum(P,Z(I,P)*BETA.l(P))-Y1(I);

SS(I)=yes;

);

loop(I,put I.tl:3,Y2(I):10:6/;);

);

The resulting values of di(LAV ), di(MM), and di(LS) are shown in Ta-
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ble 12.5, where the outliers and the largest three values of each column are
boldfaced. Note that the LS method clearly identifies the three outliers, while
the MM method has difficulties in identifying the data point 16, and the LAV
method is unable to identify any of them. This shows that the LAV method is
more robust, against outliers, than the MM method, and thus more robust than
the LS method. It is interesting to point out the zero change in the di(MM)
when removing single data that are not extreme points. This is due to the fact
that the regression line is defined by only two data extreme points (outliers or
not).

Table 12.6 shows the parameter estimates for the three models, LAV, MM,
and LS, estimated using all data points, and removing one of the first 5 points or
the outliers. The sensitivities of each parameter with respect to each outlier can
be observed. Again we can see that the LAV method is more robust to outliers
(smaller changes in the parameter estimates when removing one outlier) than
is the MM method.

12.5 Applications to Discretization of Continu-
ous Optimization Problems

Optimization problems in the infinite-dimensional case, where functions replace
vectors in cost functions, become finite-dimensional when one discretizes such
situations to compute approximations to optimal functions. Although this is a
subject beyond the scope of this book, we believe that it is interesting to point
out how the common link between finite and infinite-dimensional optimization
problems is carried out in a few selected and typical situations. Needless to say,
these examples are elementary and academic so that it will be impossible to
convey through them the richness of all situations and the difficulties attached to
more complex, realistic instances. From this perspective, our aim is to examine
such problems to indicate how discretizations can be carried out and, in this
way, broaden and enlarge the set of optimization problems that can be, at
least computationally, analyzed using the techniques and tools described in this
text. In particular, we shall stress the use of a computational tool like GAMS
to approximate and find optimal solutions for discretized versions of infinite-
dimensional optimization problems.

There are two main categories of infinite-dimensional optimization: varia-
tional problems and optimal control problems. We shall describe and make com-
putations for two selected, well-known examples in each category: the braquis-
tochrone and the hanging cable, for the first case; and the optimal controls of a
hitting target and of an harmonic oscillator, for the second. In all these exam-
ples, the point of view we have taken is related to a basic discretization scheme.
More efficient and accurate approximations would require a more specialized
treatment. For some more examples, see Polak [86] and Troutman [99].
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Table 12.5: Values of di(LAV ), di(MM), and di(LS), which allow analysis of
the influence of outliers on the predictions

i di(LAV ) di(MM) di(LS)
1 -0.017913 0.000000 -0.008427
2 0.007130 0.000000 0.007199
3 0.003571 0.000000 0.006221
4 0.008645 0.000000 -0.000730
5 0.001230 0.000000 0.000278
6 -0.005584 0.000000 -0.001787
7 0.000400 0.032893 0.021929
8 0.000000 0.000000 0.001975
9 -0.001667 0.000000 -0.000668
10 -0.009012 0.000000 -0.003484
11 -0.014035 -0.017450 -0.010407
12 -0.011423 0.000000 -0.001843
13 -0.005477 0.000000 -0.004351
14 0.000000 0.000000 0.001429
15 -0.007005 -0.056369 -0.019154
16 0.002400 0.011714 0.023611
17 0.009702 0.000000 -0.003079
18 0.001470 0.017649 0.003613
19 -0.004419 0.000000 -0.001829
20 0.004550 0.000000 0.008311
21 -0.000332 0.000000 0.000371
22 -0.005133 0.000000 -0.003675
23 0.001806 0.000000 -0.000840
24 -0.002236 0.000000 -0.001722
25 0.000000 0.000000 0.001087
26 -0.005122 0.000000 -0.006582
27 0.001186 0.000000 -0.001038
28 -0.006072 0.000000 -0.004491
29 0.014205 0.054685 0.013893
30 0.000673 0.000000 0.000769

12.5.1 Variational Problems

Typically, a scalar, one-dimensional variational problem comes in the following
form. Minimize

T (u) =

∫ b

a

F (t, u(t), u′(t))dt

subject to
u(a) = A, u(b) = B

where the unknown function u is assumed to be continuous.
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Table 12.6: Parameter estimates for the three methods using all data and re-
moving one of the first 6 data points or the outliers

i Yi β1 β2 β3 β4

Parameters estimates for the LAV method
All 0.23134 0.11741 -0.31868 0.41337 -0.22561
1 0.22128 0.09177 -0.30947 0.43343 -0.21652
2 0.22807 0.11690 -0.30427 0.40866 -0.22850
3 0.22944 0.11313 -0.31254 0.41648 -0.22957
4 0.23360 0.09454 -0.31811 0.42908 -0.22703
5 0.23074 0.12023 -0.31984 0.41182 -0.22353
6 0.23098 0.10934 -0.32361 0.40977 -0.21668
7 0.23108 0.11721 -0.31960 0.41392 -0.22401
15 0.22807 0.11690 -0.30427 0.40866 -0.22850
16 0.23291 0.11002 -0.31565 0.41743 -0.23107

Parameters estimates for the MM method
All 0.21723 0.00519 -0.28273 0.37877 -0.09172
1 0.21723 0.00519 -0.28273 0.37877 -0.09172
2 - 0.21723 0.00519 -0.28273 0.37877 -0.09172
3 0.21723 0.00519 -0.28273 0.37877 -0.09172
4 0.21723 0.00519 -0.28273 0.37877 -0.09172
5 0.21723 0.00519 -0.28273 0.37877 -0.09172
6 0.21723 0.00519 -0.28273 0.37877 -0.09172
7 0.09010 0.13240 -0.27174 0.48689 -0.09162
15 0.14378 0.06891 -0.18892 0.38863 -0.14452
16 0.22157 -0.03975 -0.23504 0.40342 -0.14350

Parameters estimates for the LS method
All 0.20098 0.08080 -0.26760 0.39807 -0.17825
1 0.20066 0.06789 -0.26633 0.40153 -0.17470
2 0.20061 0.07838 -0.25826 0.39316 -0.17677
3 0.19746 0.08240 -0.26064 0.40084 -0.17975
4 0.20037 0.08183 -0.26696 0.39742 -0.17827
5 0.20131 0.08090 -0.26801 0.39779 -0.17824
6 0.20173 0.08264 -0.26996 0.39625 -0.17818
7 0.20658 0.09872 -0.29242 0.41429 -0.18902
15 0.19585 0.08594 -0.24951 0.37834 -0.17624
16 0.22322 0.08249 -0.29511 0.40603 -0.20198

Integral constraints of the type

k =

∫ b

a

G(t, u(t), u′(t))dt

are also common. How is a discretized version built for the original problem? To
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this end, we divide the interval [a, b] in n+1 equal subintervals, and assume that
feasible functions for the new, discretized optimization problem are piecewise
affine, that is, affine on each subinterval

[a+ j∆, a+ (j + 1)∆]

where

∆ =
(b− a)

(n+ 1)

Notice that such class of functions are uniquely determined by its values at
the nodes

a+ j∆, j = 1, . . . , n

and therefore, feasible vectors for the new optimization problem correspond to
these values. We see that this process changes the original, infinite-dimensional
problem to a finite-dimensional one. The point is that by letting n + 1, the
number of subintervals becomes larger and larger, optimal solutions for these
discretized optimization problems will resemble and approximate well enough,
under conditions to be overlooked here, the true optimal solutions for the initial
optimization problem. Let

x = (xj), 1 ≤ j ≤ n. x0 = A, xn+1 = B

be the nodal values of feasible functions. In this way the function u that we
consider to optimize T (u) is

u(t) = xj +
(xj+1 − xj)

∆
(t− a− j∆) , if t ∈ [a+ j∆, a+ (j + 1)∆] (12.46)

This is the continuous, piecewise affine function that takes on values xj at nodal
points a+ j∆. Thus, we get

T (u) =

n∑

j=0

∫ a+(j+1)∆

a+j∆

F

(
t, u(t),

(xj+1 − xj)
∆

)
dt

where u(t) in the interval of integration is given by (12.46). If we realize that
u is determined by the vector x = (x1, . . . , xn) and interpret T (u) as a func-
tion of x, we are faced with a (nonlinear, unconstrained) programming problem.
By solving it, we find an approximate solution to the initial, continuous opti-
mization problem. The form of the functional T (u) in terms of x depends on
each particular situation. We will see and solve from this perspective the two
examples mentioned above.

The Braquistochrone

This was a famous optimization problem in the twentieth century and one of
the first examples where optimal solutions were explicitly found. Assume that
we are given two points, A and B, in a plane at different heights. We are asked
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to find the path joining those two points so that a unit mass, under the action
of gravity, and without slipping, takes the least time possible in getting from
the highest to the lowest point. This is one the most celebrated examples of the
so-called minimum transit problems.

The first thing to do is to derive the functional measuring the time spent by
the mass, in going from A to B, under the action of gravity. For convenience, we
put the X axis along the vertical direction so that gravity acts along this axis,
and the Y axis horizontally. Let, without loss of generality, A = (1, 0), B =
(0, 1). Assume that y = u(x) is a continuous curve joining A and B, so that
u(0) = 1 and u(1) = 0. If the unit mass is supposed to travel from A to B
through the path determined by the graph of u, what would the time spent
in going from A to B be? We know that space is velocity times time. In our
continuous situation space is measured by the elementary element’s length

d` =
√

1 + u′(x)2 dx

while velocity, in terms of g, is given by

v =
√

2gx

Therefore, if T (u) stands for the time spent associated with the path y = u(x),
we have

T (u) =

∫ 1

0

√
1 + u′(x)2

√
2gx

dx

or equivalently, keeping in mind that positive multiplicative constants do not
affect the solution of optimization problems, we obtain

T (u) =

∫ 1

0

√
1 + u′(x)2

√
x

dx

This is the functional to be minimized with respect to all those continuous
y = u(x) functions satisfying the constraints u(0) = 1 and u(1) = 0.

To fully understand this situation, one has to study the convexity properties
of the integrand for T and the associated Euler–Lagrange equation. Since this
would take us too far, we shall restrict our initial optimization problem to
a discretized version of it, and stress the use of GAMS to compute optimal
solutions for the discretized version.

The resulting discretized objective function T̄ (x), in terms of the nodal
points, becomes

T̄ (x) =

n∑

j=0

√
1 +

(
xj+1 − xj

∆

)2 ∫ (j+1)/(n+1)

j/(n+1)

dx√
x

or even more explicitly, neglecting positive constants

T̄ (x) =

n∑

j=0

(√
j + 1

n+ 1
−
√

j

n+ 1

)√
1 +

(
xj+1 − xj

∆

)2
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keeping in mind that x0 = 1 and xn+1 = 0. This is the function we want to
minimize with the help of GAMS, for several values of the number of subinter-
vals n. By doing so, we find a very good agreement with the arc of a cycloide,
which is the optimal solution of the continuous optimization problem.

The GAMS code for this problem, together with a summary of the optimal
solution, follows.

$title FUNCTIONAL1 n=20

SET J /0*20/;

VARIABLES z,x(J);

x.fx(J)$(ord(J) eq 1) = 0;

x.fx(J)$(ord(J) eq card(J)) = 1;

SCALAR n;

n = card(J)-2;

EQUATION

cost objective function;

cost.. z =e= SUM(J$(ord(J) lt card(J)),

(sqrt(ord(J))-sqrt(ord(J)-1))*sqrt(1+sqr(n+1)*sqr(x(J+1)-x(J))));

MODEL funct1 /all/;

SOLVE funct1 USING nlp MINIMIZING z;

LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF 5.776 +INF .

---- VAR X

LOWER LEVEL UPPER MARGINAL

0 . . . -2.091

1 -INF 0.005 +INF -1.163E-6

2 -INF 0.018 +INF 1.6563E-6

3 -INF 0.036 +INF 8.1950E-7

4 -INF 0.057 +INF -1.405E-6

5 -INF 0.082 +INF -4.992E-7

6 -INF 0.110 +INF -1.353E-6

7 -INF 0.141 +INF -3.233E-6

8 -INF 0.176 +INF 3.1623E-7

9 -INF 0.215 +INF 3.0808E-6

10 -INF 0.257 +INF 1.8503E-6

11 -INF 0.303 +INF -6.250E-7

12 -INF 0.353 +INF -1.116E-6

13 -INF 0.408 +INF 3.2812E-6

14 -INF 0.468 +INF -1.583E-6

15 -INF 0.534 +INF EPS

16 -INF 0.606 +INF 7.5934E-7

17 -INF 0.687 +INF -8.374E-7

18 -INF 0.777 +INF EPS

19 -INF 0.880 +INF EPS

20 1.000 1.000 1.000 2.091

If we plot in the same graph these computed values with the ones corre-
sponding to the exact solution, we are unable to distinguish them apart (see
Figure 12.5).

Alternatively, we can set up the discretization scheme considering the slopes
on each subinterval as independent variables. This leads to a simpler form of the
objective function, but we would have to enforce a (linear) constraint because
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Figure 12.5: The exact (continuous) and the approximated (dotted) solutions
to the braquistochrone problem.

Figure 12.6: The exact (continuous) and the approximated (dotted) solutions
to the hanging cable.

the slopes in the different subintervals must be such that the value of u at 1 is
given, and this imposes a constraint on the sets of possible slopes. Rather than
solving the same example in this format with an integral constraint, we prefer
to get into the next example.

The Hanging Cable

The hanging cable is also one of the classical problems Euler solved in the
twentieth century by variational techniques. It consists of determining the shape
adopted by a cable, hanging freely on its two endpoints at the same height, under
the action of its own weight (see Figure 12.6).

We postulate that the optimal shape will be that corresponding to the least
potential energy, and assume that the cable has constant cross sections along
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its length. Let us say that the two endpoints of the cable are a distance H
apart, and in the same horizontal plane, and that the length of the cable is L.
Obviously, we must require L > H so that the problem is well posed. Assume
that we place the X axis along the two endpoints of the cable, and the Y axis
vertically starting at the left endpoint of the cable. In this way (0, 0) and (H, 0)
are the coordinates of the two, fixed endpoints. Let y = u(x), x ∈ (0, H) be
any continuous function joining the two endpoints. If the cable would adopt
the profile described by the graph of u, its potential energy is measured by the
integral

k

∫ H

0

u(x)
√

1 + u′(x)2 dx

where k > 0 is a constant related to the material the cable is made of, u(x) is
the height of each material cross-section, and

√
1 + u′(x)2 dx

is the element’s length. Therefore, and discarding again positive constants, we
seek the optimal profile u(x) so that it minimizes the potential energy functional

P (u) =

∫ H

0

u(x)
√

1 + u′(x)2 dx

subject to u(0) = 0, u(H) = 0. This time, however, we need an extra con-
straint since we must enforce the cable to have total length L. Otherwise the
optimization problem would not make much sense because we could lower the
potential energy all the way to −∞ by letting the length become larger and
larger. Hence, we must enforce the constraint

∫ H

0

√
1 + u′(x)2 dx = L

Then, our optimization problem becomes minimization of

P (u) =

∫ H

0

u(x)
√

1 + u′(x)2 dx

subject to ∫ H

0

√
1 + u′(x)2 dx = L u(0) = 0, u(H) = 0

Again the complete analysis of this problem would compel us to use the
Lagrange multipliers associated with this integral constraint, and study the
Euler–Lagrange equation for the augmented Lagrangian. Alternatively, we set
up a discretized version of this problem, and solve it using GAMS, as before.

The process is exactly the same as above. We restrict our optimization prob-
lem to the finite-dimensional subspace of piecewise affine functions determined
by the nodal values xj , j = 1, 2, . . . , n over a uniform partition of the interval
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(0, H). Without loss of generality, we may take H = 1. As we have done before,
we have

P (x) =

n∑

j=0

∫ (j+1)/(n+1)

j/(n+1)

u(x)

√
1 +

(
xj+1 − xj

∆

)2

dx

where again ∆ = 1/(n+1). Since the square roots appearing under the integral
sign are constants, we can also write

P (x) =

n∑

j=0

√
1 +

(
xj+1 − xj

∆

)2 ∫ (j+1)/(n+1)

j/(n+1)

u(x) dx

In addition we can use the trapezoidal rule to obtain a good approximation of
the integrals ∫ (j+1)/(n+1)

j/(n+1)

u(x) dx ' xj+1 + xj
2(n+ 1)

Altogether we obtain the objective functional

P (x) =

n∑

j=0

√
1 +

(
xj+1 − xj

∆

)2
xj+1 + xj
2(n+ 1)

Finally, expressing the initial integral constraint in terms of the vector x, we get

L =
1

n+ 1

n∑

j=0

√
1 +

(
xj+1 − xj

∆

)2

We must remember that x0 = 0 and xn+1 = H. This discretized, finite-
dimensional formulation is appropriate for computation using GAMS. With this
package we can find good approximations to the classical catenary, which is the
optimal solution of the continuous problem.

The GAMS code to approximate the optimal solution, together with part of
the solution file, can be found below. L is taken to be 1.3116.

$title FUNCTIONAL2 n=10

SET J /0*10/;

VARIABLES z,x(J);

x.fx(J)$(ord(J) eq 1) = 0;

x.fx(J)$(ord(J) eq card(J)) = 0;

x.l(J)=-0.5;

SCALAR n;

n = card(J)-2;

EQUATION

cost objective function

rest equality constraint;

cost.. z =e= SUM(J$(ord(J) lt card(J)),

sqrt(1+sqr(n+1)*sqr(x(J+1)-x(J)))*(x(J+1)+x(J)));

rest.. (n+1)*1.3116 =e= SUM(J$(ord(J) lt card(J)),sqrt(1+sqr(n+1)*sqr(x(J+1)-x(J))));

MODEL funct2 /all/;

SOLVE funct2 USING nlp MINIMIZING z;
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LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF -6.114 +INF .

---- VAR X

LOWER LEVEL UPPER MARGINAL

0 . . . 13.116

1 -INF -0.148 +INF EPS

2 -INF -0.254 +INF 6.1259E-7

3 -INF -0.325 +INF 8.3847E-7

4 -INF -0.366 +INF 6.0564E-7

5 -INF -0.379 +INF .

6 -INF -0.366 +INF 1.2127E-6

7 -INF -0.325 +INF 1.0593E-6

8 -INF -0.254 +INF -5.058E-7

9 -INF -0.148 +INF 8.8932E-7

10 . . . 13.116

Figure 12.6 shows a graphic of the exact and approximated solutions.

12.5.2 Optimal Control Problems

Optimal control problems are more complex continuous optimization problems
than its variational counterpart. Indeed, variational problems are a very special
class of optimal control problems. The main ingredients of an optimal control
problem are

1. A vector x(t) determining the dynamics of the state of a certain system
under control; the number of components in x indicates the number of
parameters to be uniquely determined to identify the state of the system
under consideration.

2. A vector u(t) designating the control that we can exercise on the system so
as to modify its dynamics with some specific objective in mind; frequently,
the control is restricted by requiring u(t) ∈ K for a given set K.

3. The state equation

x′(t) = f(t, x(t), u(t)), t ∈ (0, T )

which governs the dynamics of the system, and expresses the interaction
between states and controls.

4. Additional constraints on the initial and/or final state of the system.

5. The objective functional

I(u) =

∫ T

0

g(t, x(t), u(t)) dt

yielding a measure of optimality when the control u is exercised on the
system, and the resulting dynamics, x(t), is obtained by solving the state
equation together with initial and/or final states, as indicated by x(t).
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The aim of the optimal control problem is to find the best way of acting
on the system, the optimal control u(t), measured in terms of the proposed
cost functional I(u). The relationship between the state x and the control u,
through the state equation and additional constraints, is what makes optimal
control problems much more complex than variational problems. Notice that
variational problems correspond to the simplest, nontrivial state equation

x′(t) = u(t),

where both the initial and final states are prescribed a priori.
The computational procedure is, likewise, much more involved because it

requires one to solve (often numerically by an appropriate solver) the state
equation. We do not pretend to enter a full discussion of this issue. Our goal
here is to provide two easy examples of optimal control problems to stress the
usefulness of a tool such as GAMS, possibly in conjunction with some additional
package to take care of the state equation, in approximating optimal controls.

Optimal Control of Hitting a Target

Assume that we would like to hit a target that is a distance 3 + 5
6 length

units apart from us in 3 units of time. Then, the control we can exercise on the
projectile is the magnitude of acceleration u(t), so that the state of the projectile
(x(t), x′(t)) must obey the state equation and auxiliary conditions

x′′(t) = u(t), x(0) = x′(0) = 0, x(3) = 3 +
5

6

The initial conditions reflect the fact that the projectile departs from rest. We
must also respect a constraint in the size of u(t) by imposing 0 ≤ u ≤ 1. Finally,
the objective is to hit the target in the cheapest possible way measured by the
cost functional

I(u) = k

∫ 3

0

u(t)2 dt

where k > 0 is a constant.
This is a typical optimal control problem. The peculiar form of the data

allows us to obtain the optimal solution analytically, by exploiting optimality
conditions through Pontryagin’s maximum principle (see, for example, Polak
[86] or Troutman [99]). Indeed the (unique) optimal control for this problem is

u(t) =

{
1, t ≤ 1
3− t

2
, t ≥ 1

A justification of this is far beyond the scope of this book. However, we can
compare the exact solution with an approximated one, computed using GAMS.

To set up a discretized version of the optimal control is, as announced above,
more involved because it requires to solve the state equation. In our particu-
lar example this can be done explicitly so that we will end up with a precise
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optimization problem suitable for GAMS. The underlying idea behind the dis-
cretization is, however, the same: we divide the time interval (0, 3) in n equal
subintervals, and we set the control u to be uj , constant, in the associated subin-
terval (3(j − 1)/n, 3j/n). By doing so, and after solving the state equation for
this class of piecewise constant controls, we hope to express the discretized, opti-
mal control problem as a (nonlinearly constrained) mathematical programming
problem in the uj variables.

In the subinterval (3(j − 1)/n, 3j/n) the control u takes on the constant
value uj ; therefore assuming, recursively, that we have solved the state equation
in the previous subinterval (3(j − 2)/n, 3(j − 1)/n) and letting aj−1 and bj−1

be the values of the velocity and position, respectively, for t = 3(j − 1)/n, we
need to find the solution of

x′′(t) = uj , x′
(

3(j − 1)

n

)
= aj−1, x

(
3(j − 1)

n

)
= bj−1

to get

x(t) =
uj
2

(
t− 3(j − 1)

n

)2

+ aj−1

(
t− 3(j − 1)

n

)
+ bj−1

The values of the velocity and position at t = 3j/n are

aj = aj−1 +
3uj
2n

, bj = bj−1 + aj−1
3

n
+

9uj
2n2

It should be noted that the initial conditions imply a0 = b0 = 0. By using this
recursion formulas repeatedly, it is not hard to find

aj =
3

n

j∑

k=1

uk, bj =
9

2n2

j∑

k=1

(2j − 2k + 1)uk

The final target condition x(3) = 3 + 5
6 will translate into the linear constraint

9

2n2

n∑

k=1

(2n− 2k + 1)uk = 3 +
5

6

On the other hand, the cost quadratic functional, neglecting positive constants,
becomes

I(u) =

n∑

k=1

u2
k, u = (uk); k = 1, 2, . . . , n

Thus, we must solve the following (quadratic) mathematical programming prob-
lem. Minimize

Z =

n∑

k=1

u2
k

subject to

9

2n2

n∑

k=1

(2n− 2k + 1)uk = 3 +
5

6
, 0 ≤ uk ≤ 1
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Figure 12.7: The exact (continuous) and the approximated (dotted) solution to
the optimal control of a hitting target problem.

In this format, GAMS can find an approximation to the original optimal control
problem, which is in close agreement with the exact solution given previously.
Figure 12.7 shows the exact and the numerical solutions of this problem. The
GAMS code and computed solutions follows.

$title FUNCTIONAL3 n=30

SET K /1*30/;

VARIABLES z,u(K);

u.up(K) = 1;

u.lo(K) = 0;

SCALAR n;

n = card(K);

EQUATION

cost objective function

rest equality constraint;

cost.. z =e= SUM(K,sqr(u(K)));

rest.. 3+(5/6) =e= (9/(2*sqr(n)))*SUM(K,(2*n-2*ord(K)+1)*u(K));

MODEL funct3 /all/;

SOLVE funct3 USING nlp MINIMIZING z;

LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF 16.671 +INF .

---- VAR U

LOWER LEVEL UPPER MARGINAL

1 . 1.000 1.000 -0.952

2 . 1.000 1.000 -0.852

3 . 1.000 1.000 -0.752

4 . 1.000 1.000 -0.652

5 . 1.000 1.000 -0.552

6 . 1.000 1.000 -0.452

7 . 1.000 1.000 -0.351

8 . 1.000 1.000 -0.251

9 . 1.000 1.000 -0.151

10 . 1.000 1.000 -0.051

11 . 0.976 1.000 EPS

12 . 0.926 1.000 3.4120E-6

13 . 0.876 1.000 2.7012E-6

14 . 0.826 1.000 1.9903E-6

15 . 0.775 1.000 1.2794E-6

16 . 0.725 1.000 -2.347E-7

17 . 0.675 1.000 -2.185E-7

18 . 0.625 1.000 .
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19 . 0.575 1.000 -1.564E-6

20 . 0.525 1.000 EPS

21 . 0.475 1.000 EPS

22 . 0.425 1.000 EPS

23 . 0.375 1.000 EPS

24 . 0.325 1.000 EPS

25 . 0.275 1.000 -1.026E-5

26 . 0.225 1.000 -8.395E-6

27 . 0.175 1.000 -6.530E-6

28 . 0.125 1.000 -4.664E-6

29 . 0.075 1.000 -2.798E-6

30 . 0.025 1.000 EPS

Optimal Control of an Harmonic Oscillator

There is a special class of important optimal control problems where the ob-
jective is to perform a known task in minimum time. In these situations the
governing state equation

x′(t) = f(t, x(t), u(t)), t ∈ (0, T ), u(t) ∈ K

is completed with both initial and final states xI and xF , respectively. The task
is to find the control u that accomplishes the final, given task

x(T ) = xF

for the smallest possible value of T .
To fix our ideas, we treat below the example of a linear harmonic oscillator

with state equation

x′′(t) + x(t) = u(t), t ∈ (0, T ), |u| ≤ 1

The goal is to lead the oscillator from given, initial conditions

x(0) = a0, x′(0) = b0

to rest
x(T ) = x′(T ) = 0

in minimum time. Again this example can be treated analytically by exploiting
the optimality conditions coming from the Pontryaguin’s maximum principle.
In particular, the linear (in fact, constant) dependence of the cost functional on
the control implies that the optimal control will take exclusively the extremal
values +1 and −1. But let us pretend not to have that information at our
disposal, and proceed to formulate a discretized version of the optimization
problem suitable for GAMS.

Since this time T is not known, we must incorporate it as one of our in-
dependent variables for the resulting mathematical programming problem, so
that u = (uj)j=0,1,...,n is the unknown, where u0 stands for T and the asso-
ciated, piecewise constant control takes the constant value uj on the interval
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(u0(j − 1)/n, u0j/n). As before, if we let

aj = x

(
u0j

n

)
, bj = x′

(
u0j

n

)

then we can find x by recursively solving

x′′(t) + x(t) = uj , x

(
u0(j − 1)

n

)
= aj−1, x

′
(
u0(j − 1)

n

)
= bj−1

For this example, it is much more complicated to find exact formulas for aj
and bj . Even though we could use some symbolic computation package to find
such expressions, there is no point in doing so if, after all, what we are about
to compute is an approximation to the exact optimal control. Therefore it
suffices to use, for instance, an Euler integrator of step size precisely u0/n to
find reasonable approximations for aj and bj . If we do not distinguish between
the exact and approximated values for aj and bj , it is easy to find, in matrix
notation

(
aj
bj

)
=

(
aj−1

bj−1

)
+
u0

n

[(
0 1
−1 0

)(
aj−1

bj−1

)
+

(
0
uj

)]

for j = 1, 2, . . . , n. By using this identity recursively, we obtain

(
aj
bj

)
=

(
1 u0

n
−u0

n 1

)j (
a0

b0

)
+
u0

n

j−1∑

k=0

(
1 u0

n
−u0

n 1

)k (
0

uj−k

)

The constraints come from demanding the desired final rest conditions an =
bn = 0. Thus, the discrete (nonlinearly constrained) mathematical programming
problem whose optimal solution provides a good approximation for our problem
involves minimization of

Z = u0

subject to

(
0
0

)
=

(
1 u0

n
−u0

n 1

)n(
a0

b0

)
+
u0

n

n∑

j=1

(
1 u0

n
−u0

n 1

)n−j (
0
uj

)

and
u0 ≥ 0, −1 ≤ uj ≤ 1, j = 1, 2, . . . , n

For specific values of the initial conditions a0 and b0, and a value for n, GAMS
can find good approximations of the optimal control of a linear harmonic oscil-
lator.

With the objective of simplifying the GAMS formulation of this situation,
we have used the change of variables

u0

n
= tanα, 0 ≤ α ≤ π

2
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so that (
1 u0

n
−u0

n 1

)k
= (1 + tan2 α)k

(
cos(kα) sin(kα)
− sin(kα) cos(kα)

)

We have chosen several possibilities for initial conditions (a0, b0), namely, (−1, 0),
(3, 0), (−7, 0). What we see in the computations below, except for some inac-
curacies, is the typical bang–bang control jumping from −1 to 1, as predicted
by Pontryaguin maximum principle.

A GAMS input file as well as a part of the corresponding output file for the
case (a0, b0) = (3, 0) is written below:

$title FUNCTIONAL n=20, azero

SET J /1*20/;

SCALAR pi the pi number /3.1416/;

VARIABLES z,theta,u(J);

u.lo(J)=-1;

u.up(J)=1;

theta.lo=0;

theta.up=pi/2;

theta.l=pi/4;

u.l(J)=0.;

SCALARS n, azero;

n = card(J);

alpha=-7;

EQUATION

cost objective function

const1

const2;

cost.. z =e= SIN(theta)/COS(theta);;

const1..

alpha*COS(n*theta)*POWER((1+POWER((SIN(theta)/COS(theta)),2)),n)+(SIN(theta)

/COS(theta))*

SUM(J,u(J)*SIN((n-ORD(J))*theta)*

POWER((1+POWER((SIN(theta)/COS(theta)),2)),n-ORD(J))

) =E= 0;

const2..

-azero*SIN(n*theta)*POWER((1+POWER((SIN(theta)/COS(theta)),2)),n)+(SIN(theta

)/COS(theta))*

SUM(J,u(J)*COS((n-ORD(J))*theta)*

POWER((1+POWER((SIN(theta)/COS(theta)),2)),n-ORD(J))

) =E= 0;

MODEL funct5 /all/;

SOLVE funct5 USING nlp MINIMIZING z;

azero=3;

LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF 0.982 +INF .

---- VAR THETA . 0.776 1.571 .

---- VAR U

LOWER LEVEL UPPER MARGINAL

1 -1.000 -1.000 1.000 1.2962E+5

2 -1.000 1.000 1.000 -2.455E+5

3 -1.000 1.000 1.000 -2.118E+5

4 -1.000 1.000 1.000 -9.025E+4

5 -1.000 1.000 1.000 -1.067E+4

6 -1.000 -1.000 1.000 15633.593
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7 -1.000 -1.000 1.000 14116.404

8 -1.000 -1.000 1.000 6201.667

9 1.000 -1.000 1.000 846.919

10 -1.000 1.000 1.000 -991.476

11 -1.000 1.000 1.000 -939.412

12 -1.000 1.000 1.000 -425.373

13 -1.000 1.000 1.000 -65.560

14 -1.000 -1.000 1.000 62.581

15 -1.000 -1.000 1.000 62.430

16 -1.000 -1.000 1.000 29.126

17 -1.000 -1.000 1.000 4.979

18 -1.000 1.000 1.000 -3.929

19 -1.000 1.000 1.000 -4.143

20 -1.000 1.000 1.000 -1.991

12.6 Transportation Systems

In this section we deal with some network equilibrium models that are applied
to transportation problems. This section has two main objectives: (1) to show
some models that are routinely used in transportation planning, and (2) to
illustrate how GAMS is an appropriate tool to implement these models.

We avoid the discussion of specific algorithms to solve these kinds of problems
efficiently. The interested reader may consult the comprehensive reviews on this
topic given in Patriksson [84].

Readers interested in mathematical models used in transportation planning
are directed to the books of Ortúzar and Willumsen [82], and Sheffi [98]. A
good introduction is provided in the book of Potts and Oliver [88].

12.6.1 Introduction

Traffic planning and transportation problems have motivated a large amount
of mathematical models. The use of traffic planning models aids planners in
predicting what effects on network performance are produced by changes in the
network topology, or in their parameters. The classical transportation model
the following stages:

Base Inventory. In this stage the study area is defined, and an inventory of
the main transportation networks and travel patterns is obtained.

Model Analysis. The second phase of the process is the selection and calibra-
tion of the model. It has four steps:

1. Trip generation step. This step starts by considering a zoning and net-
work system, and a database of each zone. These data, which include
information about economic activity, social distribution, educational and
recreational facilities, and shopping space are used to estimate the total
number of trips generated and attracted by each zone of the study area.
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2. Distribution step. This stage is the allocation of these trips to particu-
lar destinations, such that their distribution over space, and building an
origin–destination (O–D) trip matrix.

3. Modal split step. The modal split step produces the allocation of trips to
different transportation modes. In this phase the origin–destination ma-
trices are obtained for every transportation mode (public, private, etc.).
Their elements are the total number of trips associated with a transporta-
tion mode for each origin–destination pair Ω.

4. Assignment step. Finally, the last stage requires the assignment of these
trips to the transportation network. This section deals with some assign-
ment equilibrium models to the road network. These models predict the
utilization level of the different arcs in the network. Thus, it can be used
to answer questions such as what would happen in the network service
level if a new road were built or the capacity of an existing road were
modified.

Travel Forecasts. In this stage, the service level and demand of the trans-
portation network is forecast using the corresponding mathematical models for
different scenarios.

Network Evaluation. In the final phase of the process, alternative future
transportation systems are evaluated and the optimal one is selected.

In this section we present four assignment models for private vehicles. These
models take into account the congestion effect, and use Wardrop’s principle [102]
as a general framework to formulate them. Wardrop’s first principle states that
under congested conditions drivers choose routes until no one can reduce its
costs by switching to other path.

12.6.2 Elements of a Road Transportation Network

In this subsection we give a brief outline of the main elements of the road
transportation network theory. The mathematical model used to represent a
road transportation network is called a directed graph. It is defined as a pair
G = (N ,A), where N is a finite set of nodes, and A is a set of ordered pairs
(arcs or links) of elements of N . The nodes are denoted by i or j, and the arcs
or links, or more precisely the directed links, are denoted as (i, j). The link
directions are important because they allow distinction between one-way routes
and two-way routes.

Example 12.8 (Nguyen–Dupuis Network). Consider the graph G, in Ta-
ble 12.7, where N = {1, . . . , 13} and A has 19 links. This example is taken from
Nguyen and Dupuis [80] (ND network) and is illustrated in Figure 12.8.
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Table 12.7: Links of the graph G

Links
( 1, 5) ( 1, 12) ( 4, 5) ( 4, 9)
( 5, 6) ( 5, 9) ( 6, 7) ( 6, 10)
( 7, 8) ( 7, 11) ( 8, 2) ( 9, 10)
( 9, 13) (10, 11) (11, 2) (11, 3)
(12, 6) (12, 8) (13, 3)

Figure 12.8: Transportation network represented by a graph. Circles refer to
intermediate nodes, and triangles are the centroids (origins and destinations).

Single-Commodity Problem

In many problems, flows of vehicles, goods, or passengers can be associated
with links of a graph. In this case we denominate the graph a network or, more
specifically, a transportation network, if the application to transportation is to
be emphasized. The term flow denotes quantity per unit time, such as vehicles
per hour or pedestrians per minute.

Fundamental to a network, such as electrical networks, water pipe networks,
or transportation networks, is the flow conservation law, which states that the
flows are neither created nor destroyed.

The nodes of N are classified as centroids or intermediate nodes. The first
group represents either zones where vehicle trips are produced by residents going
on a trip elsewhere, and are called origins, or zones where trips are attracted to
places of work, shopping, and so on, and are called destinations.

The conservation flow law states that the sum of all flows leaving a node
minus the sum of the flows entering that node equals the flow generated or
attracted to that node.

The main elements of this problem are

1. Data.
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N : the set of nodes in the network

A: the set of arcs in the network

ri: the flow produced or attracted by node i. Note that if i is an interme-
diate node then ri = 0. If ri > 0 then i is an origin and if ri < 0, i
is a destination

A(i): the sets of nodes {j : j ∈ N , (i, j) ∈ A} “after” node i

B(i): the sets of nodes {j : j ∈ N , (j, i) ∈ A} “before” node i

cij(x): cost of the transportation associated with link i− j and flow x

2. Variables.

fij: the link flow on the directed link (i, j)

3. Constraints. The conservation equations are written in the following
form:

∑

j∈A(i)

fij −
∑

j∈B(i)

fji = ri, ∀i ∈ N

4. Function to be optimized. In this problem, we minimize

Z =
∑

(i,j)∈A

∫ fij

0

cij(x)dx (12.47)

Example 12.9 (Single-commodity problem). To illustrate the flow con-
servation equations, consider the network given in Figure 12.8, where circles
refer to intermediate nodes, and triangles are the centroids (origins and desti-
nations). For the intermediate node 5, we have

i = 5, A(5) = {6, 9}, B(5) = {1, 4}
∑

j∈A(5)

f5j −
∑

j∈B(5)

fj5 = f5,6 + f5,9 − f1,5 − f4,5 = r5 = 0

Multicommodity Flow Problems

The previous discussion was based on the assumption that only one type of flow
exists on the network, thus, we are in front of a single-commodity network.

Multicommodity flow problems arise when several commodities use the same
underlying network. The commodities might be differentiated either by their
physical characteristics and/or because they have different origins and/or des-
tinations. For example, in a communication network where video and audio
flows have to be considered, or in a road network, where trips are classified ac-
cording to origins and destinations. In these cases, it is essential to distinguish
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certain O–D flows from others, to make sure travelers get their correct desti-
nations. This imposes that each commodity defined by an O–D demand pair
must satisfy its flow conservation equation. We denote by Ω = (i, j) an specific
origin–destination (O–D) pair, and by W the set of all the O–D pairs. In traffic
studies the traffic on the network is studied as a superposition of traffic between
specific O–D pairs.

To formulate the multicommodity network, we consider that the flow of the
commodity Ω from OΩ -DΩ is gΩ > 0. Table 12.8 defines a set of O–D pairs for
the ND network of Figure 12.8.

Table 12.8: O–D pairs for the example network

Pair Demand gΩ Pair Demand gΩ

Ω1 = (1, 2) 400 Ω2 = (1, 3) 800
Ω3 = (4, 2) 600 Ω4 = (4, 3) 200

(12.48)

Consequently, for the multicommodity problem the constraints described
above become

1. The flow conservation equations for all commodities are

∑

j∈A(i)

fΩ
ij −

∑

j∈B(i)

fΩ
ji = rΩ

i , ∀i ∈ N , ∀Ω ∈W

where

rΩ
i =





gΩ if OΩ = i
−gΩ if DΩ = i

0 if i is an intermediate node
for the commodity Ω.

2. The total link flow is given by superposing the link flow of all commodities:

∑

Ω∈W
fΩ
ij = fij , ∀(i, j) ∈ A

In matrix form the previous relations can be stated as

EfΩ = rΩ ∀Ω ∈W∑

Ω∈W
fΩ = f

where E is the n × l node–link incidence matrix whose element in the row
corresponding to node i, and the column corresponding to the link (j, k) is
defined as

ei(jk) =





+1 if i = j
−1 if i = k
0 otherwise
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Note that the conservation flow equations are equivalent to consider the total
link flow, specifically, the sum of the link flows associated with all commodities.
It is possible to reduce the amount of copies of the network by using a network
for all the O–D pairs with the same origin, or alternatively for all O–D pairs
with the same destination.

Congested Traffic

We have considered the structure of graphs and road transportation networks.
It is characteristic of the road networks that the passage of flow through the
network creates delays (effect of congestion) and, as a result of growing traffic
volumes, the speed on a link tends to decrease. To take the congestion effect
into account, we introduce the notion of the link cost, cij(fij), as the average
travel time in traversing the street segment defined by the link (i, j) with flow
fij . These functions are usually modeled as positive, nonlinear, and strictly
increasing functions in the analysis of traffic systems. The basic parameters of
a link performance function, relating travel time, cij , on link (i, j), to the flow
fij , on the link, are the free-flow travel time, c0ij , which is a measure of the travel
time at zero flow, and the practical capacity of the link, kij , which is a measure
of the flow from which the travel time will increase very rapidly if the flow is
further increased. The most common expression for cij(fij) is called the BPR
function

cij(fij) = c0ij + bij(fij/kij)
nij , (12.49)

where bij and nij are parameters to be calibrated.

12.6.3 The Traffic Assignment Problem

We must introduce a principle that models user behavior in their route choice in
the transportation network. Wardrop [102] was the first to formally enunciate
this principle:

“Under equilibrium conditions, traffic in congested networks arranges
itself in such a way that no individual tripmaker can reduce his paths
cost by switching routes.”

This principle assumes perfect information of all users, and means that they
would change the route if this produces a time reduction. A corollary of this
principle is that if all tripmakers perceive costs in the same way, under equi-
librium conditions, then traffic in congested networks arranges itself such that
all used routes between an O–D pair have equal and minimum costs while all
unused routes have greater or equal costs than used routes.

This principle has been used as a framework to build equilibrium assignment
models. Beckman and McGuire [10] formulated the optimization problem be-
low to express the equilibrium condition derived from Wardrop’s first principle
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[traffic assignment problem] (TAP). Minimize

Z =
∑

(i,j)∈A

∫ fij

0

cij(x)dx (12.50)

subject to
∑

j∈A(i)

fΩ
ij −

∑

j∈B(i)

fΩ
ji = rΩ

i , ∀i ∈ N , ∀Ω ∈W

∑

Ω∈W
fΩ
ij = fij , ∀(i, j) ∈ A

fΩ
ij ≥ 0, ∀(i, j) ∈ A, ∀Ω ∈W

This formulation of the problem is known as the link-node formulation. Since
the equilibrium conditions are given in terms of route flows and costs, it follows
that the optimization problem is based on route flows. Next, an alternative
formulation of the equilibrium conditions based on path flows, called the linkflow
formulation, is given.

The Linkflow Formulation

The main elements of this formulation are

1. Data.

RΩ: the set of routes for the commodity Ω

ca(x): the cost associated with flow x through arc a

2. Variables.

hr: the flow in route r

3. Constraints. The amount of users of a demand pair Ω is the sum of the
total amount of users in different paths satisfying the demand

∑

r∈RΩ

hr = gΩ, ∀Ω ∈W (12.51)

Moreover, the flow must be nonnegative

hr ≥ 0, ∀r ∈ RΩ, ∀Ω ∈W (12.52)

The relationship between linkflow and routeflow is that the flow on each
link a ∈ A is the sum of the flow in all paths that use it:

∑

w∈W

∑

r∈RΩ

δa,rhr = fa ∀a ∈ A (12.53)

where

δa,r =

{
1 if r ∈ RΩ contains arc a
0 otherwise
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Figure 12.9: Diagram showing the routes.

4. Function to be optimized. In this problem, we minimize

Z =
∑

a∈A

∫ fa

0

ca(x)dx

Thus, the linkflow formulation of TAP can be stated as follows. Minimize

Z =
∑

a∈A

∫ fa

0

ca(x)dx

subject to
∑

r∈RΩ

hr = gΩ, ∀Ω ∈W (12.54)

∑

Ω∈W

∑

r∈RΩ

δarhr = fa , ∀a ∈ A (12.55)

hr ≥ 0, ∀r ∈ RΩ, ∀Ω ∈W (12.56)

Example 12.10 (Linkflow formulation). To illustrate the previous con-
straints, consider the problem of a town served with a bypass and several town-
center routes as illustrated in Figure 12.9. Assume that there are 4000 trips
from A to B, and 2500 trips from A to C. The routes available to satisfy the
demand pair Ω1 = (A,B) are r1 = {a1}, r2 = {a2, a4}, and r3 = {a3, a4},
and the routes for the pair Ω2 = (A,C) are r4 = {a2} and r5 = {a3}. In this
example W = {1, 2}, and RΩ1 = {r1, r2, r3} and RΩ2 = {r4, r5}. The path flow
variables are h1, . . . , h5, and the line flow variables are f1, . . . , f4.

For this example the constraints of the problem are:

• Constraints (12.51)

h1 + h2 + h3 = 4000

h4 + h5 = 2500
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• Constraints (12.53)

h1 = f1

h2 + h4 = f2

h3 + h5 = f3

h2 + h3 = f4

• Constraints (12.52):

h1, . . . , h5 ≥ 0

Appropriateness of the Model

We show below that this mathematical model is appropriate for describing the
Wardrop’s equilibrium conditions. The first observation is

Ca(fa) =

∫ fa

0

ca(x)dx

C ′a(fa) = ca(fa)

C ′′a (fa) = c′a(fa)

Since ca(fa), the cost of the link as a function of the service level in this link, is a
nondecreasing function, this implies that c′a(fa) ≥ 0 and that Ca(fa) is a convex
function. Since the objective function is the sum of convex functions, it is also
a convex function. Since the constraints are linear, the optimization problem
becomes a convex mathematical programming problem. This implies that the
KKTCs are necessary and sufficient conditions. We shall show by means of the
KKTCs that the optimal solution of the TAP meets the equilibrium conditions.

By expressing the link flows fa in terms of the path flows in the objective
function (12.54) [using Equation (12.55)], the problem can be formulated only
in terms of the path flow variables {hr : r ∈ RΩ, Ω ∈W} as follows. Minimize

Z =
∑

a∈A

∫ ∑
Ω∈W

∑
r∈RΩ

δarhr

0

ca(x)dx

subject to
∑

r∈RΩ

hr = gΩ, ∀Ω ∈W (12.57)

hr ≥ 0, ∀r ∈ RΩ, ∀Ω ∈W (12.58)

The Lagrangian function of this problem is

L(h,λ,ψ) = Z +
∑

Ω∈W
λΩ

(
gΩ −

∑

r∈RΩ

hr

)
+
∑

Ω∈W

∑

r∈RΩ

ψr(−hr)
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and the KKT condition (8.3) are

∂L
∂hr′

=
∑

a∈A
ca

(∑

Ω∈W

∑

r∈RΩ

δarhr

)
δar′ − λΩ′ − ψr′ = 0 (12.59)

where r′ ∈ RΩ′ . Note that
∑

Ω∈W
∑
r′∈RΩ

δarhr′ gives the flow on the link a,
and

∑
a∈A ca(fa)δar′ is the sum of the cost associated with all arcs contained

in the route r′, specifically, it is the length of path r′. We denote this quantity
as C∗r′ . The condition (12.59) becomes

C∗r′ = λΩ′ + ψr′

The slackness condition leads to ψrhr = 0, so hr = 0 or ψr = 0. If hr′ > 0 then
ψr′ = 0 and C∗r′ = λΩ′ . Otherwise, using the nonnegativity of the multiplier ψr′

we obtain C∗r′ = λΩ′ + ψr′ ≥ λΩ′ . In other words, the preceding condition says
that the a set of paths flows that is optimal must be positive on paths with a
minimum cost length. The condition also implies that at an optimum, the paths
along which the demand gΩ of O–D pair Ω is split must have equal lengths (and
length less than or equal to that of all other paths of Ω).

A GAMS implementation

Below, we use the GAMS package to implement the TAP formulation. The
test example is that stated in Section 12.6.2 and illustrated in Figure 12.8.
This example uses the BPR functions as link costs, and the objective function
becomes

Z =
∑

a∈A
Ca(fa) =

∑

a∈A

∫ fa

0

ca(x)dx =
∑

a∈A

∫ fa

0

[
c0a + ba

(
x

ka

)na]
dx

=
∑

a∈A

[
c0afa +

ba
na + 1

(
fa
ka

)na+1
]

=
∑

a∈A

(
c0afa + dafa

ma
)

where

da =
ba

(na + 1)kna+1
a

and ma = na + 1

The parameters of the ND network are shown in Table 12.9.
A GAMS input file is provided below:

$title TRAFFIC ASSIGNMENT PROBLEM.

** Sets are declared in first place.

** Set N is the set of nodes of the road network.

** Set A(N,N) is the set of links.

** Set W is the set of O--D pairs

SET
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Table 12.9: Parameters of the link cost functions of the Nguyen–Dupuis net-
work

Link c0a da ma Link c0a da ma

(1,5) 7.0 0.00625 2.0 (1,12) 9.0 0.00500 2.0
(4,5) 9.0 0.00500 2.0 (4,9) 12.0 0.00250 2.0
(5,6) 3.0 0.00375 2.0 (5,9) 9.0 0.00375 2.0
(6,7) 5.0 0.00625 2.0 (6,10) 13.0 0.00250 2.0
(7,8) 5.0 0.00625 2.0 (7,11) 9.0 0.00625 2.0
(8,2) 9.0 0.00625 2.0 (9, 10) 10.0 0.00250 2.0
(9,13) 9.0 0.00250 2.0 (10,11) 6.0 0.00125 2.0
(11,2) 9.0 0.00250 2.0 (11,3) 8.0 0.00500 2.0
(12,6) 7.0 0.00125 2.0 (12,8) 14.0 0.00500 2.0
(13,3) 11.0 0.00500 2.0

N set of nodes /I1*I13/

W pairs /W1*W4/

A(N,N) set of links

/I1.(I5,I12)

I4.(I5,I9)

I5.(I6,I9)

I6.(I7,I10)

I7.(I8,I11)

I8.(I2)

I9.(I10,I13)

I10.(I11)

I11.(I2,I3)

I12.(I6,I8)

I13.(I3)/

ODE(N,W) set of origins by demand

/I1.(W1,W2)

I4.(W3,W4)/

DDE(N,W) set of destinations by demand

/I2.(W1,W3)

I3.(W2,W4)/;

** The set of nodes I must be duplicated to refer to its different element

* in the same constraint.

ALIAS(N,I)

ALIAS(N,J)

PARAMETER

G(W) demand in the O--D pair W

/W1 400

W2 800

W3 600

W4 200/;
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TABLE CDATA(N,N,*) link cost parameters

C0 D M

I1.I5 7.0 0.00625 2.0

I1.I12 9.0 0.00500 2.0

I4.I5 9.0 0.00500 2.0

I4.I9 12.0 0.00250 2.0

I5.I6 3.0 0.00375 2.0

I5.I9 9.0 0.00375 2.0

I6.I7 5.0 0.00625 2.0

I6.I10 13.0 0.00250 2.0

I7.I8 5.0 0.00625 2.0

I7.I11 9.0 0.00625 2.0

I8.I2 9.0 0.00625 2.0

I9.I10 10.0 0.00250 2.0

I9.I13 9.0 0.00250 2.0

I10.I11 6.0 0.00125 2.0

I11.I2 9.0 0.00250 2.0

I11.I3 8.0 0.00500 2.0

I12.I6 7.0 0.00125 2.0

I12.I8 14.0 0.00500 2.0

I13.I3 11.0 0.00500 2.0;

** Optimization variables are declared.

VARIABLES

z objective function variable

f(I,J) the flow at the link I-J

fc(W,I,J) the flow of the commodity W at the link I-J

cos(I,J) cost in the link I-J at equilibrium;

POSITIVE VARIABLE fc(W,N,N);

** Constraints are declared.

EQUATIONS

COSTZ Objective function

BALANCE(W,I) conservation of flow condition for the commodity W.

FLOW(I,J) total link flow

COST(I,J) cost of the link I-J;

** The objective function is the sum of the integrated cost

** in all links.

** The equation FLOW illustrate the use of dollar operation

** to restrict the number of constraints generated to less

** than implied by the domain of the defining sets.

COSTZ.. z=E= SUM((I,J)$A(I,J),CDATA(I,J,’C0’)*f(I,J)

+CDATA(I,J,’D’)*f(I,J)**CDATA(I,J,’M’));

BALANCE(W,I) .. SUM(J$A(I,J),fc(W,I,J))-SUM(J$A(J,I),fc(W,J,I))

=E=G(W)$ODE(I,W)-G(W)$DDE(I,W);

FLOW(I,J)$A(I,J)..SUM(W,fc(W,I,J))=E=f(I,J);

COST(I,J)$A(I,J)..cos(I,J)=E=CDATA(I,J,’C0’)

+2*CDATA(I,J,’D’)*f(I,J);

** The next two sentences define the ND (Nguyen-Dupis) problem,

** considering all the above constraints, and direct GAMS to

** solve the problem using the nlp solver.
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MODEL ND /ALL/;

SOLVE ND USING nlp MINIMIZING z;

Using the previous code we compute link flows and costs at equilibrium,
which are shown in Table 12.10. The resulting information – the service level
of the network transportation links – is crucial in transportation planning.

Table 12.10: Linkflows and costs at equilibrium

Link fa ca(fa) Link fa ca(fa)
(1,5) 675.144 15.439 (1,12) 524.856 14.249
(4,5) 102.571 10.026 (4,9) 697.429 15.487
(5,6) 416.187 6.121 (5,9) 361.528 11.711
(6,7) 356.416 9.455 (6,10) 184.626 13.923
(7,8) 102.571 6.282 (7,11) 253.845 12.173
(8,2) 502.571 15.282 (9,10) 497.429 12.487
(9,13) 561.528 11.808 (10.I11) 682.056 7.705
(11.I2) 497.429 11.487 (11.I3) 438.472 12.385
(12.I6) 124.856 7.312 (12.I8) 400.000 18.000
(13.I3) 561.528 16.615

We also illustrate that the equilibrium conditions are satisfied. To this end,
we can compute the paths used through the link flow for every commodity.
Moreover, the link costs at equilibrium are used to compute the costs of the
path used. This information is shown in Table 12.11. For each origin and
destination the table provides all optimal paths with their corresponding flows
and costs.

It can be observed that the paths used for the same commodity have ap-
proximately the same cost (see commodities Ω2,Ω3). A second observation is
that the linkflows at equilibrium are unique, but this is not true for pathflows.
In this example paths flows satisfying

h5 + h6 = 124.856

h3 + h4 = 313.616

h5 + h3 = 253.845

h4 + h6 = 184.626

produce linkflows at equilibrium.

12.6.4 Side-Constrained Assignment Models

For applications to transportation networks, it is sometimes important to con-
sider a capacitated network, in which the following constraints are introduced:

sk(f) ≤ 0, ∀k ∈ K
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Table 12.11: Paths used at the equilibrium for TAP

O–D Pair Used paths hr Cr
Ω1 = (1− 2) r1 = 1− 12− 8− 2 400 47.53
Ω2 = (1− 3) r2 = 1− 5− 9− 13− 3 361.528 55.57

r3 = 1− 5− 6− 7− 11− 3 h3 55.62
r4 = 1− 5− 6− 10− 11− 3 h4 55.57
r5 = 1− 12− 6− 7− 11− 3 h5 55.62
r6 = 1− 12− 6− 10− 11− 3 h6 55.56

Ω3 = (4− 2) r7 = 4− 5− 6− 7− 8− 2 102.571 47.17
r8 = 4− 9− 10− 11− 2 184.626 47.16

Ω4 = (4− 3) r9 = 4− 9− 13− 3 200 43.91

where the index set K may, for instance, consist of the index set of the links,
nodes, routes or any combinations of subsets of them. A special case of these
constraints are

0 ≤ fa ≤ ua, ∀a ∈ B ⊂ A (12.60)

that lead to the capacitated traffic assignment problem, CTAP.
In designing a future network, and depending on the service level to be

provided, the traffic engineer computes the capacities of streets and intersections
as a function of the road widths, number of lanes, shoulder widths, gradients,
traffic signalization, and other factors.

If we use the TAP to predict the service level, then the predicted flow on some
links may be lower or greater than the traffic assumed a priori by the engineer.
This is due to the fact that TAP allows every road to carry an arbitrarily large
traffic volume. It is clear, then, that inequalities such as (12.60) are significant
for the planning process.

For the capacitated problem a simple optimality condition, similar to that of
the Wardropp’s first principle, can be formulated. Assume that the used routes
for a demand Ω are numbered in the order of increasing costs, and that they
are denoted as cΩi ; i = 1, 2, . . . , l. Assume also that the number of routes is l,
and among these the first m are saturated, containing at least one link which
carries flow at its capacity limit. The equilibrium exists if and only if

cΩ1 ≤ cΩ2 , . . . ≤ cΩm ≤ cΩm+1 = · · · cΩl , ∀Ω ∈W

Now we discuss two ways of taking into account side constraints:

1. We consider explicitly the upper bounds on the link flows (12.60). Taking
into account the link capacities is equivalent to modifying the link costs
in the following way

ĉa(fa) = ca(fa) + φa(fa), ∀a ∈ B
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where

φa(fa) =

{
+∞ if fa > ka

0 if fa ≤ ka
the functions φa are not continuous, and this introduces a new difficulty.

2. We use the so-called travel-time function, which tend to infinity when the
link flows approach their respective capacities. This is similar to barrier
functions. In this approach, we approximate the function φa by means
of a continuously differentiable function. For example, the implicit case
considers approximations such as

ĉa(fa) = ca(fa) + sa ln

(
1 +

qa
ka − fa

)
, ∀a ∈ B

where sa → 0, and ka is the maximum capacity of link a. These functions
are not defined on flow links such that their flow is over the capacity, and a
special recovery procedure is needed to handle infeasible points. This fact
may produce computational errors when the nonlinear solver progresses.
We approximate the functions φa by a BPR formula sa (fa/ka)

na , and the
link cost functions become

c̄a(fa) = ca(fa) + sa

(
fa
ka

)na
, ∀a ∈ B (12.61)

where na → +∞.

Example 12.11 (capacitated network). To illustrate both approaches, we
have used a test example adding to the ND network the side constraints

f10,11 ≤ 400

f12,8 ≤ 300

This example is called ND-C, and the set B is {(10, 11), (12, 8)}. In the implicit
approach we have used the values na = 9, and sa = 20, ∀a ∈ B.

Now we list the new commands to deal with the capacitated traffic assign-
ment problem. To compress the code, we have shown only the new command
to be added to the previously described TAP mode. The code to deal with the
side constraints can be obtained by changing the links costs ca(fa) by c̄a(fa).
So, it is not listed.

$title CAPACITATED TRAFFIC ASSIGNMENT PROBLEM.

** Set B(N,N) is the set of bounded links. This is a new set.

SET

...

B(N,N) set of bounded links

/I10.I11



       

432 Chapter 12. Applications

I12.I8/;

PARAMETER

U(I,J) upper bound in link I-J

/I10.I11 400

I12.I8 300/

...

** Upper bounds for the link capacities.

VARIABLES

...

f.up(I,J)$B(I,J)=U(I,J);

We have obtained the link flows, the costs, and the equilibrium using the
two approaches, which are shown in Table 12.12. Using the link flows for each
commodity we have computed the paths used and their costs. This information
is also shown in Table 12.13. It can be observed that the equilibrium conditions
are satisfied. The pairs Ω1 and Ω3 illustrate the fact that saturated routes have
less cost than nonsaturated ones. Moreover, the fact that the nonsaturated
routes have the same cost is demonstrated in the pairs Ω1 and Ω2. In Table
12.13 we have computed the route cost using the cost ca(fa) instead of c̄a(fa).
It is relevant to note that the link cost in capacitated links is unrealistically high
for the implicit approach (see Table 12.12). This indicates that the equilibrium
conditions for the implicit approach, Wardrop’s first principle, do not hold in the
obtained approximation. This is due to the high nonlinearity of the capacitated
link costs. This is a computational difficulty for the implicit approach.

From a modeling point of view, explicit upper bounds have the advantage
of allowing links flows to attain the capacity values, whereas the use of travel-
time functions such as (12.61) will force all link flows to be strictly greater
than the capacities (see Table 12.12). Note that both approaches generate the
same routes, but there exists a small difference in the load of these routes, and
the cost. It can be concluded that the predictions of both approaches are not
significantly different.

An important advantage of explicit modeling is the interpretation of the La-
grangian multipliers for the capacitated constraints. The Lagrangian multipliers
for this example are shown in Table 12.12. They measure the time gained by the
users of saturated routes compared to the fastest route still available. For exam-
ple, the route r1 is saturated because it contains the link (12, 8). The Lagrangian
multiplier associated with this link is 11.501, which is approximately equal to
the difference between the costs of the saturated route and the nonsaturated
routes, i.e., 58.70− 47.20.

This interpretation shows that the capacitated equilibrium link flow pattern
can be found by solving the corresponding uncapacitated problem TAP with
the travel time functions adjusted to ĉa(fa) = ca(fa) + βa for all a ∈ B, where
βa are the Lagrangian multipliers. The reader can prove in this example that
using the link costs ĉa leads used paths to satisfy Wardrop’s first principle.

Finally, we can conclude that the implicit approach has the computational
advantage of using the uncapacitated assignment model but has the disadvan-
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Table 12.12: Link flows and costs at the equilibrium for CTAP, and Lagrangian
multipliers

Explicit approach Implicit approach
Link fa ca(fa) fa ca(fa)
(1,5) 689.920 15.624 690.242 15.628
(1,12) 510.080 14.101 509.758 14.098
(4,5) 200.000 11.000 178.735 10.787
(4,9) 600.000 15.000 621.265 15.106
(5,6) 400.266 6.002 393.659 5.952
(5,9) 489.655 12.672 475.318 12.565
(6,7) 610.345 12.629 586.810 12.335
(6,10) . 13.000 . 13.000
(7,8) 267.749 8.347 253.988 8.175
(7,11) 342.597 13.282 332.822 13.160
(8,2) 567.749 16.097 570.595 16.132
(9,10) 400.000 12.000 421.265 12.106
(9,13) 689.655 12.448 675.318 12.377
(10,11) 400.000 7.000 421.265 7.053

(βa = 8.914) c̄a = 342.775
(11,2) 432.251 11.161 429.405 11.147
(11,3) 310.345 11.103 324.682 11.247
(12,6) 210.080 7.525 193.151 7.483
(12,8) 300.000 17.000 316.607 17.166

(βa = 11.501) c̄a = 359.950
(13,3) 689.655 17.897 675.318 17.753

Table 12.13: Flow and cost paths at equilibrium for CTAP
Approach

Explicit Implicit
O–D Pair Used paths hr Cr hr Cr

Ω1 r1 = 1− 12− 8− 2 300 47.20 316.6 47.40
(1-2) r2 = 1− 12− 6− 7− 8− 2 67.75 58.70 75.25 58.23

r3 = 1− 12− 6− 7− 11− 2 32.25 58.70 8.14 58.23
Ω2 r4 = 1− 5− 6− 7− 11− 3 200.3 58.64 214.9 58.33

(1-3) r5 = 1− 5− 9− 13− 3 489.7 58.64 475.3 58.33
r6 = 1− 12− 6− 7− 11− 3 110.1 58.64 109.8 58.32

Ω3 r9 = 4− 9− 10− 11− 2 400 45.10 421.3 45.42
(4-2) r10 = 4− 5− 6− 7− 8− 2 200 54.07 178.74 53.39
Ω4 r11 = 4− 9− 13− 3 200 45.34 200 45.24

(4-3)
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tage from a modeling point of view of overloading the capacitated routes, and
difficulties in the interpretation of the Lagrangian multipliers.

12.6.5 The Variable-Demand Case

The TAP has been formulated as a problem with fixed demand, but it is more
realistic to consider the elastic nature of te demand. Travelers have a number
of choices available and are motivated by economical considerations in their
ecisions. For example, as congestion increases, motorists may decide to use a
different mode of transport (e.g. underground).

In order to take the elastic nature of the demand into account, the number
of trips, gΩ, between the pair Ω in the network can be assumed to be a function
of the travel cost for that pair Ω:

gΩ = GΩ(cΩ)

where cΩ is the minimum travel cost for the pair Ω, and GΩ is the demand
function. We assume that GΩ is nonnegative, continuous, and strictly decreasing
for each Ω ∈ W . Its inverse function gives the number of trips as a function of
the travel cost, i.e. cΩ = G−1

Ω (gΩ).
The equilibrium condition states that the O–D trip rate satisfy the demand

function, and that the travel times on all used paths between any O–D pair are
equal, and are also equal to or less than the travel times on any unused paths.

The following model combines variable-demand and assignment. It is possi-
ble to demonstrate that the equilibrium conditions are those obtained by solving
the following problem (TAPE). Minimize

Z =
∑

(i,j)∈A

∫ fij

0

cij(x)dx−
∑

Ω∈W

∫ gΩ

0

G−1
Ω (x)dx

subject to

∑

j∈A(i)

fΩ
ij −

∑

j∈B(i)

fΩ
ji = rΩ

i , ∀i ∈ N , ∀Ω ∈W (12.62)

∑

Ω∈W
fΩ
ij = fij , ∀(i, j) ∈ A (12.63)

fΩ
ij ≥ 0 ∀Ω ∈W, ∀(i, j) ∈ A (12.64)

where

rΩ
i =





gΩ if OΩ = i
−gΩ if DΩ = i

0 if i is an intermediate node for the commodity Ω

Note that for TAPE the terms rΩ
i are variables, but for TAP they are constants.

To illustrate the TAPE, we deal with a particular case of TAPE. Assume that
the travelers choose between several modes of transport, and a logit function
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(demand model) gives the number of trips taken on each alternative, gkΩ, by the
equation

gkΩ = GkΩ(cΩ) =
exp[−

(
αk + β1c

k
Ω

)
]∑

k′
exp[−

(
αk′ + β1ck

′
Ω

)
]
ḡΩ (12.65)

where ckΩ is the user’s perception of the generalized cost of traveling of the pair
Ω = (i, j) by mode k, that corresponds to a user optimal route choice of the
network; {cΩ} is the vector of generalized costs for all the modes present, ḡΩ

is the demand for the O–D pair Ω by all considered modes; and αk, β1 are
parameters of the logit model. For two alternatives, such as car (a) and public
transport (b), (12.65) simplifies to

GaΩ(cΩ) =
1

1 + exp[−
(
αab + β1(cbΩ − caΩ)

)
]
ḡΩ

where αab = αb−αa. We assume that the travel cost cbΩ by public transportation
is independent of traffic volumes, and by this reason it is constant. The inverse
function of the demand model becomes

caΩ = G−1(gaΩ) = cbΩ +
1

β1

[
αab + log(ḡΩ − gaΩ)− log(gaΩ)

]

Using the relationship gaΩ + gbΩ = ḡΩ, we obtain the equality

−
∫ gaΩ

0

G−1(x)dx = cbΩg
b
Ω +

(
1

β1

) ∑

k∈{a,b}
gkΩ(log gkΩ − 1 + αk) + C

where C is a constant. The objective function then becomes

∑

(i,j)∈A

∫ fij

0

cij(x)dx+
∑

Ω∈W
cbΩg

b
Ω +

(
1

β1

) ∑

Ω∈W

∑

k∈{a,b}
gkΩ(log gkΩ − 1 + αk)

Example 12.12 (Variable-demand case). To illustrate the TAPE model
consider that there exists an underground network. Assume that there exist
connections to satisfy the four demands pairs, and the trip times are flow inde-
pendent (Table 12.14).

The following code implements this model in GAMS.

$title TRAFFIC ASSIGNMENT PROBLEM WITH ELASTIC DEMAND.

** Sets are declared in first place.

** Set N is the set of nodes of the road network.

** Set A is the set of links.

** Set W is the set of O--D pairs

SET

N set of nodes /I1*I13/

W pairs /W1*W4/

A(N,N) set of links

/I1.(I5,I12)
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Table 12.14: Inputs for TAPE

O–D pair ḡΩ cbΩ Logit parameters
Ω1 600 41 αa = −2.0
Ω2 1000 46 αb = 0.0
Ω3 800 43 β1 = 0.1
Ω4 400 40

I4.(I5,I9)

I5.(I6,I9)

I6.(I7,I10)

I7.(I8,I11)

I8.(I2)

I9.(I10,I13)

I10.(I11)

I11.(I2,I3)

I12.(I6,I8)

I13.(I3)/

ODE(N,W) set of origins by demand

/I1.(W1,W2)

I4.(W3,W4/

DDE(N,W) set of destinations by demand

/I2.(W1,W3)

I3.(W2,W4)/;

ALIAS(N,I)

ALIAS(N,J)

PARAMETER

G(W) demand in O--D pair W

/W1 600

W2 1000

W3 800

W4 400/

Cb(W) travel cost by public transport in O--D pair W

/W1 41

W2 35

W3 43

W4 40/

BETA

ALPHAa

ALPHAb;

BETA=0.1;

ALPHAa=-2.;

ALPHAb=0.;

TABLE CDATA(N,N,*) link cost parameters

C0 D

I1.I5 7.0 0.00625
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I1.I12 9.0 0.005

I4.I5 9.0 0.005

I4.I9 12.0 0.0025

I5.I6 3.0 0.00375

I5.I9 9.0 0.00375

I6.I7 5.0 0.00625

I6.I10 13.0 0.0025

I7.I8 5.0 0.00625

I7.I11 9.0 0.00625

I8.I2 9.0 0.00625

I9.I10 10.0 0.0025

I9.I13 9.0 0.0025

I10.I11 6.0 0.00125

I11.I2 9.0 0.0025

I11.I3 8.0 0.005

I12.I6 7.0 0.00125

I12.I8 14.0 0.005

I13.I3 11.0 0.005;

** Optimization variables are declared.

VARIABLES

z objective function variable

f(N,N) flow link

fc(W,N,N) is the flow link of the commodity W

cos(N,N) cost in the link at equilibrium

ga(W) demand by car

gb(W) demand by public transport;

POSITIVE VARIABLE fc(W,N,N);

ga.LO(W)=0.01;

gb.LO(W)=0.01;

** Constraints are declared.

EQUATIONS

COST Objective function

BALANCE(W,I) conservation of flow condition for the commodity W.

FLOW(I,J) total link flow

MODAL(W) Modal split of the demand

COSTE(I,J) cost at equilibrium;

COST .. z=E= SUM((I,J)$A(I,J),CDATA(I,J,’C0’)*f(I,J)

+CDATA(I,J,’D’)*f(I,J)**CDATA(I,J,’M’))

+SUM(W,Cb(W)*gb(W))+1/BETA* SUM(W,ga(W)*(-1+ALPHAa+LOG(ga(W)))

+ gb(W)*(-1+ALPHAb+LOG(gb(W))) );

BALANCE(W,I) .. SUM(J$A(I,J),fc(W,I,J))-SUM(J$A(J,I),fc(W,J,I))

=E=ga(W)$ODE(I,W)-ga(W)$DDE(I,W);

FLOW(I,J)$A(I,J)..SUM(W,fc(W,I,J))=E=f(I,J);

COSTE(I,J)$A(I,J)..cos(I,J)=E=CDATA(I,J,’C0’)

+2*CDATA(I,J,’D’)*f(I,J);

MODAL(W).. G(W)=E=ga(W)+gb(W);

MODEL nd /ALL/;

SOLVE nd USING nlp MINIMIZING z;

The results obtained are shown in Table 12.15.
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Table 12.15: Cost at the equilibrium for TAPE and modal split

O–D Pair caΩ cbΩ gaΩ gbΩ
Ω1 49.29 41 459.821 140.179
Ω2 56.73 46 736.288 263.712
Ω3 48.52 43 647.730 152.270
Ω4 45.56 40 323.124 76.876

Some comments are in order. For example, consider that the system oper-
ator increases train frequencies to satisfy the demand pair Ω2, and the travel
time is reduced to 35. The operator wishes to compute the new demand and the
congestion level on the road network for this demand. The outputs obtained
with TAPE are shown in Table 12.16. Note that the demand in public trans-
portation for the pair Ω2 increases. This produces a reduction of the congestion
level on the road network, and the alternative car for the others pairs is slightly
more attractive.

Table 12.16: Cost at equilibrium for TAPE, and modal split with intervention
on the transportation system

O–D Pair caΩ cbΩ gaΩ gbΩ
Ω1 48.53 41 466.009 133.991
Ω2 52.79 35 554.843 445.157
Ω3 48.34 43 649.947 150.053
Ω4 44.56 40 329.594 70.406

12.6.6 Combined Distribution and Assignment

One way of dealing with the four steps of the planning process (explained in
Section ??) is to merge as many steps as possible into one, in particular, we can
include assignment and distribution in the same process. We assume that the
number of trips emanating from the origins Oi, and attracted to destinations
Dj are known, but not the O–D trip matrix. The O–D trip matrix, gΩ Ω =
(i, j) ∈W , must satisfy ∑

j

gij = Oi, ∀i
∑
i

gij = Dj , ∀j
(12.66)

Distribution models of different kinds have been developed to assist in fore-
casting future trip patterns when important changes in the network take place.
They consider a trip making behavior and the way that behavior is influenced
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by external factors such as total trip ends and traveled distance. These models
consider that the number of trips from zones depends on the travel cost between
the zones, and the potential of each zone. They use the expression

gij = p(cij) = αOiDjf(cij)

where α is a proportionality factor, and f(cij) has one or more parameters to
calibrate. This function often receives the name of deterrence function. The
most common used expressions are

p(cij) = exp(−βcij) exponential function
p(cij) = c−nij power function

p(cij) = cnij exp(−βcij) combined function
(12.67)

Assuming that the function p(cij) is a decreasing function of the travel
cost, the previous model is formulated as the following mathematical program
(TAPD). Minimize

Z =
∑

(i,j)∈A

∫ fij

0

cij(x)dx−
∑

Ω∈W

∫ gΩ

0

p−1(x)dx

subject to
∑

j

gij = Oi, ∀i (12.68)

∑

i

gij = Dj , ∀j (12.69)

∑

j∈A(i)

fΩ
ij −

∑

j∈B(i)

fΩ
ji = rΩ

i , ∀i ∈ N , ∀Ω ∈W (12.70)

∑

Ω∈W
fΩ
ij = fij , ∀(i, j) ∈ A (12.71)

fΩ
ij ≥ 0 ∀Ω ∈W, ∀(i, j) ∈ A (12.72)

where

rΩ
i =





gΩ if OΩ = i
−gΩ if DΩ = i

0 ifi is an intermediate nodefor the commodity Ω

The example below illustrates the TAPD model

Example 12.13 (gravity distribution model). We illustrate the model
TAPD using the gravity distribution model, which is derived using an exponential
function for the deterrence function. In this case we obtain

−
∫ gΩ

0

p−1(x)dx = −
∫ gΩ

0

[
− 1

β
log(x) + (di + dj + α′)

]
dx

=
1

β
gΩ (log gΩ − 1) + (di + dj + α′)gΩ
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where di = logOi/β, dj = logDj/β, and α′ = α/β. The objective function
becomes

∑

(i,j)∈A

∫ fij

0

cij(x)dx +
1

β

∑

Ω∈W
gΩ (log gΩ − 1) +

∑

Ω∈W
(di + dj + α′)gΩ

The term
∑

Ω∈W (di + dj + α′)gΩ is constant in the set of feasible solutions
defined by (12.66), and it can be dropped. It can be shown that the previous
mathematical programming problem is convex, and using the KKT conditions
the optimal solution satisfies

g∗ij = AiOiBjDj exp(−βc∗ij)

where c∗ij is the equilibrium cost. The set of parameters Ai and Bj replace the
proportionality factor α to enforce constraints (12.66).

The following GAMS file implements this model for the inputs given in Table
12.17. The results obtained are shown in Table 12.18

$title TRAFFIC DISTRIBUTION-ASSIGNMENT PROBLEM.

** Sets are declared in first place.

** Set N is the set of nodes of the road network.

** Set A is the set of links.

** Set W is the set of O--D pairs

SET

N set of nodes /I1*I13/

W pairs /W1*W4/

O origins /I1

I4/

D destinations /I2

I3/

OW(O,W)

/I1.(W1,W2)

I4.(W3,W4)/

DW(D,W)

/I2.(W1,W3)

I3.(W2,W4)/

A(N,N) set of links

/I1.(I5,I12)

I4.(I5,I9)

I5.(I6,I9)

I6.(I7,I10)

I7.(I8,I11)

I8.(I2)

I9.(I10,I13)

I10.(I11)

I11.(I2,I3)

I12.(I6,I8)

I13.(I3)/

ODE(N,W) set of origins by demand

/I1.W1
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I1.W2

I4.W3

I4.W4/

DDE(N,W) set of destinations by demand

/I2.W1

I3.W2

I2.W3

I3.W4/;

ALIAS(N,I)

ALIAS(N,J)

PARAMETER

Oi(O) number of trips emanating from O

/I1 1200

I4 800/

Dj(D) number of trips attracted to D

/I2 1000

I3 1000/

BETA;

BETA=0.2;

TABLE CDATA(N,N,*) link cost parameters

C0 D M

I1.I5 7.0 0.00625 2.0

I1.I12 9.0 0.005 2.0

I4.I5 9.0 0.005 2.0

I4.I9 12.0 0.0025 2.0

I5.I6 3.0 0.00375 2.0

I5.I9 9.0 0.00375 2.0

I6.I7 5.0 0.00625 2.0

I6.I10 13.0 0.0025 2.0

I7.I8 5.0 0.00625 2.0

I7.I11 9.0 0.00625 2.0

I8.I2 9.0 0.00625 2.0

I9.I10 10.0 0.0025 2.0

I9.I13 9.0 0.0025 2.0

I10.I11 6.0 0.00125 2.0

I11.I2 9.0 0.0025 2.0

I11.I3 8.0 0.005 2.0

I12.I6 7.0 0.00125 2.0

I12.I8 14.0 0.005 2.0

I13.I3 11.0 0.005 2.0;

** Optimization variables are declared.

VARIABLES

z objective function variable

f(N,N) flow link

fc(W,N,N) is the flow link of the commodity W

cos(N,N) cost in the link at equilibrium

g(W) demand in the pair W;

POSITIVE VARIABLE fc(W,N,N);
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g.LO(W)=0.01;

** Constraints are declared.

EQUATIONS

COST Objective function

BALANCE(W,I) conservation of flow condition for the commodity W.

FLOW(I,J) total link flow

ORIGIN(O)

DESTIN(D)

COSTE(I,J) cost at equilibrium;

COST .. z=E= SUM((I,J)$A(I,J),CDATA(I,J,’C0’)*f(I,J)

+CDATA(I,J,’D’)*f(I,J)**CDATA(I,J,’M’))

+(1/BETA)*SUM(W,g(W)*(LOG(g(W))-1 ));

BALANCE(W,I) .. SUM(J$A(I,J),fc(W,I,J))-SUM(J$A(J,I),fc(W,J,I))

=E=g(W)$ODE(I,W)-g(W)$DDE(I,W);

FLOW(I,J)$A(I,J)..SUM(W,fc(W,I,J))=E=f(I,J);

COSTE(I,J)$A(I,J)..cos(I,J)=E=CDATA(I,J,’C0’)

+2*CDATA(I,J,’D’)*f(I,J);

ORIGIN(O)..Oi(O)=E= SUM(W,g(W)$OW(O,W));

DESTIN(D)..Dj(D)=E= SUM(W,g(W)$DW(D,W));

MODEL nd /ALL/;

SOLVE nd USING nlp MINIMIZING z;

Table 12.17: Inputs for TAPD

Origin Oi Destination Dj β
1 1200 2 1000 0.2
4 800 3 1000 –

Table 12.18: Outputs for TAPD

O–D pair gΩ Equilibrium cost
Ω1 650.312 52.21
Ω2 549.688 53.65
Ω3 349.688 46.77
Ω4 450.312 45.05

12.7 Short-Term Hydrothermal Coordination

Short-term hydrothermal coordination (STHTC) determines the startup and
shutdown of thermal plants, as well as the power output of hydro and thermal
plants to meet customer demand with an appropriate level of security and so that



   

12.7. Short-Term Hydrothermal Coordination 443

total operating costs are minimized. Because of the high cost associated with
the startup of thermal plants, selecting the plants to meet customer demand in
the most economical manner can save large amounts of money. If the electric
energy system under consideration does not include hydroelectric plants, the
above problem is called unit commitment.

Mathematically, the STHTC problem can be formulated as a mixed-integer
nonlinear optimization problem. For realistic size electric energy systems it
is also a large-scale problem. Solving this large-scale nonlinear and combina-
torial optimization problem is not an easy task. Lagrangian relaxation (LR)
techniques are the most suitable techniques to solve this kind of problems (see
Muckstadt and Koening [77], Merlin and Sandrin [74], Bertsekas et al. [12],
Zhuang and Galiana [107], Yan et al. [106], Mendes et al. [73], Rakic and
Marcovic [91], Wang et al. [101], Pellegrino et al. [85], Luh et al.[69], Jiménez
and Conejo [60]). Dynamic programming techniques require discretization of
continuous variables and drastic simplifying assumptions to make the problem
computationally tractable (Hobbs et al. [52]). Mixed-integer linear program-
ming techniques not only linearize the problem but also make important sim-
plifications to be able to solve such a large-scale problem (see Dillon et al. [32],
Brannlund et al. [16], Medina et al. [70]).

When using LR techniques to solve the STHTC problem, the resulting re-
laxed primal problem can be naturally decomposed into one subproblem per
thermal plant and one subproblem per hydro system. Therefore, by using LR
techniques, the solution of the STHTC problem (large-scale and complex op-
timization problem) is accomplished by the solution of many small sized and
structurally homogeneous subproblems.

This decomposition property allows a very precise modeling of each gener-
ating plant as well as the possibility of applying to each subproblem the most
suitable optimization technique to its structure. It also allows the natural appli-
cation of parallel computing with the corresponding advantages regarding CPU
time.

In addition to all these advantages, derived from the decomposition prop-
erty of the relaxed primal problem, the application of LR techniques to solve
the STHTC problem presents another important advantage: the dual problem
variables (the Lagrange multipliers) have an economical meaning that can be
very helpful in the framework of deregulated electric energy markets, and also
in the traditional framework of centralized systems.

12.7.1 Problem Formulation and the LR Solution Proce-
dure

The STHTC problem can be formulated as a nonlinear and combinatorial op-
timization problem in which total operating costs are minimized subject to
meeting constraints modeling the technical limitations of thermal and hydro
plants, and to meet load constraints. Load constraints include electric energy
customer demand constraints plus spinning reserve constraints. Spinning re-
serve constraints ensure an appropriate level of security.
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The main elements of this problem are

1. Data.

I: the number of thermal plants

J : the number of hydro systems

H: the vector of demands

hi(xi): the contribution of thermal unit i to meet the demand

hj(xj): the contribution of hydro system j to meet the demand

G: the vector of power reserves

gi(xi): the contribution of thermal unit i to meet the power reserve

gj(xj): the contribution of hydro system j to meet the power reserve

H, hi(xi), hj(xj), G, gi(xi) and gj(xj) are vectors of dimension equal to
the number of time periods in the planning horizon.

2. Variables.

xi: the vector of variables associated with thermal plant i

xj : the vector of variables associated with hydro system j

3. Constraints.

si(xi) ≤ 0, i = 1, . . . , I
sj(xj) ≤ 0, j = 1, . . . , J

I∑
i=1

hi(xi) +
J∑
j=1

hj(xj) = H

I∑
i=1

gi(xi) +
J∑
j=1

gj(xj) ≤ G

(12.73)

The first set of constraints expresses thermal plant constraints, the second
one represents hydro system constraints, the third one expresses customer
demand constraints, and the fourth one represents spinning reserve con-
straints. It should be noted that time is embedded in the formulation
shown above.

4. Function to be optimized. The objective function represents the total
operating cost (the cost of hydro power production is negligible compared
to the cost of thermal power production)

f(x) =

I∑

i=1

fi(xi) (12.74)
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This problem, referred to as the primal problem (PP), is formulated as follows

min
x=(xi,xj)

f(x) =

I∑

i=1

fi(xi) (12.75)

subject to
si(xi) ≤ 0, i = 1, . . . , I
sj(xj) ≤ 0, j = 1, . . . , J

I∑
i=1

hi(xi) +
J∑
j=1

hj(xj) = H

I∑
i=1

gi(xi) +
J∑
j=1

gj(xj) ≤ G

(12.76)

Load constraints are the complicating or global constraints of this primal
problem. Load constraints include equality constraints (demand constraints)
and inequality constraints (spinning reserve constraints). They couple together
decisions related to thermal and hydro plants. Because of the existence of these
constraints, the preceding problem cannot be decomposed and cannot be easily
solved.

By applying LR techniques, load constraints are incorporated into the ob-
jective function to form the relaxed primal problem. The vector of multipliers
associated with the vector of demand constraints is called λ and the vector of
multipliers associated to the spinning reserve constraints is called µ.

The Lagrangian function is defined as

L(x,λ,µ) =
I∑
i=1

fi(xi) + λT

(
H−

I∑
i=1

hi(xi)−
J∑
j=1

hj(xj)

)

+µT

(
G−

I∑
i=1

gi(xi)−
J∑
j=1

gj(xj)

) (12.77)

and the dual function is the solution of the problem

θ(λ,µ) = min
(xi,xj)

L(xi,xj ,λ,µ) (12.78)

subject to
si(xi) ≤ 0; i = 1, 2, . . . , I
sj(xj) ≤ 0; j = 1, 2, . . . , J

(12.79)

which can be expressed as

θ(λ,µ) = λTH + µTG + d(λ,µ) (12.80)

where d(λ,µ) is the solution of the following optimization problem

min
xi,xj

(
I∑
i=1

(
fi(xi)− λThi(xi)− µTgi(xi)

)
−

J∑
j=1

(
λThj(xj) + µTgj(xj)

))

(12.81)



          

446 Chapter 12. Applications

subject to
si(xi) ≤ 0, i = 1, . . . , I
sj(xj) ≤ 0, j = 1, . . . , J.

(12.82)

This problem can be naturally decomposed into one subproblem per thermal
plant i and one subproblem per hydro system j. For fixed values of λ and µ,
problem (12.78) is called the relaxed primal problem, and problem (12.81) is
called the decomposed primal problem.

The subproblem associated with thermal plant i is

min
xi

fi(xi)− λThi(xi)− µTgi(xi) (12.83)

subject to

si(xi) ≤ 0 (12.84)

and the subproblem associated with hydro system j is

max
xj

λThj(xj) + µTgj(xj) (12.85)

subject to

sj(xj) ≤ 0 (12.86)

LR techniques are based on the solution of the following dual problem [as
problem (9.64)]

max
λ,µ

θ(λ,µ) (12.87)

subject to

µ ≥ 0 (12.88)

Because of the existence of integer variables (e.g., thermal plant unit com-
mitment variables) in the formulation of the primal problem, the STHTC is a
non-convex problem. Therefore, the optimal solution of the dual problem is not
the optimal solution of the primal problem but it is a lower bound. Neverthe-
less, as the size of the problem increases the per unit duality gap (see Section
1.1) decreases (see Ferreira [37], Bertsekas et al. [12], Everett [34]), therefore
the optimal solution of the dual problem becomes closer to the optimal solu-
tion of the primal problem. Once the optimal solution of the dual problem is
found, heuristic procedures can be easily applied to derive a near-optimal primal
problem solution (Zhuang and Galiana [107]).

In the STHTC problem, inequality complicating constraints are closely re-
lated to the integer variables (the thermal plant unit commitment variables) and
the equality constraints are closely related to the continuous variables (thermal
and hydro plant power output variables). This motivates the decomposition
of phase 2 into two consecutive phases. In the first one, called phase 2A, the
solution of the dual problem (or phase 1) is slightly modified to find values of
the integer variables that meet inequality global constraints (spinning reserve
constraints). In the second one, called phase 2B, the solution of phase 2A is
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modified by adjusting the values of the continuous variables to meet equality
global constraints (demand constraints).

Therefore, the LR procedure to solve the STHTC problem consists of

Phase 1. Solution of the dual problem.

Phase 2A. Search for a spinning reserve primal feasible solution.

Phase 2B. Search for a load balanced primal feasible solution: multiperiod
economic dispatch.

The solution of the dual problem (phase 1) is the key element to solve the
STHTC problem by LR. The efficiency of a STHTC algorithm relies on the
efficiency of the solution of this phase.

Phase 2A is an iterative procedure in which the µ multipliers are updated
in those periods where spinning reserve constraints are not satisfied. In these
periods, the corresponding µ multipliers are increased proportionally to the
mismatches in spinning reserve constraints (subgradient type updating) until
these constraints are met in all the time periods of the planning horizon. At the
end of phase 2A a primal set of feasible commitment decisions is found. This
phase requires typically little CPU time to achieve a solution very close to the
solution of phase 1. phase 2B is a multiperiod economic dispatch procedure
(Wood and Wollenberg [104]) in which, once unit commitment variables are
set to the solution of phase 2A, power output is adjusted in order to meet the
demand constraints in all time periods. This is a traditional problem routinely
solved by electric energy system operators.

12.7.2 Dual-Problem Solution: Multiplier Updating Tech-
niques

The procedure to solve the dual problem of the STHTC problem was described
earlier. Specifically, at each iteration the relaxed primal problem is solved and,
with the information obtained, the multiplier vector is updated. The informa-
tion derived from the resolution of the relaxed primal problem is

• The value of the dual function

θ(λ(t),µ(t)) = λ(t)TH + µ(t)TG + d(λ(t),µ(t)) (12.89)

which is

d(λ(t),µ(t)) =
I∑
i=1

(
fi(x

∗(t)
i )− λ(t)Thi(x

∗(t)
i )− µ(t)Tgi(x

∗(t)
i )

)

−
J∑
j=1

(
λ(t)Thj(x

∗(t)
j ) + µ(t)Tgj(x

∗(t)
j )

)

(12.90)
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where x
∗(t)
i is the vector of optimal values for the variables associated with

thermal plant i and x
∗(t)
j is the vector of optimal values for the variables

associated with hydro system j obtained from the solution of the relaxed
primal problem

• A subgradient s(t) of the dual function at the optimal solution of the
relaxed primal problem: x∗i , ∀i, x∗j , ∀j

A subgradient can be easily computed as the vector of mismatches in demand
constraints and the vector of mismatches in spinning reserve constraints:

s(t) = column[h(t),g(t)] (12.91)

where

h(t) = H−
I∑
i=1

hi(x
∗(t)
i )−

J∑
j=1

hj(x
∗(t)
j )

g(t) = G−
I∑
i=1

gi(x
∗(t)
i )−

J∑
j=1

gj(x
∗(t)
j )

(12.92)

Although the four methods previously described can be applied to update
the multipliers, the most suitable methods for the STHTC problem are the
bundle method Pellegrino et al. [85]) and the dynamically constrained cutting
plane method (Jiménez and Conejo [60]).

12.7.3 Economical Meaning of the Multipliers

As it has been indicated above, one of the advantages of the use of LR techniques
is the availability of the useful economical information provided by the variables
of the dual problem, the Lagrange multipliers.

Multiplier λ at a given time represents, from the point of view of the system,
the cost of producing one extra unit of electric energy [megawatt-hour (MWh)],
that is, the electric energy marginal cost. Equivalently, from the point of view
of a generating company, multiplier λ at a given time represents an indicator
of the price a plant should be paid for each MWh of energy. It also represents
an indicator of the price that a generating company should bid to get its plant
online.

Analogously, multiplier µ at a given time represents the cost of keeping an
incremental unit (MW) of power reserve or equivalently, an indicator of the
price a generator should be paid for each MW of reserve.

This economical interpretation is useful in the traditional framework of cen-
tralized electric energy systems to elaborate electric tariffs, but also in the frame-
work of modern deregulated electric energy markets.

In the framework of deregulated electric energy markets, the LR procedure
to solve the STHTC problem can be interpreted as the actual functioning of
a free market. In other words, it can be thought of as a mechanism to meet
customer demand with an appropriate level of security (measured in terms of
the spinning reserve) by choosing the cheapest generator offers.
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Hourly energy prices proposals (Lagrange multipliers) are specified by the
market operator for the planning horizon. Each generator (or generating com-
pany) schedules its production independently along the planning horizon to
maximize its benefit (i.e., each generator solves an optimization problem). Anal-
ogously, each hydro system is scheduled so that its benefit is maximum (i.e., each
hydro system solves a problem). After the submissions of production proposals
by all generators the demand equation is evaluated in each hour of the plan-
ning horizon. Hourly prices are updated by the market operator with any of
the techniques stated above, and the previous procedure is repeated until the
demand is satisfied. This mechanism constitutes a competitive energy market.
Similarly, a spinning reserve market can be established.

It should be noted that by applying the LR technique to solve the STHTC
problem, each generator schedules its production attending only to prices of
energy and prices of reserve. The interchange of information between the mar-
ket operator and the generators is clear and concise. The resulting market is
therefore economically efficient and transparent.

The Augmented Lagrangian decomposition technique has also been applied
to the STHTC problem. Relevant information can be found in Batut et al. [7],
Batut and Renaud [8], Renaud [94], and Wang et al. [101].


