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A Brief Introduction to Functional 
Networks (FNs)

An example of a functional network: A FN is 
analogous to a Printed Circuit Board (PCB)
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Elements of FNs:
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1. Input Units: {a, b, c, d, e, f, g}
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Elements of FNs:
2. Computing Neurons: {K, L, M, N}
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Elements of FNs:
3. Output Units: {i, j}
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Elements of FNs:
4. Intermediate Units: {h}
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Elements of FNs:
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5. Directed Links: {arrows}
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Note: 
N gives two outputs i and j and the i output 
of N must be identical to the output of M.
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Working with FNs

1. Selection of the initial topology
2. Simplifying the FN
3. Uniqueness of representation
4. Parametric Learning 
5. Model selection
6. Model validation
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1. Selection of the Initial Topology:

Problem driven design: The selection 
of the initial topology of a functional 
network is often based on the 
characteristics of the problem at hand, 
which usually leads to a single clear 
network structure.
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Example: Generalized Associative FNs:
Suppose the level of a disease d is a 
function of three symptoms: x, y and z, that 
is, d = D(x, y, z). 
We have three cases.
Case 1: We measure x and y, then z.
x
y ( )y,xP

z
( )( )zyxPF ,, ( )zyxD ,,=
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Case 2: We measure y and z, then x.

y
z ( )z,yQ

x
( )( ) ( )zyxDxzyQG ,,,, =

Case 3: We measure x and z, then y.

x
z

y
( )( ) ( )zyxDyzxRH ,,,, =

( )z,xR
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( )( )z,y,xPFd =
Case 1:
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( )( )xzyQGd ,,=

( )zyQ ,
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( )y,xP
( )( )x,z,yQG=( )( )zyxPF ,,
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( )( )yzxRHd ,,=
Case 3:
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( )( )zyxPF ,,
Cases 1-3:
=d ( )( )x,z,yQG=
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( )( ) ( )( ) ( )( )yzxRHxzyQGzyxPFd ,,,,,, ===
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2. Simplifying FNs:

Using functional equations: We can 
determine whether or not there exists 
another functional network giving the 
same output for the same input. This 
leads to the concept of equivalent 
functional networks.
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Example: Generalized Associative FNs:

( )( ) ( )( ) ( )( )yzxRHxzyQGzyxPFd ,,,,,, ===

The general solution to these equations is: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) ( )[ ];;

;;
;;

1

1

1

yrxpmy,xRyqxmky,xH
yrxqny,xQypxnky,xG
yqxpfy,xPyrxfky,xF

+=+=
+=+=
+=+=

−

−

−

That is, ( ) [ ].)z(r)y(q)x(pkz,y,xDd ++==
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3. Uniqueness of Representation:

To avoid estimation problems we 
need to know the conditions for 
uniqueness (whether or not several 
sets of neurons (functions) lead to 
exactly the same output for the same 
input).
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Example: Generalized Associative FNs:

Suppose that there exist two sets of functions 
{k1,  p1, q1, r1} and {k2,  p2, q2, r2} 

such that

[ ] [ ])()()()()()( 22221111 zryqxpkzryqxpk ++=++

for all x, y, z.
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Then,

( ) ( ) ( )
( ) ( ) ( ) ( ) ,,

,,

1212

1212

dzrazrcyqayq

bxpaxp
a

dcbukuk

+=+=

+=





 −−−=

where a, b, c, and d, are arbitrary constants 
that should be fixed at some point 
(x0, y0, z0, u0) to guarantee the uniqueness of 
the solution. That is,

( ) ( )
( ) ( ) .;

;;
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4. Parametric Learning:
Given a data set consisting of n observations 
and a family of linearly independent 
functions Φ = {φj(X), j = 1,…, q} and q, the 
number of elements in the family, there are 
two possibilities for the parametric learning
in FNs: 

• Nonlinear, and
• Linear
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Nonlinear Parametric Learning:

Example: Generalized Associative FNs:

Let ( ){ }nidzyx iiii ,,1,;,, K= be the data set, 
we can write the model as 

[ ] .,,1,)()()( nizryqxpkd iiiii K=+++= ε

These functions can be approximated by:
( ) ( );

1
xaxp j

q

j
jφ∑

=

= ( ) ( );
1

ybyq j

q

j
jψ∑

=

=

( ) ( ).
1

yczr j

q

j
jδ∑

=

=
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Nonlinear Parametric Learning:

We can minimize:

;
1

2
1 ∑

=

=
n

i
iQ ε ;

1
2 ∑

=

=
n

i
iQ ε ;max3 ii

Q ε=

subject to the uniqueness constraints.

These leads to a nonlinear system of equations 
or to a nonlinear programming problem.

We can also use other methods such as 
MARS, ACE, etc.
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Linear Parametric Learning:

If k is invertible, we can write the model 
as 

( ) .n,,i,)z(r)y(q)x(pdk iiiii K11 =ε+++=−

Then, approximating the functions and using 
the criteria given above lead to a linear system 
of equations.
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5. Model Selection:

There are two questions to be answered 
when selecting a functional network:
• Which family of functions to use?
• Which terms in the family are important?
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Families of Linearly Independent Functions

{ }qXXX ,,,,1 2 K=ΦPolynomial family:

Exponential family: 
{ }qXqXXXXX eeeeee −−−=Φ ,,,,,,,1 22 K

Fourier family: 

( ) ( ){ }qXqXXX cos,sin,,cos,sin,1 K=Φ
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Criteria for Selecting the Important Terms 

Minimum Description Length (MDL)

Let x be a sample of size n and let θ be the 
set of parameters to be estimated:

( ) ( ) ( ) 





++−= ∑

=

n

i
im n

nnkL
1

21log
22

loglog θεθπx

Prior expert 
opinion

Penalty for 
complexity

Goodness 
of fit
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6. Model Validation:

Tests for quality and/or cross validations 
are performed.

Care must also be given to the problem of 
overfitting.

See Castillo et al. (2000) for details.
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Differences Between FNs and NNs:

1. The topology of a NN is chosen from 
among several topologies using trial 
and error. The initial topology in FN 
is problem driven and it can be 
simplified using functional equations.
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Differences Between FNs and NNs:

2. In standard NNs the neural functions 
are given and some weights are 
learned. In FNs specification of the 
neural functions is not required
because the neural functions can be 
learned from data.
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Differences Between FNs and NNs:

3. In standard NNs all the neural 
functions are identical, univariate and 
single-argument (a weighted sum of 
input values). In FNs the neural 
functions can be different, 
multivariate, and/or multiargument.
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Differences Between FNs and NNs:

4. In FNs we can connect outputs of 
different neurons to force them to 
coincide. This structure is not 
possible in standard neural networks 
because there are no intermediate 
layers and these connections are not 
allowed.
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Differences Between FNs and NNs:

5. Neural functions are not restricted to 
be a linear combination of inputs.
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Summary:

Functional Networks are a 
generalization of Neural Networks: 
Every problem that can be solved 
by NN can be solved by FN. The 
converse is not true.
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Relationship to Some Other 
Statistical Models and Methods:

FNs are also generalizations of and can 
benefit from the following models:

1. Alternate Conditioning Expectation (ACE), 
due to Breiman and Friedman (1985)

It can be used in parametric learning
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Relationship to Some Other 
Statistical Models and Methods:
2. Multivariate Adaptive Regression Spline 

(MARS) due to Friedman (1991)
It can be used in parametric learning

3. The Generalized Additive Models (GAM). 
See, e.g., Hastie and Tibshirani, (1990)

It can be used in parametric learning
4. Other statistical methods (e.g., variable 

selection). 

It can be used in structural learning
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Some Examples of Applications of FNs
FNs have numerous applications:
1. Bayesian Statistics 
2. Finding stable and reproductive families of 

distributions
3. Time series
4. Modeling structural engineering problems
5. Transformations of variables
6. Nonlinear Regression
7. Iterative problems
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Conjugate Family of Distributions

In Bayesian statistics a typical problem consists 
of finding a family of density functions F(θ,η), 
with hyperparameter η, so that both, the prior 
probability density function, F(θ,η), and the 
posterior, S(θ; x,η), belong to the same family. 
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Conjugate Family of Distributions

In Bayesian statistics a typical problem consists 
of finding a family of density functions F(θ ;η), 
with hyperparameter η, so that both, the prior
probability density function F(θ ;η), and the 
posterior S(θ ; x,η), belong to the same family. 

Bayes theorem guarantees that the posterior is 
proportional to the product of the prior and the 
likelihood L(x,θ).

S θ; x,η( ) = H x,θ( )F θ,η( ),
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Conjugate Family of Distributions

The functional equation for this problem is:

( )( ) ( ) ( ),,,,, ηθθηθ FxHxGF =
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Conjugate Family of Distributions

The functional equation for this problem is:

( )( ) ( ) ( ),,,,, ηθθηθ FxHxGF =

x

θ

η

H

G

I

F

F
u

x

which leads to the FN:
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Stability with Respect to Maxima Operations

Let X and Y be two independent random variables 
with cumulative probability distribution functions in 
the parametric family

( ){ }.,, Θ∈θθzF

The CDF of the random variable Z = max(X, Y) is

( ) ( ) ( )bzFazFbazT ;;,; =
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Stability with Respect to Maxima Operations

F z;G(a,b)( ) = F z;a( )F z;b( ),

If we wish the family to be stable with respect to 
maxima operations, we must have
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Stability with Respect to Maxima Operations

If we wish the family to be stable with respect to 
maxima operations, we must have

F z;G(a,b)( ) = F z;a( )F z;b( ),

which leads to the FN:
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Time Series: Double Logistic Model

( ) ( )
( ) ( )111

111

141
141

−−−

−−−

−+−=
−+−=

nnnn

nnnn

xxayay
yyaxax

The double logistic application is given by the 
following iterative equation:
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Time Series: Double Logistic Model

( ) ( )
( ) ( )111
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The double logistic application is given by the 
following iterative equation:
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That leads to the functional network:
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Time Series: Double Logistic Model

This family of applications is very useful to 
illustrate the changes in the qualitative behavior 
when the control parameter a is modified.
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Time Series: Double Logistic Model

This family of applications is very useful to 
illustrate the changes in the qualitative behavior 
when the control parameter a is modified.
If we obtain,714.0and,9.0,1.0 00 === ayx
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Time Series: Double Logistic Model

Adding to the model a 
Gaussian error with 
σ = 0.1, we get the 
plot on the right.
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Time Series: Double Logistic Model

Adding to the model   
a Gaussian error with 
σ = 0.1, we get the 
plot on the right.

Using a FN with a 
polynomial family, 
the noise can be 
Eliminated, as 
shown in the right.
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Structural Engineering: The Beam Problem

We are interested in modeling the behavior of 
a beam subject to given vertical forces (loads).

z(x)

p(x)

Load at 
point x

Deflection 
at point x



60

Structural Engineering: The Beam Problem

Data: 
• Load p(x) and 
• Geometry of the beam.
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Structural Engineering: The Beam Problem

Data: 
• Load p(x) and 
• Geometry of the beam.

Unknowns: 
• Deflection z(x),
• Rotation w(x), 
• Bending moment m(x), and
• Shear force q(x).
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Structural Engineering: The Beam Problem

In the classical approach, the equilibrium 
forces are stated for differential pieces.

q(x)

m(x) m(x+dx)

q(x+dx)d(x)
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Structural Engineering: The Beam Problem

Using force and moment equilibrium 
equations plus strength of materials, we get a 
fourth order differential equations.

( ) ( ),xpEIz iv =
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Structural Engineering: The Beam Problem

Using force and moment equilibrium 
equations plus strength of materials, we get a 
fourth order differential equations.

( ) ( ),xpEIz iv =
which is equivalent to a system of four first 
order differential equations

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).xwxzxqxm
EI

xmxwxpxq

=′=′

=′=′

;

;;
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Structural Engineering: The Beam Problem

With the functional networks approach, the 
equations are stated for discrete pieces of 
length u.

q(x)

m(x)
u

p(x)

m(x+u)

q(x+u)
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Structural Engineering: The Beam Problem

Using force and moment equilibrium 
equations plus strength of materials leads to:

z x + 4u( ) = −z x( )+ 4z x + u( )− 6z x + 2u( )+ 4z x + 3u( )
+ −4D x,u( )+ 6D x,2u( )− 4D x,3u( )+ D x,4u( )( ) EI

which is a functional equation that, for 
constant u, can be seen as a difference 
equation of fourth order
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Structural Engineering: The Beam Problem

This is equivalent to the system of first order
functional equations:

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )



 ++++=+





 +++=+

++=+
+=+

uxDuxquxm
EI

uxwxzuxz

uxCuxquxm
EI

xwuxw

uxBcuqxmuxm
uxAxquxq

,
62

1

,
2

1
,

,

32

2

where A, B, C and D can be calculated from p(x).
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Structural Engineering: The Beam Problem

Another alternative is the set of functional 
equations

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( )u,xAxquxq

u,xBuxmxmuxm
EIu,xCu,xCu,xC

uxwuxwxwuxw
EIu,xDu,xDu,xDu,xD

uxzuxzuxzxzuxz

+=+
−++−=+

+−+
+++−=+

+−+−+
+++−++−=+

22
3233

2333
434264

342644

that, for constant u, can be seen as difference 
equations.
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Structural Engineering: The Beam Problem

q(x)
x

F q(x+u)

m(x)

x
G m(x+2u)m(x+u)

x

w(x)

x

H w(x+3u)w(x+u)

w(x+2u)

z(x)

R z(x+4u)

z(x+u)

z(x+2u)

z(x+3u)

x
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Example: Supported Cantilever Beam

s

p(x)

Boundary conditions are: 
( ) ( ) ( ) ( ) .szsmzw 000 ====
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Example: Supported Cantilever Beam

z x( ) = −0.0040 − 0.0041x − 0.0021x2 − 0.0007 x3 −
0.0002 x4 − 0.00003 x5 − 0.00001x6

w x( ) = −0.1620 − 0.1620 x − 0.0810 x2 − 0.0270 x3 −
0.0069 x4 − 0.0012 x5 − 0.0004 x 6

m x( ) = −0.0006 − 0.0006 x − 0.0003 x2 − 0.0001x 3 −
0.00003x 4 − 0.000005x 5 −1.44 x6

q x( ) = −0.0250 − 0.0253 x − 0.0127 x2 − 0.0042 x3 −
0.0011x4 − 0.0002 x 5 − 0.00006 x6
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Example: Supported Cantilever Beam
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Example: The Iterator

Suppose that we wish to calculate the n-th
iterate of a given function f, that is:

y = f ( f (... f (x))) = f
(n)

(x)
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Example: The Iterator

Suppose that we wish to calculate the n-th
iterate of a given function f, that is:

y = f ( f (... f (x))) = f
(n)

(x)

fx
f (x )

f
f (x )

f

)(2 f (x ))(n

1. Selecting the Initial Topology:
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2. Simplifying the Initial Topology

f
(n)

(x) = F(x,n) ⇒ f (x) = F(x,1)

Let
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2. Simplifying the Initial Topology

f
(n)

(x) = F(x,n) ⇒ f (x) = F(x,1)

Let

Since

f
(m + n)

(x) = f
(n)

( f
(m)

(x)),
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2. Simplifying the Initial Topology

f
(n)

(x) = F(x,n) ⇒ f (x) = F(x,1)

Let

Since

f
(m + n)

(x) = f
(n)

( f
(m)

(x)),

then F(x,n) satisfies the functional equation

F(x,m + n) = F(F(x, m), n).
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2. Simplifying the Initial Topology
With general solution

y = f
(n)

(x) = F(x,n) = g−1[g(x) + n].
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2. Simplifying the Initial Topology
With general solution

y = f
(n)

(x) = F(x,n) = g−1[g(x) + n].

So, the two functional networks are equivalent:

fx
f (x )

f
f (x )

f

gx

In

+ g-1

(a)

(b )

)(2 f (x ))(n

f (x ))(n
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3. Uniqueness of Representation:

f
(n)

(x) = F(x,n) = g−1[g(x) + n].
Since
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3. Uniqueness of Representation:

f
(n)

(x) = F(x,n) = g−1[g(x) + n].
Since

The uniqueness of representation implies solving
the functional equation:

g−1[g(x) + n] = h−1[h(x) + n],
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3. Uniqueness of Representation:

f
(n)

(x) = F(x,n) = g−1[g(x) + n].
Since

The uniqueness of representation implies solving
the functional equation:

g−1[g(x) + n] = h−1[h(x) + n],

with unique solution
g(x) = h(x) + c,

where c is an arbitrary constant. 
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3. Uniqueness of Representation:

f
(n)

(x) = F(x,n) = g−1[g(x) + n].
Since

The uniqueness of representation implies solving
the functional equation:

g−1[g(x) + n] = h−1[h(x) + n],

with unique solution
g(x) = h(x) + c,

where c is an arbitrary constant. 

So, the function g must be fixed at a point.
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4. Learning the Model

y = f (x) = F(x,1) = g−1[g(x) +1].

in the more convenient form.

To learn the function g we write the expression

g(yt ) = g(xt ) +1; t =1,2,...,m
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4. Learning the Model

y = f (x) = F(x,1) = g−1[g(x) +1].

in the more convenient form.

To learn the function g we write the expression

g(yt ) = g(xt ) +1; t =1,2,...,m

To learn g(x), we consider a linear combination of 
basic functions

g(x) = ciφi (x),
i=1

k

∑
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4. Learning the Model

ε t = g(yt ) − g(xt ) −1 = ci(φi(yt ) − φi(xt)) −1,
i=1

k

∑
And define the errors



87

4. Learning the Model

ε t = g(yt ) − g(xt ) −1 = ci(φi(yt ) − φi(xt)) −1,
i=1

k

∑
And define the errors

Then, we estimate the coefficients by minimizing.

∑
=

=
m

t
tQ

1

2ε
2

11
][ 1))()((∑∑

==
−−=

k

i
titii

m

t
xyc φφ

subject to

∑=
=

=
k

i
ii xxcxg

1
000 .)()( φ



88

An Example

f (x) = log(1+ exp(x)),

and suppose that we are interested in its n-iterate.

Consider the function
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An Example

f (x) = log(1+ exp(x)),

and suppose that we are interested in its n-iterate.

Consider the function

where                     to learn the function f(x).

{(xt , yt ) | t = 1,2,..., m},
yt = f (xt),

Assume also that we have a set of data points 
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An Example

f (x) = log(1+ exp(x)),

and suppose that we are interested in its n-iterate.

Consider the function

{(xt , yt ) | t = 1,2,..., m},
Assume also that we have a set of data points 

where                     to learn the function f(x).yt = f (xt),

Then, we select a polynomial family and learn

g(x) = cix
i

i=1

8

∑
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An Example

0.010 0.698 0.428 0.930 0.415 0.922
0.580 1.020 0.187 0.791 0.198 0.797
0.696 1.100 0.866 1.220 0.310 0.860
0.310 0.860 0.906 1.250 0.971 1.290
0.305 0.857 0.296 0.852 0.242 0.822
0.646 1.070 0.575 1.020 0.536 0.997
0.191 0.793 0.635 1.060 0.017 0.702
0.820 1.190 0.340 0.877 0.304 0.857
0.007 0.697 0.392 0.908 0.925 1.260
0.724 1.120 0.820 1.180 0.194 0.795

Assume that we have the following data points:
ty ty tytx tx tx

Then, we select a polynomial family and minimize
28
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An Example
We get the following models:
Exhaustive and Backward-Forward Method 

{x, x2, x3, x4, x5, x6, x7, x8}
{x, x2, x3, x4, x6, x7, x8}

1
2

L1RMSEg(x)

Quality MeasuresApproximating Functions
Step

61028.3 −× 201.365−
81030.4 −× 792.496−

g(x) = x + 0.5x 2 + 0.165x 3 + 0.047x 4 + 0.0087x6 + 0.003x 7 + 0.0007x8

RMSE = 4.3*10−8 ; L = −496.792
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An Example
Forward-backward method:

{x2}
{x2, x}

{x2, x, x4}
{x2, x, x4, x3}

{x2, x, x4, x3, x6}
{x2, x, x4, x3, x6, x5}

{x2, x, x4, x3, x6, x5, x8}

1
2
3
4
5
6
7

L1RMSEg(x)

Quality MeasuresApproximating Functions
Step

1101.1 −×
2105.2 −×
4107.9 −×
5105.8 −×
6109.1 −×
7100.1 −×
8105.5 −×

043.64−
499.107−
926.202−
418.274−
595.386−
299.472−
394.489−

g(x) = x + 0.5x 2 + 0.167x3 + 0.042x4 + 0.0079x5 + 0.002x 6 + 0.00007x 8

RMSE = 5.5 *10−8 ; L = −489.394
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An Example

Exact and predicted values for different values of n.
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Agenda

1. A brief introduction to FNs
2. Working with FNs
3. Differences between FNs and NNs
4. Relationship to other statistical models
5. Examples of some applications of FNs
6. Summary and Conclusions
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Summary and Conclusions

1. Functional networks have many practical 
applications in probability, statistics and 
engineering.

2. The physical understanding of the problem 
to be solved gives rise to an initial topology 
of the functional network. No black boxes
as in NN.
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Summary and Conclusions

3. Functional equations allow simplifying the 
initial topology leading to a much 
simplified network.

4. This problem driven design is but one 
feature of functional networks that 
differentiates them from the standard 
neural networks approach. 
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Summary and Conclusions

5. After the uniqueness problem has been 
solved, learning reduces to finding unique 
neural functions.

6. Model selection can be performed using the 
minimum description length measure in 
conjunction with procedures such as the 
forward-backward or the backward-forward 
algorithms. 
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Summary and Conclusions

7. A final model validation step must be 
applied to prevent model overfitting. 
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Example: Nonlinear Regression

Consider the semi-parametric 
regression model:

h(y) = ƒ1(x1) + … + ƒq(xq)       (1)

FNs do not require the functions h(.), 
ƒ1(.), …, ƒq(.) to be known.
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Assuming that h(.) is invertible, 
the semi-parametric regression 
model can be represented by:

y = h-1[ƒ1(x1) + … + ƒq(xq)]
and the following FN:

x1

x2

xq

f1

f2

fq

+ h-1 y
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Numeric Example

A data set consisting of n = 40
observations is generated from:

where X1, X2 are U(0, 1) and 
is U(-0.005, 0.005). 

Y3 = X1 + X1
2 + X2

2 + X2
3 + ε,

ε
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We now fit the following model to 
these data:

ƒ(y) = ƒ1(x1) + ƒ2(x2), 

which is equivalent to:

y = ƒ-1[ƒ1(x1) + ƒ2(x2)]. 
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