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A Brief Introduction to Functional
Networks (FNSs)

An example of a functional network: A FN 1s
analogous to a Printed Circuit Board (PCB)
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Elements of FNs:
1. Input Units: {a, b, ¢, d, e, f, g}
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Elements of FNs:
2. Computing Neurons: {K, L, M, N}
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Elements of FNs:
3. Output Units: {z, j}




Elements of FNs:
4. Intermediate Units: {A}




Elements of FNs:

5. Directed Links: {arrows}




Note:
N gives two outputs 7 and j and the i output
of N must be 1dentical to the output of M.
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1. Selection of the Initial Topology:

Problem driven design: The selection
of the 1nitial topology of a functional
network 1s often based on the
characteristics of the problem at hand,
which usually leads to a single clear
network structure.
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Example: Generalized Associative FNss:
Suppose the level of a disease d 1s a

function of three symptoms: x, y and z, that
1s, d = D(x, y, z).
We have three cases.

Case 1: We measure x and y, then z.

; } P(x,y) |

Z

. F(P(x,y),z) =D(x,,z)

/
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Case 2: We measure y and z, then x.

' } 0(v.z)

X

- G(O(y,2).x)=D(x,y,2)

/

Case 3: We measure x and z, then y.

X

Z } R(x,z)

Y

- H(R(x,z),y) = D(x,y,z)

/
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Case 1:
d =F(P(x,y)z)

P(x,y)



Case 2:
d =G(0(y,z).x)




Cases 1-2:

d :F(P(x,y),z) = G(Q(y,Z),X)
P(x,y)




Case 3:
d=H(R(x,z),y)



Cases 1-3:

d=F(P(x,y),z)=G((Q§y,Z),x)=H(R(x,z),y)







2. Simplitying FNs:

Using functional equations: We can
determine whether or not there exists
another functional network giving the
same output for the same input. This
leads to the concept of equivalent
functional networks.
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Example: Generalized Associative FNs:
d =F(P(x,y),z)=G(O(y,z),x)=H(R(x,2), )

The general solution to these equations 1s:

F(x,y)=k[f(x)+r(»)) Plx,y)=/"[p(x)+q(»)k
G(x,y)=k[n(x)+ p(»)k O(x,y)=n"[q(x)+r(y)}
H(x,y)=klm(x)+q(»)} R(x,y)=m"[p(x)+r(y)]

Thatis,d = D(x,v,z)=k|p(x)+q(y)+r(z)]



Therefore,

F(P(x,y),z)=G(O(y,2),x)= H(R(x,z), y)
is equivalent to: k|p(x)+g(y)+r(2)]

p(x)
o q(y) p(x)+q(y)+r(z)
ve {4) N (+) (k) o a
20




3. Uniqueness of Representation:

To avoid estimation problems we
need to know the conditions for
uniqueness (whether or not several
sets of neurons (functions) lead to
exactly the same output for the same
input).
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Example: Generalized Associative FNs:

Suppose that there exist two sets of functions

ki, P> gy 1y and [k, pay, Gy, 1o
such that

klp, () +q,(»)+r(2)]=k|p,(x)+49,(y)+1(2)]

for all x, y, z.
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Then,

) =k(" "0 p0=ap )b,

q,(v)=aq,(y)+c, r(z)=an(z)+d,
where a, b, ¢, and d, are arbitrary constants
that should be fixed at some point
(X0, Vo» Zo» Uy) tO guarantee the uniqueness of
the solution. That 1s,
p(x,)=a; q(y,)=a,
r(z)=a,; k(u)=«a,.
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4. Parametric Learning:

(G1ven a data set consisting of n observations
and a family of linearly independent
functions ® = {¢(X),j=1,..., ¢} and g, the
number of elements in the famlly, there are
two possibilities for the parametric learning
in FNs:

 Nonlinear, and

e Linear
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Nonlinear Parametric Learning:
Example: Generalized Associative FNs:

Let{(x,y,z;d ),i=1,...,n} be the data set,
we can write the model as

d; = k[p(xl-)+q(yl-)+r(zl-)]+gi, i=1,....n.

These functions can be approximated by:

p¥)=2ag ()  q()=2by(»)
r(z) = ﬁlcj(sj ().

J
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Nonlinear Parametric Learning:

We can minimize:

O = Ze 0, = Z

subject to the uniqueness constraints.

gi

. QO =maxg;

These leads to a nonlinear system of equations
or to a nonlinear programming problem.

We can also use other methods such as
MARS, ACE, etc.
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Linear Parametric Learning:

If k£ 1s invertible, we can write the model
as

K'(d)=p(x)+a(y,)+r(z)+e, i=1...n.

Then, approximating the functions and using
the criteria given above lead to a linear system
of equations.
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5. Model Selection:

There are two questions to be answered
when selecting a functional network:

* Which family of functions to use?

* Which terms 1n the family are important?
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Families of Linearly Independent Functions

Polynomial family: @ = {1, X, X*,...,X*|

Exponential family:

. X -X 2X -2X qgX —qX
CD—{I,e e e, e,...,e" e }

Fourier family:

® = {lI,sin X,cos X ,...,sin(gX ),cos(gX )}
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Criteria for Selecting the Important Terms

Minimum Description Length (MDL)

Let x be a sample of size n and let & be the
set of parameters to be estimated:

L(x)=—logz (8)+ 108" nlog( Sz (0 )j

2 n i=
Prior expert Penalty for Goodness

opinion  complexity of fit
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6. Model Validation:

Tests for quality and/or cross validations
are performed.

Care must also be given to the problem of
overfitting.

See Castillo et al. (2000) for details.

34



v1.
. Working with FNs

AN A NS

Agenda

A brietf introduction to FNs

Differences between FNs and NNs
Relationship to other statistical models
Examples of some applications of FNs

Summary and Conclusions

35



Differences Between FNs and NNss:

1. The topology of a NN 1s chosen from
among several topologies using trial
and error. The mitial topology in FN
1s problem driven and 1t can be
simplified using functional equations.
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Differences Between FNs and NNss:

2. In standard NN the neural functions
are given and some weights are
learned. In FNs specification of the
neural functions 1s not required
because the neural functions can be

learned from data.
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Differences Between FNs and NNss:

3. In standard NN all the neural
functions are identical, univariate and
single-argument (a weighted sum of
input values). In FNs the neural
functions can be different,
multivariate, and/or multiargument.
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Differences Between FNs and NNs:

4. In FNs we can connect outputs of
different neurons to force them to
coincide. This structure 1s not

possible 1n standard neural networks

because there are no intermediate
layers and these connections are not
allowed.
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Differences Between FNs and NNss:

5. Neural functions are not restricted to
be a linear combination of inputs.
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Summary:

Functional Networks are a
generalization of Neural Networks:
Every problem that can be solved
by NN can be solved by FN. The

converse 1S hot true.



Relationship to Some Other
Statistical Models and Methods:

FNs are also generalizations of and can
benefit from the following models:

1. Alternate Conditioning Expectation (ACE),
due to Bretman and Friedman (1985)

It can be used 1n parametric learning
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Relationship to Some Other
Statistical Models and Methods:

2. Multivariate Adaptive Regression Spline
(MARS) due to Friedman (1991)

It can be used 1n parametric learning

3. The Generalized Additive Models (GAM).
See, e.g., Hastie and Tibshirani, (1990)

It can be used 1n structural learning
4. Other statistical methods (e.g., variable

selection). It can be used in parametric learning
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Some Examples of Applications of FNs

FNs have numerous applications:
1. Bayesian Statistics

2. Finding stable and reproductive families of
distributions

. Time series
Modeling structural engineering problems

Transformations of variables
. Nonlinear Regression

9 N L AW

. Iterative problems
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Conjugate Family of Distributions

In Bayesian statistics a typical problem consists
of finding a family of density functions F(6,7),
with hyperparameter 7, so that both, the prior
probability density function, F(&,7), and the
posterior, S(&, X,7n7), belong to the same family.
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Conjugate Family of Distributions

In Bayesian statistics a typical problem consists
of finding a family of density functions F(& ;n),
with hyperparameter 7, so that both, the prior
probability density function F(&;7), and the
posterior S(&@; x,n), belong to the same family.

Bayes theorem guarantees that the posterior 1s
proportional to the product of the prior and the
likelithood L(x, ).

S(0;x,n)= H(x,0)F(6,n),
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Conjugate Family of Distributions

The functional equation for this problem is:

F(6,G(x,n))=H(x,0)F(0,n),

48



Conjugate Family of Distributions

The functional equation for this problem is:
F(0,G(x,n))=H(x,0)F(0,n),
which leads to the FN:
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Stability with Respect to Maxima Operations

Let X and Y be two independent random variables
with cumulative probability distribution functions in
the parametric family

{F(2,0),0 € ®}.
The CDF of the random variable Z = max(X, Y) 1s
T(z;a,b)=F(z;a)F(z;b)
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Stability with Respect to Maxima Operations

If we wish the family to be stable with respect to
maxima operations, we must have

H(z;G(a,b)) = F(z;a)F(z;b),

51



Stability with Respect to Maxima Operations

If we wish the family to be stable with respect to
maxima operations, we must have

F(z;G(a,b)) = F(z;a)F(z;b),
which leads to the FN:
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Time Series: Double Logistic Model

The double logistic application 1s given by the
following 1terative equation:

x =

v, =(

—a)x_ +4ay (1

—a)y  +4ax (1
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Time Series: Double Logistic Model

The double logistic application 1s given by the
following 1terative equation:

xn — (_a)xn—l +4ayn—1(_yn—l)
Y = (j“_a)yn—l +4axn—1(j‘_'xn—l)

That leads to the functional network:

xn-l
(£ (1) e
@ = [ en
yn-l
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Time Series: Double Logistic Model

This family of applications is very useful to
illustrate the changes in the qualitative behavior
when the control parameter a 1s modified.
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Time Series: Double Logistic Model

This family of applications is very useful to
illustrate the changes in the qualitative behavior
when the control parameter a 1s modified.

If x,=0.1,y,=0.9,and a =0.714, we obtain

Yo~ " T " T

08 [
06 [
04 [

02 [

0 i 1 1 1 | 1 1 1 ] 1 1 1 | 1 1 1 | 1 1 1
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Time Series: Double Logistic Model

Yo |

08

Adding to the model a :

06

Gaussian error with :

c = 0.1, we get the 02
plot on the right. ol




Time Series: Double Logistic Model

Yo [
Adding to the model : 5_
a Gaussian error with o
c =0.1, we get the ol
plot on the right. 00
Using a FN with a :8
polynomial family, "
the noise can be ol
Eliminated, as o
shown 1n the right. |




Structural Engineering: The Beam Problem

We are interested 1n modeling the behavior of
a beam subject to given vertical forces (loads).

—

p(x) —

T




Structural Engineering: The Beam Problem

Data:

* Load p(x) and
* Geometry of the beam.
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Structural Engineering: The Beam Problem

Data:

* Load p(x) and
* Geometry of the beam.

Unknowns:

* Deflection z(x),

* Rotation w(x),

* Bending moment m(x), and
» Shear force g(x).
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Structural Engineering: The Beam Problem

In the classical approach, the equilibrium
forces are stated for differential pieces.

A A 4
m(x) ( ) m(x+dx)
\

g0 g+
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Structural Engineering: The Beam Problem

Using force and moment equilibrium
equations plus strength of materials, we get a
fourth order differential equations.

EIZ"™ = p(x),
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Structural Engineering: The Beam Problem

Using force and moment equilibrium
equations plus strength of materials, we get a
fourth order differential equations.

EIz" = p(x),
which 1s equivalent to a system of four first
order differential equations

0)=p (="
()= q(x ()= w(x)

64



Structural Engineering: The Beam Problem

With the functional networks approach, the
equations are stated for discrete pieces of
length u.

< u >

q(x) q(x+u)

m(x)
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Structural Engineering: The Beam Problem

Using force and moment equilibrium
equations plus strength of materials leads to:

Ax +4u)=—z(x)+4z(x +u)— 6z(x +2u)+ 4z(x + 3u)

+(~4D(x,u) + 6 D(x, 2u) — 4D(x, 3u)+ D(x,4u))/ EI

which 1s a functional equation that, for
constant u, can be seen as a difference
equation of fourth order
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Structural Engineering: The Beam Problem

This 1s equivalent to the system of first order
functional equations:

g(x+u)=q(x)+ A(x,u)
m(x+u)=m(x)+ug(c)+ B(x,u)

2

w(x +10) = w(x)+b}][m(x)u+q(x)u2+C(x,u)}

1 u u’
z(x+u)=z(x)+wlx)u+ E[[m(x)2 + q(x)6 + D(x,u)}

where 4, B, C and D can be calculated from p(x).



Structural Engineering: The Beam Problem

Another alternative is the set of functional
equations

z(x+4u)= —z(x)+4z(x+u)—6z(x+2u)+4z(x+3u)
+(=4D(x,u)+6D(x,2u)—4D(x,3u)+ D(x,4u))/EI

w(x+3u)= w(x)-3w(x+u)+3w(x+2u)
+(3C(x,u)—3C(x,2u)+ C(x,3u))/EI

m(x+2u)= —m(x)+2m(x+u)—B(x,u)

gx+u) = q(x)+A(x,u)

that, for constant u, can be seen as difference
equations.
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Structural Engineering: The Beam Problem

m(x)
e 7,@~ qOctn) | m(etu) m(x+2u)
: P
2(x)
w(x) 2(x+u)
w(x+u) wx+3u) | z(xH2u)e 2(x+4u)
w(x+2u) 2(x+3u)
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Example: Supported Cantilever Beam

p(x)

AT

l VVVVYVY

\)

>

Boundary conditions are:

w(0)=2z(0)=m(s)=z(s)=0.
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Example: Supported Cantilever Beam

2(x) =
w(x) =
m(x) =
q(x) =

—0.0040 — 0.0041x — 0.0021x* —0.0007 x> —
0.0002 x* — 0.00003 x> —0.00001 x°

—0.1620 — 0.1620x — 0.0810 x> —0.0270 x> —
0.0069 x* —0.0012 x> — 0.0004 x°

—0.0006 — 0.0006 x — 0.0003 x> —0.0001 x> —
0.00003x* —0.000005x> —1.44 x°

—0.0250 — 0.0253 x —0.0127 x* — 0.0042 x° —
0.0011x* —0.0002 x> —0.00006 x°
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Example: Supported Cantilever Beam

200 ¢
a0 san |
200 |

—&0
100k

—ED0
—%0 —1o0f
=100 =200 |

[d)

—0.2} ()



Example: The Iterator

Suppose that we wish to calculate the n-th
iterate of a given function /, that 1s:

(n)
y=fCJ)N =, (x)
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Example: The Iterator

Suppose that we wish to calculate the n-th
iterate of a given function /, that 1s:

(n)
y=fCJ)N =, (x)

1. Selecting the Initial Topology:

f(x) f@x) S™x)

x o—a(f )—vo—s(f)—ve s/ )—>e

74



2. Simplifying the Initial Topology

Let
= Fan = = R



2. Simplifying the Initial Topology

Let )
n
o x)=Fx,n) = [f(x)=F(x,1)

Since

A= A ),



2. Simplifying the Initial Topology
Let
(n)
S (x)=Fx,n) = f(x)=F(x,1)

Since

A= A ),

then F(x,n) satisfies the functional equation

F(x,m+ n)=F(F(x,m),n).



2. Simplifying the Initial Topology

With general solution

(1) ¥
y=f ()=r(x,n)=g [gx)+n]



2. Simplifying the Initial Topology

With general solution

(1) ¥
y=f ()=r(x,n)=g [gx)+n]

So, the two functional networks are equivalent:

f(x) Prx) f™ix)

(@)

X 0—»‘\ f(n )(x )
+ >o P@—»




3. Uniqueness of Representation:
Since (n)

[ (x)=F(x,n)=g [g(x)+n].



3. Uniqueness of Representation:
Since (n)

[ (%) = Fx,n) = g ' [g(x) +n].

The uniqueness of representation implies so]
the functional equation:

g [gx)+n]=h"[h(x)+n],

ving
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3. Uniqueness of Representation:
Since (n)

[ (%) = Fx,n) = g ' [g(x) +n].

The uniqueness of representation implies so]
the functional equation:

g [g(x)+n]=h"[h(x)+n],
with unique solution
g(x) = h(x)+c,

where ¢ 1s an arbitrary constant.

ving
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3. Uniqueness of Representation:
Since (n)

[ (%) = Fx,n) = g ' [g(x) +n].

The uniqueness of representation implies so]
the functional equation:

g [g(x)+n]=h"[h(x)+n],
with unique solution
g(x) = h(x)+c,

where ¢ 1s an arbitrary constant.

So, the function g must be fixed at a point.

ving
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4. Learning the Model

To learn the function g we write the expression

y=fx)=F(x,1)=g [g(x)+1],

1n the more convenient form.

gy)=gx)+1;, t=12,...,m
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4. Learning the Model

To learn the function g we write the expression

y=f(x)=F(x,)=g [g(x)+1],

in the more convenient form.
gy,)=gx)+L t=12,..m

To learn g(x), we consider a linear combination of
basic functions

g(x) = 2 ch (x),
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4. Learning the Model

And define the errors

5= 8()—gx)=1= 2 c(4() - $(x) —1



4. Learning the Model

And define the errors

5= 8()—gx)=1= 2 c(4() - $(x) —1

Then, we estimate the coefficients by minimizing.

EHW [Zcz<¢<yf> b (x))—1]

t=1 t=1
subject to

k
g(xo0) = ZCi @i (x0) = Xo.
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An Example

Consider the function

J (x) = log(1+exp(x)),

and suppose that we are interested 1n 1ts n-1terate.
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An Example

Consider the function

J (x) = log(1+exp(x)),

and suppose that we are interested 1n 1ts n-1terate.

Assume also that we have a

{('xt?yt) ‘ t=1

set of data points
,2,...,m},

where ¥, = f(x,),to learn t

ne function (x).
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An Example

Consider the function

J (x) = log(1+exp(x)),

and suppose that we are interested 1n 1ts n-1terate.

Assume also that we have a

{('xt?yt) ‘ t=1

set of data points
,2,...,m},

where ¥, = f(x,),to learn t

e function f(x).

Then, we select a polynomial family and learn

8
g(x) =D cx’
=1
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An Example

Assume that we have the fol]

owing data points:

Xt

Yt

Xt

Yt

Xt

Yt

0.010
0.580
0.696
0.310
0.305
0.646
0.191
0.820
0.007
0.724

0.698
1.020
1.100
0.860
0.857
1.070
0.793
1.190
0.697
1.120

0.428
0.187
0.866
0.906
0.296
0.575
0.635
0.340
0.392

0.820

0.930
0.791
1.220
1.250
0.852
1.020
1.060
0.877
0.908
1.180

0.415
0.198
0.310
0.971
0.242
0.536
0.017
0.304
0.925
0.194

0.922
0.797
0.860
1.290
0.822
0.997
0.702
0.857
1.260
0.795

nggtz

t=1

30
= X

I

Then, we select a polynomial family and minimize

] : :
[> iy —x) - 1T
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An Example

We get the following models:

Exhaustive and Backward-Forward Method

Approximating Functions | Quality Measures
Step o(x) RMSE | I,

{x, 22, 3%, 0%, X2, X0, %7, X%} 1 308x1070 | ~365.201
2 {6, X%, 03, x4, x0, %7, X%} 1430x1078 | - 496.792

g(x)=x+0.5x>+0.165x" + 0.047x* + 0.0087x° + 0.003x " + 0.0007 x°

RMSE =43%10°; L =-496.792
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An Example

Forward-backward method:

Approximating Functions | Quality Measures
Step (%) RMSE L
1 (32} 11x107 1| —64.043
9) {x2, X} 2.5><10_2 —107.499
3 {x%, x, x*} 9.7x10~ 4| —202.926
4 {x2, x, x4, x3} 8.5x107°> | —274418
5 Ix2, x, x4, x3, x0} 19x10~0 | —386.595
6 {x2, x, x*, x3, x0, x>} 1.0x10~ 7 | —472.299
7 {x2, x, x* x3, x0, x°, x8} | 55x1078 | —489.394

g(x)=x+0.5x> +0.167x° +0.042x" + 0.0079x” + 0.002x° + 0.00007x

RMSE =5.5%10": L =-489.394

8
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An Example

| nn = 150
5-
4.5} n =0
4 f
' n o= 30

3
n =10
E.Sx
0.2 0.4 N.& n.a 1

Exact and predicted values for different values of #.
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Summary and Conclusions

1. Functional networks have many practical
applications 1n probability, statistics and
engineering.

2. The physical understanding of the problem
to be solved gives rise to an 1nitial topology
of the functional network. No black boxes
as 1 NN.
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Summary and Conclusions

3. Functional equations allow simplifying the
initial topology leading to a much
simplified network.

4. This problem driven design is but one
feature of functional networks that
differentiates them from the standard
neural networks approach.
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Summary and Conclusions

5. After the uniqueness problem has been

solved, learning reduces to finding unique
neural functions.

6. Model selection can be performed using the
minimum description length measure in
conjunction with procedures such as the
forward-backward or the backward-forward
algorithms.
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7. A

ap]

Summary and Conclusions

final model validation step must be

vlied to prevent model overfitting.
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Example: Nonlinear Regression

Consider the semi-parametric
regression model:

h(y)=f1e) + ..+ f () (1)

FNs do not require the functions A(.),
f10), ..o fq(.) to be known.
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Assuming that /(.) 1s invertible,
the semi-parametric regression
model can be represented by:

y=I[f 1) + et f ()
and the following FN:

Xy

X

; :@_“ N P)——> () —> s
X, ._>‘_./. 9




Numeric Example

A data set consisting of n = 40
observations 1s generated from:

V3= X+ XT + X5+ X3 + &

where X, X, are U(0, 1) and €
1s U(-0.005, 0.005).



We now fit the following model to
these data:

JO) = f1(x) * fHr(xy),

which 1s equivalent to:

y=f1f 1)) + ()]
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