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Abstract. Given a homotopy connecting two polynomial sys-
tems we provide a rigorous algorithm for tracking a regular ho-
motopy path connecting an approximate zero of the start system
to an approximate zero of the target system. Our method uses
recent results on the complexity of homotopy continuation rooted
in the alpha theory of Smale. Experimental results obtained with
the implementation in the numerical algebraic geometry package
of Macaulay2 demonstrate the practicality of the algorithm. In
particular, we confirm the theoretical results for random linear ho-
motopies and illustrate the plausibility of a conjecture by Shub and
Smale on a good initial pair.

The numerical homotopy continuation methods are the backbone of
the area of numerical algebraic geometry; while this area has a rigor-
ous theoretic base, its existing software relies on heuristics to perform
homotopy tracking. This paper has two main goals:

• On one hand, we intend to overview some recent developments
in the analysis of complexity of polynomial homotopy contin-
uation methods with the view towards a practical implemen-
tation. In the last years, there has been much progress in the
understanding of this problem. We hereby summarize the main
results obtained, writing them in a unified and accessible way.
• On the other hand, we present for the first time an implemen-

tation of a certified homotopy method which does not rely on
heuristic considerations. Experiments with this algorithm are
also presented, providing for the first time a tool to study deep
conjectures on the complexity of homotopy methods (as Shub
& Smale’s conjecture discussed below) and illustrating known
– yet somehow surprising – features about these methods, as
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equiprobability of the output in the case of random linear ho-
motopy and the average polynomial or quasi–polynomial time
of the algorithms studied by several authors.

Our project constructs a certified homotopy tracking algorithm and
delivers the first practical implementation of a rigorous path-following
procedure. In particular, the case of a linear homotopy is addressed in
full detail in Algorithm 1 of Section 2.3.

We begin by fixing some notation. Let n ≥ 1. For a positive in-
teger d0 ≥ 1, let Pd0 = Cd0 [X1, . . . , Xn] be the vector space of all
polynomials of degree at most d0 with complex coefficients and un-
knowns X1, . . . , Xn. Then, for a list of degrees (d) = (d1, . . . , dn)
let P(d) = Pd1 × · · · × Pdn . Note that elements in P(d) are n–tuples
f = (f1, . . . , fn) where fi is a polynomial of degree di. An element
f ∈ P(d) will be seen both as a vector in some high–dimensional vector
space and as a system of n equations with n unknowns. Homotopy
methods are among the most succesfull tools for solving the following
problem.

Problem 1. Assuming f ∈ P(d) has finitely many zeros, find approxi-
mately one, several, or all zeros of f in Cn.

It is helpful to consider the homogeneous version of this problem:
For a positive integer d0 ≥ 1, let Hd0 be the vector space of all ho-
mogeneous polynomials of degree d0 with complex coefficients and un-
knowns X0, . . . , Xn. Then, for a list of degrees (d) = (d1, . . . , dn) let
H(d) = Hd1 × · · · × Hdn . Note that elements in H(d) are n–tuples
h = (h1, . . . , hn) where hi is a homogeneous polynomial of degree di.
An element h ∈ H(d) will be seen both as a vector in some high–
dimensional vector space, and as a system of n homogeneous equations
with n+ 1 unknowns. Note that if ζ ∈ Cn+1 is a zero of h ∈ H(d), then
so is λζ, λ ∈ C. Hence, it makes sense to consider zeros of h ∈ H(d) as
projective points ζ ∈ P(Cn+1). Abusing the notation, we will denote
both a point in P(Cn+1) and a representative of the point in Cn+1 with
the same symbol. Moreover, if necessary, it is implied that the norm
of this representative equals 1. The homogeneous version of Problem
1 is as follows.

Problem 2. Assuming h ∈ H(d) has finitely many zeros, find approxi-
mately one, several or all zeros of h in P(Cn+1).

There is a correspondence between problems 1 and 2. Given f =
(f1, . . . , fn) ∈ P(d),

fi =
∑

α1+...+αn≤di

aiα1,...,αn
Xα1

1 · · ·Xαn
n ,
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we can consider its homogeneous counterpart h = (h1, . . . , hn) ∈ H(d),
where

hi =
∑

α1+...+αn≤di

aiα1,...,αn
X
di−(α1+···+αn)
0 Xα1

1 · · ·Xαn
n ,

If (η1, . . . , ηn) is a zero of f , then (1, η1, . . . , ηn) is a zero h. Conversely,

if (ζ0, . . . , ζn) ∈ P(Cn+1) is a zero of h and ζ0 6= 0 then
(
ζ1
ζ0
, . . . , ζn

ζ0

)
is

a zero of f .
The general idea of homotopy methods is as follows: choose some

system g ∈ H(d) which has a known solution ζ0. Then, consider a path
ht ⊆ H(d), 0 ≤ t ≤ T , such that h0 = g and hT = h is the target
system (for the time being, the reader may think on the linear path
ht = (1 − t)g + th). If the homotopy is well posed, the solution ζ0

can be continuously deformed to a solution ζt of ht. One can try to
numerically follow this path ζt to get an approximation ζT of a zero of h.
An important ingredient is how fine the discretization of our numerical
method has to be. Depending on a certain geometric property of the
path (ht, ζt), i.e. the “condition length” of the path, see (2.7) below,
we will need finer or coarser discretization. A longstanding conjecture
by Shub and Smale is the following (see Section 6.2 for a detailed
description): let1

(0.1) g(x) =


d

1/2
1 xd1−1

0 x1

...

d
1/2
n xdn−1

0 xn

, ζ0 = e0 =


1
0
...
0

 .

Then, the running time of a well–designed homotopy method for fol-
lowing linear paths starting at (g, e0) is polynomial in the size of the
input on the average (i.e. if h is chosen “randomly”, according to a
particular probability distribution). In this paper we give experimental
data which confirms this conjecture, and we moreover suggest a more
specific version of it, see (6.3).

The structure of the paper is as follows. In Section 1 we recall
the definition of approximate zero, condition number, and Newton’s
method, and equip the space of polynomial systems with a Hermitian
product. In Section 2 we describe a certified algorithm to follow a
homotopy path. An overview of approaches to finding all the roots of a
system is presented in Section 3. In Section 4 we give an algorithm to

1The original pair suggested by Shub and Smale had no d
1/2
i factors as the one here.

As done in other papers by several authors, we add those factors here to optimize
the condition number µ(g, e0).
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construct a random linear homotopy with good average complexity. In
Section 5 we briefly how to use the software. Section 6 demonstrates the
practicality of computation with the developed algorithm and discusses
experimental data that could be used to obtain intuition, in particular,
with regards to the conjecture of Shub and Smale.

Acknowledgements. The authors would like to thank Mike Shub for
insightful comments; the second author is grateful to Jan Verschelde
for early discussions of practical certification issues. This work was
partially done while the authors were attending a workshop on the
Complexity of Numerical Computation as part of the FoCM Thematic
program hosted by the Fields Institute, Toronto. We thank that insti-
tution for their kind support. We are also thankful to the referees for
the helpful comments.

1. Preliminaries

Let d = max{d1, . . . , dn} and D = d1 · · · dn. Note that d is a small
quantity, but in general D is an exponential quantity. We denote by
N+1 the complex dimension ofH(d) and P(d) as vector spaces. Namely,

N + 1 =
n∑
i=1

(
n+ di
di

)
.

1.1. Approximate zeros and Newton’s method. In general, it is
hard to describe zeros of f ∈ P(d) or h ∈ H(d) exactly. One may ask for
points which are “ε–close” to some zero, but this is not a very stable
concept. The concept of an approximate zero of [24] fixes that gap.

Given f ∈ P(d), consider the Newton operator associated to f ,

N(f)(x) = x−Df(x)−1f(x),

where Df(x) is the n× n derivative matrix of f at x ∈ Cn, also often
called the Jacobian (matrix). Note that N(f)(x) is defined as far as
Df(x) is an invertible matrix. We will denote

N(f)l(x) = N(f)

l︷ ︸︸ ︷
◦ · · · ◦N(f)(x)

namely, the result of l iterations of Newton’s method starting at x.

Definition 1. We say that x ∈ Cn is an approximate zero of f ∈ P(d)

with associated zero η ∈ Cn if N(f)l(x) is defined for all l ≥ 0 and

‖N(f)l(x)− η‖ ≤ ‖x− η‖
22l−1

, l ≥ 0.
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The homogeneous version of Newton’s method [20] is defined as fol-
lows. Let h ∈ H(d) and z ∈ P(Cn+1). Then,

NP(h)(z) = z − (Dh(z) |z⊥)−1 h(z),

where Dh(z) is the n × (n + 1) Jacobian matrix of h at z ∈ P(Cn+1),
and

Dh(z) |z⊥
is the restriction of the linear operator defined by Dh(z) : Cn+1 → Cn

to the orthogonal complement z⊥ of z. Hence, (Dh(z) |z⊥)−1 is a linear
operator from Cn to z⊥, andNP(h)(z) is defined as far as this operator is
invertible. The reader may check that NP(h)(λz) = λNP(h)(z), namely
NP(h) is a well–defined projective operator. Note that NP(h) may be
written in a matrix form

NP(h)(z) = z −
(
Dh(z)

z∗

)−1(
h(z)

0

)
,

which is more comfortable for computations. As before, we denote by
NP(h)l(z) the result of l consecutive applications of NP(h) with the
initial point z.

Definition 2. We say that z ∈ P(Cn+1) is an approximate zero of
h ∈ H(d) with associated zero ζ ∈ P(Cn+1) if NP(h)l(z) is defined for
all l ≥ 0 and

dR(NP(h)l(z), ζ) ≤ dR(z, ζ)

22l−1
, l ≥ 0,

Here dR is the Riemann distance in P(Cn+1), namely

dR(z, z′) = arccos
|〈z, z′〉|
‖z‖ ‖z′‖

∈ [0, π/2],

where 〈·, ·〉 and ‖ · ‖ are the usual Hermitian product and norm in
Cn+1. Note that dR(z, z′) = dR(λz, λ′z′) for λ, λ′ ∈ C, namely dR is well
defined in P(Cn+1) × P(Cn+1). The reader familiar with Riemannian
geometry may check that dR(z, z′) is the length of the shortest C1 curve
with extremes z, z′ ∈ P(Cn+1), when P(Cn+1) is endowed with the usual
Hermitian structure (see [2, Page 226].)

Let f ∈ P(d) and let h ∈ H(d) be the homogeneous counterpart
of f . In contrast with the case of exact zeros, it may happen that

z = (z0, . . . , zn) is an approximate zero of h but still
(
z1
z0
, . . . , zn

z0

)
is not

an approximate zero of f . In Proposition 3 we explain how to fix that
gap.
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1.2. The Bombieri-Weyl Hermitian product. In studying Prob-
lems 1 and 2, it is very helpful to introduce some geometric and met-
ric properties in the vector spaces P(d) and H(d). We recall now the
unitarily–invariant Hermitian product in H(d), sometimes called Kost-
lan Hermitian product ([2]) or Bombieri-Weyl Hermitian product ([8]).
Given d0 ∈ N and two polynomials v, w ∈ Hd0 ,

v =
∑

α0+...+αn=d0

aα0,...,αnX
α0
0 · · ·Xαn

n ,

w =
∑

α0+...+αn=d0

bα0,...,αnX
α0
0 · · ·Xαn

n ,

we consider their (Bombieri-Weyl) product

〈v, w〉 =
∑

α0+α1+...+αn=d0

(
d0

(α0, . . . , αn)

)−1

aα0,...,αnbα0,...,αn ,

where · is the complex conjugation and(
d0

(α0, . . . , αn)

)
=

d0!

α0! · · ·αn!

is the multinomial coefficient.
Then, given two elements h = (h1, . . . , hn) and h′ = (h′1, . . . , h

′
n) of

H(d), we define

〈h, h′〉 = 〈h1, h
′
1〉+ · · ·+ 〈hn, h′n〉, ‖h‖ = 〈h, h〉1/2.

This Hermitian product defines a real inner product in H(d) as usual,

〈h, h′〉R = Re (〈h, h′〉) .

We also define a Hermitian product and the associated norm in P(d)

as follows: Given f, f ′ ∈ P(d), let h, h′ ∈ H(d) be the homogeneous
counterparts of f, f ′. Then, define

〈f, f ′〉 = 〈h, h′〉, ‖f‖ = ‖h‖.

From now on, we will denote by S the unit sphere in H(d) for this norm,
namely

S = {h ∈ H(d) : ‖h‖ = 1}.
Note that for solving Problem 2, we may restrict our input systems
h ∈ H(d) to h ∈ S, for zeros of a system of equations do not change if
the system is multiplied by a non–zero scalar number.



CERTIFIED NUMERICAL HOMOTOPY TRACKING 7

1.3. The condition number. The condition number at (h, z) ∈ H(d)×
P(Cn+1) is defined as follows

µ(h, z) = ‖h‖ ‖(Dh(z) | z⊥)−1Diag(‖z‖di−1d
1/2
i )‖,

or µ(h, z) =∞ if Dh(ζ) | z⊥ is not invertible. Here, ‖h‖ is the Bombieri-
Weyl norm of h and the second norm in the product is the operator
norm of that linear operator. Note that µ(h, z) is essentially equal
to the operator norm of the inverse of the Jacobian Dh(ζ), restricted
to the orthogonal complement of z. The rest of the factors in this
definition are normalizing factors which make results look nicer and
allow projective computations. See [22] for more details. Sometimes µ
is denoted µnorm or µproj, but we keep the simplest notation here.

The two following results are versions of Smale’s γ–theorem, and
follow from the study of the condition number in [22, 21].

Proposition 1. [6, Prop. 4.1] Let f ∈ P(d) and let h ∈ H(d) be its
homogeneous counterpart. Let η = (η1, . . . , ηn) ∈ Cn be a zero of f ,
and let ζ = (1, η1, . . . , ηn) ∈ P(Cn+1) be the associated zero of h. Let
x ∈ Cn satisfy

‖x− η‖ ≤ 3−
√

7

d3/2µ(h, ζ)
.

Then, x is an affine approximate zero of f , with associated zero η.

Proposition 2. [3] Let ζ ∈ P(Cn+1) be a zero of h ∈ H(d) and let
z ∈ P(Cn+1) be such that

dR(z, ζ) ≤ u0

d3/2µ(h, ζ)
, where u0 = 0.17586.

Then z is an approximate zero of h with associated zero ζ.

The following result gives a tool to obtain affine approximate zeros
from projective ones:

Proposition 3. [6, Prop. 4.5] Let f ∈ P(d) and let h ∈ H(d) be its
homogeneous counterpart. Let η = (η1, . . . , ηn) ∈ Cn be a zero of f ,
and let ζ = (1, η1, . . . , ηn) ∈ P(Cn+1) be the associated zero of h. Let
z = (z0, . . . , zn) ∈ P(Cn+1) be a projective approximate zero of h with
associated zero ζ, such that

dR(z, ζ) ≤ arctan

(
3−
√

7

d3/2µ(h, ζ)

)
.

(dR(z, ζ) ≤ u0
d3/2µ(h,ζ)

suffices.)

Let zl = NP(h)l(z), where l ∈ N is such that

l ≥ log2 log2(4(1 + ‖η‖2)).
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Let xl =
(
zl1
zl0
, . . . , z

l
n

zl0

)
. Then,

‖xl − η‖ ≤ 3−
√

7

d3/2µ(f, ζ)
.

In particular, xl is an affine approximate zero of f with associated zero
η by Proposition 1.

Thus, if we have a bound on ‖η‖ and a projective approximate zero of
h with associated zero the projective solution ζ, we just need to apply
projective Newton’s operator NP(h) a few times dlog2 log2(4(1+‖η‖2))e
to get an affine approximate zero of f with associated zero η. Here,
by dλe we mean the smallest integer number greater than λ, λ ∈ R.
Thus, a solution to Problem 1 follows from a solution to Problem 2 and
a control on the norm of the affine solutions of f ∈ P(d). The latter
can be done either on per case basis or via a probabilistic argument as
in [6, Cor. 4.9], where it is proved that for f such that ‖f‖ = 1 and
δ ∈ (0, 1), we have ‖η‖ ≤ D

√
πn/δ with probability greater than 1− δ.

From now on we center our attention on Problem 2, and we will
assume that all the input systems h have unit norm, namely h ∈ S.

2. The homotopy method: A one–root finding algorithm

Let V = {(f, ζ) ∈ S× P(Cn+1) : f(ζ) = 0} be the so–called solution
variety. Elements in V are pairs (system, solution). Consider the
projection on the first coordinate π : V → S. The condition number
defined above is an upper bound for the norm of the derivative of the
local inverse of π near π(f, ζ), see for example [2, Chapter 12]. In
particular, π is locally invertible near (f, ζ) if µ(f, ζ) <∞.

Let t→ ht ∈ S, 0 ≤ t ≤ T be a C1 curve, and let ζ0 be a solution of
h0. If µ(h0, ζ0) < ∞, then π is locally invertible near h0. Thus, there
exists some ε > 0 such that for 0 ≤ t < ε the zero ζ0 can be continued
to a zero ζt of ht in such a way that t→ ζt is a C1 curve. We call the
curve t → (ht, ζt) the lifted curve of t → ht. There are two possible
scenarios:

• Regular: The whole curve t → ht, 0 ≤ t ≤ T can be lifted to
t→ (ht, ζt);
• Singular: There is some ε ≤ T such that t→ ht can be lifted

for 0 ≤ t < ε, but µ(ht, ζt)→∞ as t→ ε.

Problem 3. Create a homotopy continuation algorithm, a numerical
procedure that follows closely the lifted curve. Namely, in the regular
case such algorithm’s goal is to construct a sequence 0 = t0 < t1 < . . . <
tk = T and pairs (gi, zi) ∈ S× P(Cn+1) such that for all i = 0, . . . k we
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have gi = hti and zi is an approximate zero associated to the zero ζi of
gi with (g0, ζ0) and (gi, ζi) lying on the same lifted curve.

The homotopy method that we have in mind solves the problem
above (in the regular case) and creates an infinite sequence {ti} con-
verging to the first singularity on the curve in the singular case.

Remark 1. A homotopy algorithm still may be useful in a singular
case where the curve can be lifted for t ∈ [0, T ), which is the scenario,
e.g., of a homotopy curve leading to a singular solution. One may use
zi for ti close to T as an empirical approximation of the singular zero.
Approximate zeros (defined before) associated to a singular zero might
not exist, since Newton’s method loses its quadratic convergence near a
singularity.

Given a C1 curve t → ht, we denote ḣt = d
dt
ht. Namely, ḣt is

the tangent vector to the curve at t. Note that ḣt depends on the
parametrization of the curve, not only on the geometric object (the arc
defined by the curve).

A continuous curve t → ht ∈ S, 0 ≤ t ≤ T is of class C1+Lip if it is
of class C1 in [0, T ] (i.e. it has a continuous derivative in (0, T ) and

one–sided derivatives at t = 0 and t = T making ḣ(t) continuous in

[0, T ]), and if the mapping t → ḣt is a Lipschitz map, namely if there
exists a constant K > 0 such that

‖ḣt − ḣs‖ ≤ K|t− s|, ∀ t, s ∈ [0, T ].

By Rademacher’s Theorem, this implies that the second derivative ḧt
exists almost everywhere and is bounded by ‖ḣt‖ ≤ K.

2.1. Explicit construction of the homotopy method. A certified
homotopy method and its complexity was shown for the first time in
[22, 23], at least for the case of linear homotopy. In a recent work
[21], the theoretical complexity of such methods was greatly improved
although no specific algorithm was shown because the choice of the
step size was not specified. This last piece can be done in several ways,
see [3, 1, 10]. We now recall the homotopy method of [3], designed to
follow a C1+Lip curve t→ ht ∈ S, t ∈ [0, T ]. We assume that:

(1) We know an approximate zero z0, ‖z0‖ = 1 of g0 = h0, satisfying

(2.1) dR(z0, ζ0) ≤ u0

2d3/2µ(h0, ζ0)
, where u0 = 0.17586,

for some exact zero ζ0 of h0.
(2) Given t ∈ [0, T ], we can compute ht and ḣt = dht

dt
,
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(3) We know some real number H ≥ 0 satisfying

(2.2) ‖ḧt‖ ≤ d3/2H‖ḣt‖2,

for almost every t ∈ [0, T ]. From now on, we denote

P =
√

2 +
√

4 + 5H2 ∈ R.

For i ≥ 1, define (gi+1, zi+1) inductively as follows. Let a representative
of zi be chosen such that ‖zi‖ = 1. Let s ∈ [0, T ] be such that hs = gi
and let ġi = ḣs ∈ H(d) be the tangent vector to the curve t → ht at
t = s. Let

(2.3) χi,1 =

∥∥∥∥∥∥∥∥
(
Dgi(zi)

z∗i

)−1


√
d1

. . . √
dn

1


∥∥∥∥∥∥∥∥ ,

(2.4) χi,2 =

‖ġi‖2 +

∥∥∥∥∥
(
Dgi(zi)

z∗i

)−1(
ġi(zi)

0

)∥∥∥∥∥
2
1/2

,

and consider

(2.5) ϕi = χi,1χi,2.

Let

c =
(1−

√
2u0/2)

√
2

1 +
√

2u0/2

(
1−

(
1− u0√

2 + 2u0

) P√
2

)
,

and let ti be chosen in such a way that

(2.6)
c

2Pd3/2ϕi
≤ ti ≤

c

Pd3/2ϕi
,

or ti = T −s if c
2Pd3/2ϕi

≥ T −s. Note that this last case happens when

the step ti chosen with the formula above takes us beyond the limits
of the interval [0, T ]. The lower bound on (2.6) is used to guarantee
that the homotopy step is not too small (and thus the total number of
steps is not too big!).

Note that in order to compute ϕi we must compute the norm of a
vector (for χi,2) and the norm of a matrix (for χi,1). However, we only
need to do these tasks approximately, for we just need to compute a
number in [ϕi, 2ϕi].

In Section 2.3 below we describe the value of the constants to be
taken in the case of linear homotopy.
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Let gi+1 = hs+ti and let

zi+1 =
NP(gi+1)(zi)

‖NP(gi+1)(zi)‖
.

This way we generate (g1, z1), (g2, z2), etc. We stop at k such that
gk = hT , and we output zk ∈ P(Cn+1).

2.2. Convergence and complexity of the homotopy method.
The homotopy method is guaranteed to produce an approximate zero
of the target system h = hT if we are in the regular scenario. Moreover,
its complexity (number of projective Newton’s method steps) is also
well understood and attains the theoretical result of [21]. With the
notations above, let

(2.7) C0 =

∫ T

0

µ(ht, ζt)‖(ḣt, ζ̇t)‖ dt.

The reader may observe that C0 (called the condition length of the
path (ht, ζt) in S × P(Cn+1)) is the length of the path (ht, ζt) in the
condition metric, that is the metric in the solution variety V obtained
by pointwise multiplying the usual metric inherited from that of the
product S× P(Cn+1) by the condition number µ.

Theorem 1. [3] With the notations and hypotheses above, assume that

dR(z0, ζ0) ≤ u0

2d3/2µ(h0, ζ0)
, u0 = 0.17586.

Then, for every i ≥ 0, zi is an approximate zero of gi, with associ-
ated zero ζi, the unique zero of gi that lies in the lifted path (ht, ζt).
Moreover,

dR(zi, ζi) ≤
u0

2d3/2µ(hi, ζi)
, i ≥ 1.

If C0 < ∞, there exists k ≥ 0 such that hT = gk. Namely the number
of homotopy steps is at most k. Moreover,

k ≤ dCd3/2C0e,

where

C =
2P

(1−
√

2u0/2)1+
√

2

1

c
+

1 +
√

2u0/2(
1−
√

2u0/2
)√2

 .

In particular, if C0 < ∞ the algorithm finishes and outputs zk, an
approximate zero of hT = gk with associated zero ζk, the unique zero of
hT that lies in the lifted path (ht, ζt).
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Remark 2. As dλe ≤ λ + 1 for λ ∈ R, we have that the number of
steps is at most

1 + Cd3/2C0.

Remark 3. If the curve t → ht is piecewise C1+Lip we may divide
the curve in L pieces, each of them of class C1+Lip and satisfying a.e.
‖ḧt‖ ≤ d3/2H‖ḣt‖2 for a suitable H ≥ 0. The algorithm may then be
applied to each of these pieces and an upper bound on the total number
of steps is at most

L+ Cd3/2C0.

Remark 4. If more than one approximate zero of g = h0 is known, the
algorithm described above may be used to follow each of the homotopy
paths starting at those zeros. From Theorem 1, if the approximate zeros
of g correspond to different exact zeros of g, and if C0 is finite for all
the paths (i.e. if the algorithm finishes for every initial input), then
the exact zeros associated with the output of the algorithm correspond
to different exact zeros of hT .

2.3. Linear homotopy. Note that given g, h ∈ S the segment joining
g, h is not contained in S. One can still follow the (short) portion of the
great circle in S containing those two systems. We refer to such “great
circle homotopy” as linear homotopy, because it is the projection of
linear homotopies on S. The arc–length parametrization of the path is

(2.8) t→ ht = g cos(t) +
h−Re(〈h, g〉)g√

1−Re(〈h, g〉)2
sin(t), t ∈ [0, T ] ,

where

T = arcsin
√

1−Re〈h, g〉2 = distance(g, h) ∈ [0, π].

Note that this is a C∞ parametrization so in particular it is C1+Lip.
From [3, Section 2.2], in this case we may take the following value of
c/P in the description of the algorithm,

c

P
= 0.04804448...

The procedure of certified tracking for a linear homotopy is presented
by Algorithm 1.

Algorithm 1. z∗ = TrackLinearHomotopy(h, g, z0)

Require: h, g ∈ S; z0 is an approximate zero of g satisfying (2.1).
Ensure: z∗ is an approximate zero of h associated to the end of the

homotopy path starting at the zero of g associated to z0 and defined
by the homotopy (2.8).

1: i← 0; si = 0.



CERTIFIED NUMERICAL HOMOTOPY TRACKING 13

2: while si 6= T do
3: Compute

ġi ← ḣs = −g sin(s) +
f −Re(〈f, g〉)g√

1−Re(〈f, g〉)2
cos(s).

at s = si.
4: Determine ϕi using (2.3), (2.4), and (2.5).
5: Let ti be any number satisfying

0.04804448

2d3/2ϕi
≤ ti ≤

0.04804448

d3/2ϕi
.

6: if ti > T − s then
7: ti ← T − s.
8: end if

9: si+1 ← si + ti; gi+1 ← hsi+1
; zi+1 = NP(gi+1)(zi)

‖NP(gi+1)(zi)‖ .

10: i← i+ 1.
11: end while
12: z∗ ← zT .

The bound on the number of steps in Algorithm 1 given by Theo-
rem 1 is

(2.9) k ≤ d71d3/2C0e.

3. Finding all roots

Let us consider polynomial functions in O(d), where O(d) is one of
{P(d),H(d),S} with zeros in On, where On is either Cn or P(Cn+1).

Consider a homotopy t→ ht ∈ O(d), t ∈ [0, T ], connecting the target
system hT and the start system h0 along with a set of start solutions
Z0 ⊂ h−1

0 (0) ⊂ On.
Suppose the homotopy curve t → ht can be lifted to t → (ht, ζt) ∈
O(d)×On, t ∈ [0, T ] such that the projection map π : O(d)×On → O(d)

is locally invertible at any t ∈ [0, T ). A homotopy path is defined as the
projection of such lifted curve onto the second coordinate. If the map
π is locally invertible at t = T as well, then the path is called regular.

The homotopy t→ ht is called optimal if every ζ0 ∈ Z0 is the begin-
ning of a regular homotopy path. If every solution of hT is the (other)
end of the homotopy path beginning at some ζ0 ∈ Z0 then we call the
homotopy total.

The area of numerical algebraic geometry (see, e.g., [26]) relies on
the ability to reliably track optimal homotopies and find all roots of a
given 0-dimensional polynomial system of equations in O(d). One way
to accomplish this is to arrange a total-degree homotopy.
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3.1. Total-degree homotopy. For a target system f ∈ P(d), (d) =
(d1, . . . , dn), define a total degree linear homotopy to be

(3.1) t→ ft = (T − t)f0 + γtfT , γ ∈ C∗, t ∈ [0, T ],

where the start system is

(3.2) f0 = (xd11 − 1, . . . , xdnn − 1) ∈ P(d).

One can readily write down the zeros of f0, the number of which equals
the total degree, i.e., d1 · · · dn, .

Proposition 4. Assume that fT has a finite number of zeros, and let
Z0 be the set of zeros of f0 above. Then for all but finitely many values
of the constant γ the homotopy (3.1) is total.

If the number of the solutions to the target system fT ∈ P(d) equals
the total degree, then (for a generic γ) this homotopy is optimal.

If the target system fT ∈ P(d) has fewer than total degree many
solutions then:

• some solutions of the target system may be multiple (singular);
• in case of On = Cn, some of the homotopy paths may diverge

(to infinity) when approaching t = T .

To compute singular solutions one may track regular homotopy paths
to t = T − ε for a small ε > 0 (as in Remark 1) and then use either
singular endgames [26, Section 10.3] or deflation [17, 18]. To avoid
diverging paths one may homogenize the homotopy passing from P(d) to
H(d). The start system of the total homotopy is then the homogenized
version of (3.2), that is

(3.3) g = (xd11 − xd10 , . . . , x
dn
n − xdn0 ) ∈ H(d).

3.2. Other homotopy methods. There are other ways to obtain all
solutions with homotopy continuation that exploit either sparseness or
special structure of a given polynomial system, here we list a few:

• Polyhedral homotopy continuation based on [13] allows to re-
cover all solutions of a sparse polynomial system in the torus
(C∗)n.
• In many cases presented with a parametric family of polynomial

systems it is enough to solve one system given by a generic
choice of parameters. Then, given another system in the family,
the chosen generic system may be used as a start system in
the so-called coefficient-parameter or cheater’s homotopy [26,
Chapter 7] recovering all solutions of the latter.
• Special homotopies: e.g., Pieri homotopies coming up in Schu-

bert calculus [12] are total and optimal by design.
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4. Random linear homotopy and polynomial time

Suppose, given a system h ∈ H(d) all of whose solutions are regular,
we would like to construct an initial pair (g, ζ0) in a random fashion
so that every root of h is equally likely to be at the end of the linear
homotopy path determined by this initial pair. A simple solution to
this problem would be to take g to be the start system (3.3) of the
total-degree homotopy and pick ζ0 from the start solutions with uni-
form probability distribution on the latter. It has been very recently
proved by Bürgisser and Cucker [1] that this is a pretty good candidate
for the linear homotopy starting pair, as the total average number of
steps for each path is O(d3Nnd+1) that is O(N log(log(N))), hence close
to polynomial in the input size, mainly when n� d.

In [5, 6, 7] a probabilistic way to choose the initial pair was proposed.
We now center our attention in the most recent of these works [7] where
it is proved that, if the initial pair (g, ζ0) is chosen at random (with
a certain probability distribution), then the average number of steps
performed by the algorithm described in Section 2 is O(d3/2nN), thus
almost linear in the size of the input. It is also proved that in this way
we obtain an approximation of a zero of h, so that each of the zeros of
h are equiprobable if h has no singular solution. In [8] it is seen that
some higher moments (in particular, the variance) of that algorithm
are also polynomial in the size of the input. In this section we describe
in detail how the process of randomly choosing (g, ζ0) works and we
recall the main results of [7, 8].

Given ζ ∈ P(Cn+1), we consider the set

Rζ = {h̃ ∈ H(d) : h̃(ζ) = 0, Dh̃(ζ) = 0}.

Note that Rζ is defined as the set of polynomials in H(d) whose co-
efficients (in the usual monomial basis) satisfy n2 + 2n linear homo-
geneous equalities. Thus, Rζ is a vector subspace of H(d). Moreover,
let e0 = (1, 0, . . . , 0)T . Then, Re0 is the set of polynomial systems

h̃ = (h̃1, . . . , h̃n) ∈ H(d) such that all the coefficients of h̃i containing

Xdi
0 or Xdi−1

0 are zero, namely

h̃i = Xdi−2
0 p2,i(X1, . . . , Xn) +Xdi−3

0 p3,i(X1, . . . , Xn) + · · · ,

where pk,i is a homogeneous polynomial of degree k with unknowns
X1, . . . , Xn.

Recall that N + 1 is the (complex) dimension of H(d). The process
of choosing (g, ζ0) at random is as follows:
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(1) Let (M, `) ∈ Cn2+n × CN+1−n2−n = CN+1 be chosen at random
with the uniform distribution in

B(CN+1) = {r ∈ CN+1 : ‖r‖2 ≤ 1},

where ‖ · ‖2 is the usual Euclidean norm in CN+1. Thus, M is
a (n2 + n)–dimensional complex vector, that we consider as a
n× (n+ 1) complex matrix. Note that choosing ‖(M, `)‖2 ≤ 1
implies that ‖M‖F ≤ 1 and indeed the expected value of ‖M‖2

F

is n2+n
N+2

. At this point we can discard ` and just keep M . Note
that this procedure is different from just choosing a random
matrix, as it induces a certain distribution in the norm of the
matrix which is precisely the one that we are interested in.
Hence, choosing (M, `) in the unit ball and then discarding ` is
not a fool job!

(2) With probability 1, the choice above has produced a matrix
M whose kernel has complex dimension 1. Let ζ0 be a unit
norm element of Ker(M), randomly chosen in Ker(M) with
the uniform distribution (we may just obtain any such ζ0 by
solving Mζ0 = 0 with our preferred method, and then multiply
ζ0 by a uniformly chosen random complex number of modulus
1). Let V be any unitary matrix such that V ∗ζ0 = e0. Choose

a system h̃ at random in the unit ball (for the Bombieri–Weyl

norm) of Re0 . Then, consider h = h̃ ◦ V ∗. (This last procedure
is equivalent to choosing a system at random with the uniform
distribution in B(Rζ0) = {h ∈ Rζ0 : ‖h‖ ≤ 1}.)

(3) Let ĝ ∈ H(d) be the polynomial system defined by

ĝ(z) =
√

1− ‖M‖2
Fh(z) +

〈z, ζ0〉d1−1
√
d1

. . .

〈z, ζ0〉dn−1
√
dn

Mz

(4) Let

g =
ĝ

‖ĝ‖
.

Then, we have chosen (g, ζ0) and the reader may check that
g(ζ0) = 0, so ζ0 is an exact zero of g.

Consider the randomized algorithm defined as follows:

(1) Input h ∈ S
(2) Choose (g, ζ0) at random with the process described above
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(3) Consider the path

t→ ht = g cos(t) +
h−Re(〈h, g〉)g√

1−Re(〈h, g〉)2
sin(t), t ∈ [0, T ] ,

where T = arcsin
√

1−Re〈h, g〉2, and note that h0 = g, hT =
h. Use Algorithm 1 to follow the path ht and output an ap-
proximate zero of h.

For given h ∈ S, let NS(h) be the expected number of homotopy steps
performed by this algorithm, on input h ∈ S. We have seen in (2.9)
that

NS(h) ≤ d71d3/2C0e
The main theorems of [7, 8] are now summarized as follows.

Theorem 2. If h ∈ S is such that every zero of h is non–singular
(thus, h has exactly D = d1 · · · dn projective zeros), then:

• The algorithm above finishes with probability 1 on the choice of
(g, ζ0), and
• Every zero of h is equally probable as the exact zero associated

with the output of the algorithm (which is an approximate zero
of h).

Assuming h ∈ S is chosen at random with the uniform distribution on
S, the expected value and variance of NS(h) satisfy

E(NS(h)) ≤ C1nNd
3/2, Var(NS(h)) ≤ C2n

2N2d3 ln(D),

where C1 and C2 are universal constants. One may choose C1 =
71π/

√
2.

Note that this theorem not only gives a uniform distribution of the
probability of producing any given root of a regular system, but also
gives a good expected running time with the number of steps almost
linear in the size of the input.

An algorithm for finding all solutions of a system h with regular
zeros follows from Theorem 2: repeatedly create and follow random
homotopies to find one root of the system until total-degree many
roots are found. Tracking d2D logDe such random homotopies one
finds all zeroes of h with (high) probability of 1− 1

D (see [7, Corollary
27]). Thus, the expected number of steps of the proposed procedure
is O(d3/2nND logD), which grows fast as the total degree of the sys-
tem increases. This fast growth is necessary if we are attempting to
find all the D solutions of the system. The bound O(d3/2nND logD)
is the smallest proven value for the complexity of finding all roots of
a system. However, this algorithm may not be the most practical one.
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Using the näıve start system (3.3) should require, according to [1] an
average number of steps O(d3/2nd+1ND) which is a bigger bound that
O(d3/2nND logD), but guarantees that just D homotopy paths have
to be followed.

5. Implementation of the method

The computer algebra system Macaulay2 – to be more precise, NAG4M2
(internal name: NumericalAlgebraicGeometry) package [15] – hosts
the implementation of Algorithm 1, which is the first implementation
of certified homotopy tracking in a numerical polynomial homotopy
continuation software. The current implementation is carried out with
standard double floating point arithmetic without analyzing effects of
round-off errors. For a variant of the algorithm that facilitates rigorous
error control see [4].

5.1. NAG4M2: User manual. There are several functions that we
would like to describe here. First let us give an example of launching
track procedure with the certified homotopy tracker:

i1 : loadPackage "NumericalAlgebraicGeometry";

i2 : R = CC[x,y,z];

i3 : T = {x^2+y^2-z^2, x*y};

i4 : (S,x0) = totalDegreeStartSystem T;

i5 : x1 = first track(S,T,x0,
Predictor=>Certified,Normalize=>true)

o5 = {.00000207617, -.706804, .70744}

o5 : Point

i6 : x1.NumberOfSteps

o6 = 129

The values for the optional arguments Predictor and Normalize spec-
ify that the certified homotopy tracking is performed and the polyno-
mial systems are normalized to the unit sphere S. In this particular
example, totalDegreeStartSystem creates an initial pair based on
the system described in (3.3) and track follows the linear homotopy
starting at this initial pair and finishing at the given target system.

The user can also get a good initial pair (0.1) discussed below with
the function goodInitialPair as well as a random pair of start system
and solution as described in Section 4 with randomInitialPair.

It is possible for track to return a solution marked as failure. This
happens when the step size becomes smaller than the threshold set by
the optional parameter tStepMin, which has the default value of 10−6.
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5.2. Uncertified homotopy continuation. All existing software, such
as HOM4PS2 [14], Bertini [9], and PHCpack [27], utilize algorithms
based on alternating predictor and corrector steps. Here is a summary
of operations performed at a point of continuation sequence t ∈ [0, T ]
starting with a pair (ht, xt) where xt approximates some zero ηt of ht:

(1) Decide heuristically on the step size ∆t that predictor should
take;

(2) Use a predictor method, i.e., one of the methods for numerical
integration of the system of ODEs

ż = −(Dht)
−1 ḣt

to produce an approximation of ζt+∆t, a solution of ht+∆t;
(3) Apply the corrector: perform a fixed number l of iterations of

Newton’s method to obtain a refined approximation xt+∆t =
N(ht+∆t)

l(xt+∆t);
(4) If the estimated error bound in step 3 is larger than a predefined

tolerance, decrease ∆t and go to step 1.

After tuning the parameters, e.g., tolerances values, the application of
described heuristics often produces correct solutions.

We can imagine several “unfortunate” scenarios when two distinct
homotopy paths come too close to each other. Consider sequences
z0, zt1 , . . . , ztk and z′0, z

′
t′1
, . . . , z′t′

k′
created by an uncertified algorithm

in an attempt to approximate these two paths:

• If there are subsequences in two sequences that approximate a
part of the same path then this is referred to as path jumping.
• Path swapping happens when the sequences jump from one path

to the other, but there is no common path segment that they
approximate.

While path jumping can be detected, in principle, a posteriori and the
continuation rerun with tighter tolerances and smaller step sizes, the
path swapping can not be determined easily.

Path swapping does not result in an incorrect set of target solutions;
however, for certain homotopy-based algorithms such as numerical ir-
reducible decomposition [25] and applications relying on monodromy
computation such as [16] the order of the target solutions is crucial.
Therefore, one not only needs to certify the end points of homotopy
paths, but also has to show that the approximating sequences follow
the same path from start to finish. The certification of the sequence
produced in Section 2 provided by Theorem 1 gives such guarantee.

In certain cases the target solutions obtained by means of uncertified
homotopy continuation can be rigourously certified after all of them are
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obtained. For instance, suppose a target system hT ∈ H(d) has distinct
regular solutions in P(Cn+1), then there are total degree many of them.
Suppose some procedure provides total degree many approximations
to solutions. If a bound on max{µ(hT , ζ) | ζ ∈ h−1

T (0)} is known, then
using Proposition 2 these approximations may be certified as distinct
numerical zeros, thus certifying that all solutions have been found. If
no such bound is known, one may still try to prove that the zeros are
different by means of Smale’s α–theorem [24] (see [11]). As discussed
above, these procedures can not determine whether path swapping has
occurred.

6. Experimental results

The developed and implemented algorithm gave us a chance to con-
duct experiments that illuminated several aspects in the complexity
analysis of solving polynomial systems via homotopy continuation.

6.1. Certified vs. heuristic tracking. Our experiments in this sec-
tion were designed to explore how well the certified tracking provided
by Algorithm 1 scales in comparison with heuristic approaches. Need-
less to say, it was expected that running a certified nonheuristic method
as the one we propose requires more computational time. As was al-
ready mentioned, the proposed certified procedure makes sense only
for a regular homotopy. In nearly singular examples the certified ho-
motopy (as any other method) is bound to show bad performance due
to steps being minuscule at the end of paths, which is mandated by
(2.6).

In the table below we give the data produced by tracking of total-
degree homotopy that is optimal for the chosen examples:

• Random(d1,...,dn): a random system in S ⊂ H(d) with uniform
distribution;
• Katsuran: a classical benchmark with one linear and n − 1

quadratic equations in n variables.

For every experiment we provide the number of solutions, the av-
erage number of steps per homotopy path both for the certified algo-
rithm (C) and one of the best heuristic procedures (H) implemented
in Macaulay2. Note that we used the default settings for the parame-
ters that control heuristics without tightening them for larger (worse-
conditioned) problems.
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system #sol. #steps/path (C) #steps/path (H)
Random(2,2) 4 198.5 31
Random(2,2,2) 8 370.125 23
Random(2,2,2,2) 16 813.812 44.375
Random(2,2,2,2,2) 32 1542.5 48.5312
Random(2,2,2,2,2,2) 64 2211.58 58.5312
Katsura3 4 569.5 25.75
Katsura4 8 1149.88 41.5
Katsura5 16 1498.38 39.0625
Katsura6 32 2361.81 55.5625

One step in a heuristic algorithm involves more basic operations than
that of the certified tracker: there is a predictor and several corrector
steps performed and, if unsuccessful, new step size chosen only to re-
peat the procedure. Despite that the heuristic approach leads to much
smaller computational time for larger systems: this means that one
should expect heuristics to enjoy better practical complexity for most
of examples (there is no sense in talking about theoretical complexity
of such methods).

6.2. A conjecture by Shub and Smale. In [23], the pair described
in (0.1) was conjectured to be a good starting pair for the linear ho-
motopy. More exactly, let

Egood = E(](steps) to solve h with lin. homotopy starting at (g, e0)),

where the expectation is taken for random h ∈ S. Then, the conjecture
in [23] can be written as

(6.1) Egood ≤ a small quantity, polynomial in N,

The following experimental data (see also figure 1) was obtained by
running a linear homotopy connecting the pair (g, e0) as in (0.1) to a
random system in S ⊂ H(d) with di = 2 for i = 1, . . . , n. We compare

the values to that of B(n, d,N) = 71πd3/2nN/
√

2 which according to
Theorem 2 is a bound for the average number of steps.
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n Egood V argood Etotal V artotal Erand V arrand B(n, d,N)
4 962.051 3.2 · 105 1263.72 4.3 · 105 1622.29 6.8 · 105 1.0 · 105

5 1524.6 6.9 · 105 2130.54 1.2 · 106 2728.3 1.7 · 106 2.3 · 105

6 2258.33 1.3 · 106 3129.56 2.2 · 106 4137.16 3.5 · 106 4.5 · 105

7 3130.83 2.3 · 106 4530.55 4.5 · 106 5743.32 5.5 · 106 7.8 · 105

8 4154.38 3.9 · 106 5967.57 6.7 · 106 8048.94 1.0 · 107 1.2 · 106

9 5488.93 7.0 · 106 8013.71 1.1 · 107 10482.1 1.6 · 107 1.9 · 106

10 6871.35 1.0 · 107 10071 1.4 · 107 13477.5 2.2 · 107 2.9 · 106

11 8622 1.2 · 107 12996.1 2.8 · 107 17193.3 3.5 · 107 4.2 · 106

12 10413.3 2.0 · 107 15115.4 2.8 · 107 20761.3 4.6 · 107 5.8 · 106

13 12447.1 2.6 · 107 18744.5 4.3 · 107 25646.5 6.3 · 107 7.9 · 106

14 14769.9 3.3 · 107 22317.1 6.1 · 107 29596.7 9.1 · 107 1.0 · 107

15 17255.7 4.4 · 107 26017.7 7.3 · 107 35582.6 1.2 · 108 1.4 · 107

16 20959.7 5.9 · 107 30063.9 1.0 · 108 42098.9 1.5 · 108 1.7 · 107

17 23589.4 7.5 · 107 35403.1 1.3 · 108 48024.5 1.7 · 108 2.2 · 107

18 27400.9 9.6 · 107 40242.5 1.5 · 108 54955.4 2.3 · 108 2.7 · 107

19 29930.3 1.0 · 108 46502.2 2.3 · 108 62855.2 2.9 · 108 3.4 · 107

20 34374.2 1.4 · 108 51730.2 2.3 · 108 71242.5 3.5 · 108 4.1 · 107

For each value of n we have generated 1000 random systems in S with
a uniform probability distribution. The values Egood and V argood are
estimated expected value and variance of the number of steps taken
by Algorithm 1 for the initial pair in (0.1); Erand and V arrand refer
to those for the random initial pair; Etotal and V artotal refer to those
for the homogeneous version of the total–degree homotopy system of
Section 3.1 containing all the roots of unity (the choice of the root is
irrelevant for symmetry reasons). Namely, the pair

(6.2) h0 = (Xd1
1 −Xd1

0 , . . . , X
dn
n −Xdn

0 ), ζ0 = (1, . . . , 1).

The table above and Figure 1 below suggest two conclusions for the
case of degree two polynomials:

• The random homotopy seems to take approximately double
number of steps than the homotopy with initial pair (0.1). The
total degree homotopy lies in-between.
• The average number of steps in the three cases appears to grow

as Constant · N√
n

with Constant ≈ 35, 50, 70 for Egood, Etotal
and Erand respectively.

This experiment thus confirms the conjecture by Shub and Smale and
moreover it suggests a more specific form, suggesting that the same
bound given for random homotopy should hold for the conjectured
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pair:

(6.3) Egood ≤ CnNd3/2,

with C a constant. We also extend this conjecture to the case of the
initial pair total–degree homotopy pair (h0, ζ0) of Equation (6.2) above:

Etotal ≤ CnNd3/2.

Moreover, as pointed out above, in the case of degree 2 systems, our
experiments suggest the existence of a much better bound as Egood,
Etotal,Erand all appear to behave as CN/

√
n, where C is a constant.

The difference between the experimentally observed value and the the-
oretical bound in the case of randomly chosen initial pairs, respectively
O(N/

√
n) and O(nN) for (d) = (2, . . . , 2) can be explained as follows.

The proof of the theoretical bound starts by bounding

C0 =

∫ T

0

µ(ht, ζt)‖(ḣt, ζ̇t)‖ dt ≤
√

2

∫ T

0

µ(ht, ζt)
2‖ḣt‖ dt,

which follows from the fact that ‖ζ̇t‖ ≤ µ(ht, ζt)‖ḣt‖ by the geometric
interpretation of the condition number. This last inequality is not
sharp in general, and hence one may expect a better behavior of the
random linear homotopy method than the one given by the theoretical
bound.

Figure 1. In the first figure, we have plotted the ex-
perimental values obtained for Egood, Erand and Etotal

for n = 4, . . . , 20. In the second one we plot
Egoodn

1/2

N
,

Etotaln
1/2

N
and Erandn

1/2

N
for n = 4, . . . , 20
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6.3. Equiprobable roots via random homotopy. The algorithm
constructing a random homotopy has been implemented in two vari-
ants:

(1) as described in Section 4;
(2) the initial pair for the linear homotopy is built by taking (g, e0)

in (0.1) and performing a random unitary coordinate transfor-
mation (see [19] for a stable and efficient algorithm that chooses
such a random unitary matrix).

Then the following experiment was conjured to show the equiprob-
ability of the roots at the end of a random homotopy promised by
Theorem 2: as the target system we take h = g + εh̃ where g is as
in (0.1), h̃ is chosen randomly in S, and ε is small. Note that g has
a unique non–singular solution which is very well–conditioned, but it
also has a whole subspace of degenerate solutions. Hence, h also has a
rather well–conditioned solution, and then D − 1 isolated, but poorly
conditioned ones. One might expect that the random homotopy (2) we
have just described (for such a fixed h) would be biased to discover the
well–conditioned root. Indeed, we obtained numerical evidence that
this is not the case: all the solutions seem to be equiprobable.

For h with the degrees d = (2, 2, 2) and ε = 0.1 and several random
choices of g we have made experiments with certified tracking procedure
making 8000 runs. We experimented with both variants (1) and (2)
of choosing the random initial pair. Each experiment resulted in close
to 1000 hits for each of 8 roots — in both variants (1) and (2). This
appears to show the conclusion of Theorem 2, valid for variant (1), and
moreover extend it to the case of variant (2).

We can state this experimental result in a more precise way, using
Shannon’s entropy as suggested in [7]. Assume that we have an al-
gorithm that involves some random choice in its input, and that can
produce different outputs x1, . . . , xl. Shannon’s entropy is by definition
the number

H = −
l∑

i=1

pi log2(pi),

where pi is the probability that the output is xi. It is easy to see that
Shannon’s entropy of an algorithm is maximal, and equal to log2(l), if
and only if every output is equally probable. The experimental value
of Shannon’s entropy for the random algorithm in all experiments de-
scribed above is in the interval [2.99, 3]; the maximum, in this case, is
log2 8 = 3.
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The exact reason for the modified algorithm (variant (2)) to produce
equiprobability of the roots is not understood. This poses a very inter-
esting mathematical question, which together with proving (6.3) would
yield a great progress in the understanding of homotopy methods for
solving systems of polynomial equations.
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