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ON THE PROBABILITY DISTRIBUTION OF CONDITION

NUMBERS OF COMPLETE INTERSECTION VARIETIES AND

THE AVERAGE RADIUS OF CONVERGENCE OF NEWTON’S

METHOD IN THE UNDERDETERMINED CASE.

C. BELTRÁN AND L.M. PARDO

Abstract. In these pages we show upper bound estimates on the probability

distribution of the condition numbers of smooth complete intersection alge-
braic varieties. As a by-product, we also obtain lower bounds for the average
value of the radius of Newton’s basin of attraction in the case of positive di-

mension affine complex algebraic varieties.

1. Introduction

In these pages we prove several upper bound estimates concerning the aver-
age value of the quantities that dominate the computational behavior of Newton’s
operator in the underdetermined case. Newton’s operator for underdetermined sys-
tems of equations was introduced by Shub & Smale in [SS96] (cf. also [Ded06]).
Their main goal was the design and analysis of efficient algorithms that compute
approximations to complete intersection algebraic subvarieties of C

n.
This introduction is devoted to motivating and stating the main outcomes of

this paper. In order to be precise in our statements we need to introduce some
preliminary notations. Let l ∈ N be a positive integer number. We denote by Pl

the complex vector space of all complex polynomials f ∈ C[X1, . . . ,Xn] of degree
at most l. For every list of positive degrees (d) := (d1, . . . , dm), m ≤ n, we denote
by Pm

(d) the complex vector space given as the cartesian product

Pm
(d) :=

m
∏

i=1

Pdi
.

Namely, Pm
(d), m ≤ n, is the space of underdetermined systems of multivariate

polynomial equations. We denote by d the maximum of the degrees and by D the
Bézout number associated with the list (d). Namely,

d := max{d1, . . . , dm}, D :=
m
∏

i=1

di.

As in [Kun85], a set-theoretical complete intersection affine algebraic variety of
C

n of codimension m is an algebraic subset V ⊆ C
n of dimension n−m such that
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there is a degree list (d) and some system of multivariate complex polynomials
f = [f1, . . . , fm] ∈ Pm

(d) satisfying

V = V (f) = {x ∈ C
n : fi(x) = 0, 1 ≤ i ≤ m}.

The case m = n is simply the case of zero-dimensional complete intersection alge-
braic varieties.

A central computational problem is the design of efficient algorithms that solve
the following problem.

Approximating Complete Intersection Varieties

Input:

• A list of polynomial equations f = [f1, . . . , fm] ∈ Pm
(d) such that V (f) is a

complete intersection of codimension m.
• Some positive real number ε > 0.

Output: A point z ∈ C
n in the tube of radius ε about V (f). Namely, a point

z ∈ C
n such that

dist(z, V (f)) := inf{‖z − ζ‖ : ζ ∈ V (f)} < ε.

The zero-dimensional case (m = n) has been extensively studied in the series
of deep papers by M. Shub and S. Smale [SS93b, SS93a, SS93c, SS94, SS96] (cf.
also [Ded01, DS01, Kim89, GLSY05, Mal94]). For recent advances in this case see
[BP06b].

Shub and Smale showed that the design of efficient algorithms for the zero-
dimensional case is a consequence of the knowledge of the average behavior of
certain quantities associated with the input system f ∈ Pm

(d) that dominate New-

ton’s operator (cf. [SS93a, Main Theorem] and also [BP06b]). The aim of these
pages is to contribute to Shub & Smale’s program in the case of positive dimension
solution varieties.

With the same notations as above, let f ∈ Pm
(d) be a system of polynomial

equations and let z ∈ C
n be a complex point. Newton’s operator of f at z is

defined by the following identity:

Nf (z) := z − (dzf)†f(z),

where dzf is the jacobian matrix of f at z and (dzf)† is the Moore-Penrose pseu-
doinverse of dzf .

With these notations, a point z is called an approximate zero of f if the sequence
of iterations of Newton’s operator applied to z is convergent and for every positive
integer number k ∈ N the following inequality holds:

(1.1) dist(Nk
f (z), V (f)) ≤ 2

22k−1
dist(z, V (f)),

where dist(·, V (f)) denotes distance to the algebraic variety V (f) (we say that
the speed of convergence is doubly exponential). Let the reader observe that our
definition also implies there will be a point ζ ∈ V (f) such that Nk

f (z) converges to

ζ. Moreover, in all usages bellow (i.e. under γ-theorem’s hypothesis) the speed of
this convergence will also be doubly exponential.
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Within Shub & Smale’s program, the problem of approximating complete inter-
section varieties can be decomposed in two main steps:

• First, compute some approximate zero z ∈ C
n.

• Then, apply Newton’s operator to approximate a point ζ ∈ V (f).

The convergence of Newton’s operator (in the underdetermined case) at a point
is granted by the γ-theorem proved in [SS96] (cf. also [Ded06] or Theorem 2.1 in
Section 2.1). This γ-theorem introduces a quantity γ(f, ζ) depending on the input
system f ∈ Pm

(d) and a regular solution ζ ∈ V (f), as follows.

γ(f, x) := sup
k≥2

∥

∥

∥

∥

∥

(dζf)†
d
(k)
ζ f

k!

∥

∥

∥

∥

∥

1
k−1

2

,

where d
(k)
ζ f is the k-th derivative of f at ζ, considered as a k-multilinear map. If

ζ is not a regular solution, we define γ(f, ζ) = +∞. Here we strength this notion
by introducing a maximum value for γ. Namely, for f ∈ Pm

(d) we define

γworst(f) := sup
ζ∈V (f)

γ(f, ζ),

and we prove the following statement which is a corollary of Theorem C1 in [SS96]
or [Ded06, th. 134] (cf. Section 2.1 for a proof of this statement).

Corollary 1.1. There exists a universal constant u0, 0 < u0 ∼ 0.05992 such that
the following holds: Let z ∈ C

n be an affine point such that

dist(z, V (f)) ≤ u0

γworst(f)
.

Then, z is an approximate zero of f ∈ Pm
(d).

The bottleneck of this result is that γworst(f) may be infinite. For instance,
if V (f) contains some critical point ζ of f : C

n −→ C
m, then γ(f, ζ) = +∞ and

γworst(f) = +∞. However, we will see that for most systems f the number γworst(f)
is finite. More precisely, assume that Pm

(d) is endowed with the Gaussian probability

distribution with respect to Bombieri-Weyl Hermitian product (see Section 2) and
let N+1 be the complex dimension of Pm

(d). Then, we prove the following statement

in Section 6.2.

Theorem 1.2. With the notation above, the following properties hold:

(1) γworst(f) < +∞ almost everywhere in Pm
(d). Namely,

Prob[f ∈ Pm
(d) : γworst(f) < +∞] = 1.

(2) The expectation of γworst is bounded by the following inequality:

EPm
(d)

[γworst] ≤
D1/4

2
[10m

√
nNd3/2]

n−m+2
2 ,

(3) The expectation of the convergence radius u0

γworst
is bounded by the following

inequality:

EPm
(d)

[(Conv.radius)] ≥ 2u0

D1/4[10m
√
nNd3/2]

n−m+2
2

,
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This theorem then means the following. For almost all complete intersection
affine algebraic varieties V ⊆ C

n, there is a nontrivial tube VR about V of radius
R > 0 such that all points of VR are approximate zeros in the above sense. Moreover,
claim (3) provides a lower bound for the average value of the radius R of this tube.

Theorem 1.2 is a consequence of the study of the probability distribution of
another quantity associated with the input system f ∈ Pm

(d): The condition number

µm
norm(f, ζ), for ζ ∈ V (f) (see identity (2.2)). This quantity is strongly related to

the µnorm introduced in [SS93b, SS93a, Dég01].
This condition number µm

norm(f, ζ), for ζ ∈ V (f), has two main properties.
Firstly, in the zero-dimensional case, it is an upper bound for the complexity of
procedures based on homotopic deformation techniques that approximate zero-
dimensional algebraic varieties. Secondly, in the underdetermined case it has been
shown to control the stability of the solution set. For these results, see [SS93a, SS94,
Ded97, BP06b, Dég01]. Moreover, in Proposition 3.4 we prove that for f ∈ Pm

(d),

ζ ∈ V (f) the following inequality holds:

(1.2) γ(f, ζ) ≤ d3/2

2
µm

norm(f, ζ),

just by analogous arguments as those used for the zero-dimensional case in [SS93a].
Here we also contribute to Shub & Smale’s program by studying the probability

distribution of µm
norm in the positive dimension case. We study two variations of

the condition number µm
norm:

First we define the worst case condition number of an input system f ∈ Pm
(d) in

its variety of zeros V (f) ⊆ IPn(C). Namely,

(1.3) µm
worst(f) := sup

ζ∈V (f)

µm
norm(f, ζ).

Then, we prove the following statement.

Theorem 1.3. Let (d) = (d1, . . . , dm) be such that di > 1 for some i, 1 ≤ i ≤ m.
Then, the following properties hold:

• µm
worst(f) < +∞ almost everywhere in Pm

(d). Namely,

Prob[f ∈ Pm
(d) : µm

worst(f) < +∞] = 1.

• The expectation in Pm
(d) of the worst-case condition number µm

worst is bounded

by the following inequality.

EPm
(d)

[µm
worst] ≤

D1/4

d3/2
[10m

√
nNd3/2]

n−m+2
2 .

Then, Theorem 1.2 is an almost immediate consequence of equation (1.2) and
Theorem 1.3. Hence, we will concentrate our efforts in the proof of Theorem 1.3.

Moreover, the use of a uniform tube about a complete intersection affine algebraic
variety V ⊆ C

n is probably insufficient to explain the behavior and efficiency of
Newton’s operator in the underdetermined case. For this reason we also study the
average behavior of µm

norm(f, ζ) when ζ runs over the points in V (f).
Although we have used the condition number µm

norm to estimate an affine radius,
it is by nature (i.e. as all useful condition numbers) a projective function. Thus, we
will analyze the average value of µm

norm as follows. Let IPn(C) be the n-dimensional
complex projective space. For every system f ∈ Pm

(d), let VIP (f) ⊆ IPn(C) be the

projective closure of V (f) for the Zariski topology in IPn(C).
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Assume now that VIP (f) is a complex smooth submanifold of IPn(C). Then it is
endowed with a complex Riemannian structure that induces a volume form and a
probability distribution in a natural way. Then, for every f ∈ Pm

(d) such that VIP (f)

is smooth we define µm
av(f) as the average value of µm

norm at ζ ∈ VIP (f). Namely,

(1.4) µm
av(f) := Eζ∈VIP (f)[µ

m
norm(f, ζ)].

In the case that VIP (f) contains some singularity we define µm
av(f) := +∞.

Note that µm
av(f) controls in some sense the expected stability of the solution set

VIP (f). Then we also prove the following statement in Section 5 below.

Theorem 1.4. Let (d) = (d1, . . . , dm) be such that di > 1 for some i, 1 ≤ i ≤ m.
Then, the expected value of the condition number µm

av satisfies:

EPm
(d)

[µm
av] ≤ 3m

√
nN.

In the case that m = 1, we can even obtain an equality (cf. Theorem 5.1). As a
main outcome of Theorem 1.4 we observe that the average value of the condition
number µm

norm of a complete intersection algebraic variety is much better behaved
than its worst case estimate. This of course means that, for a randomly chosen
system f ∈ P(d), we can expect most part of the variety VIP (f) to be very stable in
the sense of [Dég01].

This paper is structured as follows. Section 2 is devoted to stating a precise
definition of the notions used in this Introduction and some other technical results.
Section 3 is devoted to proving inequality (1.2). In Section 4 we prove the main
technical tool for integration of functions in the set of systems. In Section 5 we
prove Theorem 1.4 and in Section 6 we prove theorems 1.3 and 1.2.

2. Preliminary results

2.1. Background. Recall the following theorem from [Ded06] (cf. also [SS96]).

Theorem 2.1. Let f ∈ Pm
(d) be a polynomial system, and let Vf be the following

set.

Vf := {x ∈ C
n : ∃ζ ∈ V (f), ‖x− ζ‖γ(f, ζ) ≤ u0},

where u0 is a universal constant (about 0.05992). Let x ∈ Vf be a point, and let
ζ ∈ C

n be a solution of f such that ‖x − ζ‖γ(f, ζ) ≤ u0. Then, the Newton series
xk := Nk

f (x) converges to a point ζ ′ ∈ V (f), and the following inequality holds for
every k ≥ 0:

‖xk − ζ ′‖ ≤ 2

22k−1
‖x− ζ‖.

Observe that, for any f ∈ Pm
(d), the set Vf is a “tubular” neighborhood of the

solution set of f , and the “radius” of this neighborhood at each solution point ζ is
exactly

u0

γ(f, ζ)
.

2.1.1. Proof of Corollary 1.1. .
Let ζ ∈ V (f) be such that dist(x, V (f)) = ‖x− ζ‖. Then, the following chain of

inequalities holds:

‖x− ζ‖γ(f, ζ) ≤ dist(x, V (f))γworst(f) ≤ u0.
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From Theorem 2.1, there exists a solution ζ ′ of f such that the Newton series
xk := Nk

f (x) satisfies

dist(xk, V (f)) ≤ ‖xk − ζ ′‖ ≤ 2

22k−1
‖x− ζ‖ =

2

22k−1
dist(x, V (f)),

as wanted. �

Our aim is to study the average behavior of the quantity γworst(f). To this end,
we must first consider some probability measure on Pm

(d). The following construction

follows that of [SS93a, BCSS98].
For every positive integer number l ∈ N, let Hl ⊆ C[X0, . . . ,Xn] be the vector

space of all homogenous polynomials of degree l with coefficients in the field C of
complex numbers. Let Hm

(d) :=
∏m

i=1Hdi
be the complex vector space consisting

on the polynomial systems of m homogeneous polynomials h := [h1, . . . , hm] of
respective degrees di.

We denote by α a multi-index α := (α0, . . . , αn) ∈ Z
n+1, αi ≥ 0 ∀i, and we

denote |α| := α0 + . . .+ αn. Then we write

Xα := Xα0
0 · · ·Xαn

n .

As in [SS93a, BCSS98, Mal94, Dég01], we consider the Bombieri-Weyl Hermitian
product in Hdi

, defined as follows. Fix i, 1 ≤ i ≤ m, and let h, h′ ∈ Hdi
be two

elements,

h =
∑

|α|=di

aαX
α, h′ =

∑

|α|=di

bαX
α.

Then, we define

〈h, h′〉∆i
:=

∑

|α|=di

(

di

α

)−1

aαbα,

where bα is the complex conjugate of bα and
(

di

α

)

is the multinomial coefficient.
Namely,

(

di

α

)

=
di!

α0! · · ·αn!
∈ N.

This Hermitian product induces an Hermitian product in Hm
(d) (which will also

be called Bombieri-Weyl Hermitian product) as follows. For any two elements
h := [h1, . . . , hm], h′ := [h′1, . . . , h

′
m] of Hm

(d), we define

〈h, h′〉∆ :=

m
∑

i=1

〈hi, h
′
i〉∆i

.

We consider the following mapping:

Θ : Pm
(d) −→ Hm

(d)

f 7→ Θ(f),

where Θ(f) is the homogenized counterpart of f . Namely, Θ(f) is obtained by
adding a new unknown X0 to homogenize all the monomials of each equation to
the same degree di.

In this context, the solutions of f are related to some of the solutions of Θ(f) as
follows: If (x0, . . . , xn) is a solution of Θ(f), with x0 6= 0, then

(

1,
x1

x0
, . . . ,

xn

x0

)
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is a solution of f . Conversely, if (x1, . . . , xn) is a solution of f , then

(1, x1, . . . , xn)

is a solution of Θ(f).
The Hermitian product 〈·, ·〉∆ induces a Riemannian structure (and a metric) in

the space Hm
(d). We define the Riemannian structure (and metric) in Pm

(d) to be the

only one that makes Θ an isomorphism. We also denote ‖f‖∆ := ‖Θ(f)‖∆.
Observe that the affine invariant γworst(f) we have defined for f ∈ Pm

(d) does not

vary if we multiply f by a nonzero complex number. In other words, γworst is a
degree zero homogeneous function. Thus, the average behavior of γworst in Pm

(d) can

be calculated with Gaussian measure for the Bombieri-Weyl Hermitian product or,
equivalently, in the sphere of radius 1 or the associated projective space IP(Pm

(d))

(cf. for example [BCSS98, page 208]). Namely, we are interested in the quantity

EIP(Pm
(d)

)[γworst] ≡ EPm
(d)

[γworst].

The isometry Θ also defines an isometry between the associated projective spaces
IP(Pm

(d)) and IP(Hm
(d)). We will concentrate our efforts in the study of homogeneous

projective systems h ∈ IP(Hm
(d)) and their set of projective solutions.

For a homogeneous polynomial system h ∈ Hm
(d), we denote by VIP (h) ⊆ IPn(C)

the set of projective solutions of h. Namely,

VIP (h) := {ζ ∈ IPn(C) : h(ζ) = 0}.
Observe that for almost all systems f ∈ Pm

(d), the sets VIP (Θ(f)) and VIP (f) are

projective varieties of dimension n−m. Also, we have that VIP (f) ⊆ VIP (Θ(f)) (cf.
[Kun85]). Moreover, for almost all systems f ∈ Pm

(d), the following inequality also

holds:

dim(VIP (Θ(f)) ∩ {X0 = 0}) = n−m− 1.

Thus, except for a zero measure set in Pm
(d), the set VIP (Θ(f))\VIP (f) is contained

in a projective variety of dimension at most n−m−1. We conclude that, for almost
all f ∈ Pm

(d), the following equality holds:

ν[VIP (f)] = ν[VIP (Θ(f))].

In a similar way, for an integrable function ψ : VIP (Θ(f)) −→ [0,+∞], we have
that

(2.1) EVIP (f)[ψ] = EVIP (Θ(f))[ψ],

for almost all f ∈ Pm
(d).

The main property of the Hermitian product 〈·, ·〉∆ defined above is the unitary
invariance, that may be expressed as follows (cf. [BCSS98, pg. 218] and references
therein). Let h, h′ ∈ Hm

(d). Let U ∈ Un+1 be a unitary matrix. Consider the

elements h ◦ U, h′ ◦ U ∈ Hm
(d). Then, the following equality holds:

〈h ◦ U, h′ ◦ U〉∆ = 〈h, h′〉∆.
The Riemannian structure of Hm

(d) induces a Riemannian structure in IP(Hm
(d))

in a natural way. Let h ∈ IP(Hm
(d)) be any element, and let

h⊥ := {h′ ∈ Hm
(d) : 〈h, h′〉∆ = 0}
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be the orthogonal complement of h in Hm
(d). The Hermitian product in h⊥ is the

inherited from that of Hm
(d). Let h be any affine representation of h, such that

‖h‖∆=1. Consider the affine chart

ϕh : h⊥ −→ IP(Hm
(d)) \ h⊥,

sending each point h′ ∈ h⊥ to the projective class defined by h+ h′. Then, ϕh is a
diffeomorphism. Moreover, the tangent mapping d0(ϕh) is a linear isometry. Thus,

we may identify ThIP(Hm
(d)) and h⊥ via ϕh. This Riemannian structure in IP(Hm

(d))

is unitarily invariant. Namely, for every unitary matrix U ∈ Un+1, the following
mapping is an isometry.

IP(Hm
(d)) −→ IP(Hm

(d))

f 7→ f ◦ U−1.

As for the space of solutions IPn(C), we consider it endowed with the usual
Riemannian structure. For any point x ∈ IPn(C) and for any affine representation
x of x, such that ‖x‖2 = 1, we may identify TxIPn(C) ≡ x⊥ := {y ∈ C

n+1 :
〈x, y〉2 = 0} via the affine chart

ϕx : x⊥ −→ IPn(C) \ x⊥
y 7→ x+ y.

Observe that for any unitary matrix U ∈ Un+1, the following mapping is an
isometry.

IPn(C) −→ IPn(C)
x 7→ Ux.

We will use the general notation ν[A] to denote the volume of the set A, where
the dimension of A is fixed by the context. For every positive integer k ≥ 0, we
denote by ν[IPk(C)] the volume of the k-dimensional complex projective space.
Namely,

ν[IPk(C)] :=
πk

Γ(k + 1)
=
πk

k!
.

Note that the following equality also holds (cf. for example [BCSS98]):

ν[IP(Hm
(d))] =

πN

Γ(N + 1)
.

For a linear space C
k+1 and a positive real number t > 0 we denote by St(Ck+1) ⊆

C
k+1 the sphere of radius t centered at 0. Observe that the volume of S1(Ck+1) as

submanifold of C
k+1 is equal to

2πν[IPk(C)] =
2πk+1

Γ(k + 1)
.

Given any pair (h, x) ∈ IP(Hm
(d)) × IPn(C), we denote by Txh := (dxh) |x⊥ the

restriction of the tangent mapping dxh to the tangent space x⊥, where h, x are any
fixed affine representations such that ‖h‖∆ = ‖x‖2 = 1. Sometimes we identify
Txh and the jacobian matrix in any orthonormal basis of x⊥. In the case that
x = e0 := (1 : 0 : · · · : 0), we identify

Te0
h ≡







∂h1

∂X1
(e0) · · · ∂h1

∂Xn
(e0)

...
...

∂hm

∂X1
(e0) · · · ∂hm

∂Xn
(e0)






,
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for any fixed representation h ∈ Hm
(d), ‖h‖∆ = 1.

2.2. The incidence variety. LetW ⊆ IP(Hm
(d))×IPn(C) be the so called incidence

variety. Namely,

W := {(h, ζ) ∈ IP(Hm
(d)) × IPn(C) : ζ ∈ VIP (h)}.

The result below is [BCSS98, Prop. 1, pg. 193]

Proposition 2.2. The incidence variety W is a differentiable manifold of (com-
plex) dimension N + n −m. Moreover, let (h, ζ) ∈ W be a point, and let h, ζ be
affine representations of h, ζ such that ‖h‖∆ = ‖ζ‖2 = 1. Then, the tangent space
T(h,ζ)W ⊆ h⊥×ζ⊥ can be identified with the space given by the following expression:

T(h,ζ)W ≡ {(h′, x) ∈ h⊥ × ζ⊥ : h′(ζ) + (dζh)x = 0},

where dζh holds for the differential mapping of h at ζ. The identification with
T(h,ζ)W is given via the isometry

d(0,0)(ϕh × ϕζ).

As we have said above, for every unitary matrix U ∈ Un+1, U defines isometries
in IP(Hm

(d)) and IPn(C). Moreover, UW = W , and U also defines an isometry in

W . For every point x ∈ IPn(C) we denote by Vx the linear subspace of IP(Hm
(d))

given as

Vx := {h ∈ IP(Hm
(d)) : x ∈ VIP (h)}.

We consider the two canonical projections

p1 : W −→ IP(Hm
(d)), p2 : W −→ IPn(C).

We can obviously identify p−1
1 (h) and VIP (h). The same way, we can identify p−1

2 (x)
and Vx. From now on, we do not distinguish between those concepts.

2.3. The condition number of linear systems. Condition numbers in Linear
Algebra were introduced by A. Turing in [Tur48]. They were also studied by J. von
Neumann and collaborators (cf. [NG47]) and by J.H. Wilkinson (cf. also [Wil65]).
Variations of these condition numbers may be found in the literature of Numerical
Linear Algebra (cf. [Dem88], [GVL96], [Hig02], [TB97] and references therein).

We will denote by κm
D the generalized Condition Number of linear Algebra (cf.

for example [SS90, BP05]). Namely, let k ≥ m be two positive integers. Then, for
a rank m matrix A ∈ Mm×k(C),

κm
D(A) := ‖A‖F ‖A†‖2,

where ‖·‖F is the Frobenius norm and A† holds for the Moore-Penrose inverse of A.
It is well known (cf. [SS90, BP05, Kah00]) that the condition number κm

D controls
the stability of the kernel or the Moore-Penrose inverse calculations. Moreover,
some bounds on the probability distribution of κm

D are known since [BP06a, BP05].
Namely, we have the following result.

Lemma 2.3. Let n ≥ m ≥ 2 be two positive integers. For any positive real number
s > 0, the following inequality holds:

ν[{M ∈ IP(Mm×(n+1)(C)) : κm
D(M) > s−1}]

ν[IP(Mm×(n+1)(C))]
≤ 2

(

em3/2(n+ 1)

n−m+ 2
s

)2(n−m+2)

.
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Now, let m = 1. Then, the following equality holds:

ν{M ∈ IP(M1×(n+1)(C)) : κ1
D(M) > s−1}]

ν[IPn(C)]
=

{

1 if s > 1,

0 if s ≤ 1.

Proof. The first part of the lemma is from [BP06a]. As for the second part, observe
that for every nonzero matrix A ∈ M1×(n+1)(C), the following equality holds:

κ1
D(A) = 1.

�

The upper bound on the probability distribution of κm
D may be translated into

a bound on the expected value EIP(Mm×(n+1)(C))[κ
m
D ], using the following result.

Lemma 2.4. Let X be a positive real valued random variable such that for every
positive real number t > 1,

Prob[X > t] ≤ ct−α,

where Prob[·] holds for Probability, and c > 1, α > 1 are some positive constants.
Then, the following inequality holds:

E[X] ≤ c
1
α

α

α− 1
.

Proof. We use the following equality, which is a well known fact from Probability
Theory.

E[X] =

∫ ∞

0

Prob[X > t] dt.

Then, observe that for every positive real number s > 1,

E[X] =

∫ ∞

0

Prob[X > t] dt ≤ s+ c

∫ ∞

s

t−α dt = s+ c
s1−α

α− 1
.

Let s := c
1
α , and the lemma follows. �

Corollary 2.5. Let n ≥ m ≥ 2 be two positive integers. Then, the expected value
of κm

D satisfies:

EIP(Mm×(n+1)(C))[κ
m
D ] ≤ 21/4em3/2(n+ 1)

n−m+ 3/2
.

Now, let n ≥ m = 1. Then, we have that

EIP(M1×(n+1)(C))[κ
1
D] = 1.

Proof. The inequality follows directly from Lemmas 2.3 and 2.4. The equality is
due to the fact that κ1

D(M) = 1 for every nonzero matrix M ∈ M1×(n+1)(C). �

2.4. The condition number of non-linear systems. In the series of papers
[SS93a, SS93b, SS93c, SS94, SS96] a condition number for non-linear zero-dimen-
sional systems of equations is proposed and analyzed. In [Dég01], an extension
of this condition number for the underdetermined case is suggested, and some
interesting properties are shown. The projective version of this condition number
may be defined as follows.
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Let h ∈ IP(Hm
(d)), and let ζ ∈ VIP (h) be a regular solution of h. We also denote

by h and ζ any respective affine representations of these projective points. Then,
the condition number µm

norm(h, ζ) is defined as follows.

(2.2) µm
norm(h, ζ) := ‖h‖∆‖(dζh |ζ⊥)†Diag(‖ζ‖di−1d

1/2
i )‖2,

where Diag(‖ζ‖di−1d
1/2
i ) := Diag(d

1/2
1 ‖ζ‖d1−1, . . . , d

1/2
m ‖ζ‖dm−1) is this diagonal

matrix. In the case that ζ is a singular solution of h (i.e. the differential mapping
dζh is not surjective) we define µm

norm(h, ζ) := +∞. Note that the following equality
holds:

µm
norm(h, ζ) =

κm
D(Diag(d

−1/2
i )Tζh)

‖Diag(d−1/2
i )Tζh‖F

,

where Diag(d
−1/2
i ) := Diag(d

−1/2
1 , . . . , d

−1/2
m ) is this diagonal matrix, and Tζh is

as defined in Section 2.1.
The quantity µm

norm depends both on the system and the solution. Then, we
consider two possible definitions for the condition number of a polynomial system
h ∈ IP(Hm

(d)):

µm
worst(h) := max

ζ∈VIP (h)
µm

norm(h, ζ), µm
av(h) := EVIP (h)[µ

m
norm(h, ·)].

The non-homogeneous version of µnorm may be introduced as follows. For a
polynomial f ∈ Pm

(d) and a solution ζ ∈ V (f), we define

µm
norm(f, ζ) := µm

norm(Θ(f), (1, ζ)),

where Θ is the mapping of Section 2.1 (note that (1, ζ) ∈ VIP (Θ(f))). The non-
homogeneous versions of µworst and µav have been defined in the Introduction (see
identities (1.3), (1.4)).

Observe that, as dζf varies in a continuous fashion with ζ, for every f ∈ Pm
(d) we

have:

(2.3) µm
worst(f) = sup

ζ∈V (f)

µm
norm(Θ(f), (1, ζ)) = max

ζ∈VIP (f)
µm

norm(Θ(f), (1, ζ)) ≤

max
ζ∈VIP (Θ(f))

µm
norm(Θ(f), ζ) = µm

worst(Θ(f)).

From the definitions and equation (2.1) above, the following equality holds for
almost all f ∈ Pm

(d):

(2.4) µm
av(f) = µm

av(Θ(f)).

2.5. Some Geometric Integration Theory. We will make extensive use of the
so called Coarea Formula, a classical integral formula which generalizes Fubini’s
Theorem. The most general version we know is Federer’s Coarea Formula (cf.
[Fed69]), but for our purposes a smooth version as used in [BCSS98] or [SS93b]
suffices.

Definition 2.6. Let X and Y be Riemannian manifolds, and let F : X −→ Y
be a C1 surjective map. Let k := dim(Y ) be the real dimension of Y . For every
point x ∈ X such that dxF is surjective, let vx

1 , . . . , v
x
k be an orthonormal basis of

Ker(dxF )⊥. Then, we define the Normal Jacobian of F at x, NJxF , as the volume
in TF (x)Y of the parallelepiped spanned by dxF (vx

1 ), . . . , dxF (vx
k). In the case that

dxF is not surjective, we define NJxF := 0.
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Theorem 2.7 (Coarea Formula). Let X,Y be two Riemannian manifolds of re-
spective dimensions k1 ≥ k2. Let F : X −→ Y be a C1 surjective map, such that
the differential mapping dxF is surjective for almost all x ∈ X. Let ψ : X −→ R

be an integrable mapping. Then, the following equality holds:

(2.5)

∫

X

ψ dX =

∫

y∈Y

∫

x∈F−1(y)

ψ(x)
1

NJxF
d(F−1(y)) dY,

where NJxF is the normal jacobian of F at x.

Observe that the integral on the right-hand side of equation (2.5) may be inter-
preted as follows: From Sard’s Theorem, for every y ∈ Y except for a zero measure
set, y is a regular value of F . Hence, F−1(y) is a differentiable manifold of dimen-
sion k1 − k2, and it inherits from X a structure of Riemannian manifold. Thus, it
makes sense to integrate functions on F−1(y).

The following Proposition immediately follows from the definition (see for ex-
ample [BCSS98, pg. 244] or [Bel06, Cor. 1.1.12]).

Proposition 2.8. Let X,Y be two Riemannian manifolds, and let F : X −→ Y
be a C1 map. Let x1, x2 ∈ X be two points. Assume that there exist isometries
ϕX : X −→ X and ϕY : Y −→ Y such that ϕX(x1) = x2, and

F ◦ ϕX = ϕY ◦ F.
Then, the following equality holds:

NJx1
F = NJx2

F.

Moreover, if there exists an inverse G : Y −→ X, then

NJxF =
1

NJF (x)G
.

3. Condition number and convergence radius

In Section 2.1 we have introduced the quantity γworst to control the convergence
of Newton iterations. The quantity γworst is defined in Pm

(d) (or in the associated

projective space). Later, in Section 2.4, we have centered our attention in the
condition number µm

norm. This condition number µm
norm has been defined in the

projective space IP(Hm
(d)) (or, equivalently, in the affine space Hm

(d)), and also in

the space Pm
(d). Now we will relate these concepts. We start with the following

elementary lemma.

Lemma 3.1. Let h ∈ Hm
(d), ζ ∈ C

n+1 be such that h(ζ) = 0, rank(Tζh) = m.

Then, for every vector v ∈ C
m, the following equality holds:

(dζh)
†v = ((dζh) |ζ⊥)†v.

Proof. For an onto linear operator between Hilbert spaces L : E1 −→ E2, we have
that

L† = i ◦ (L(KerL)⊥)−1,

where i is the inclusion in E1. Now, observe that h ∈ Hm
(d) is a system of homoge-

neous polynomials and ζ ∈ VIP (h) is a solution of h. Hence dζh(ζ) = 0. Thus,

(dζh)
† = i ◦ ((dζh) |(Ker(dζh))⊥)−1,



UNDERDETERMINED NEWTON METHOD 13

and
((dζh) |ζ⊥)† = i∗ ◦ ((dζh) |(Ker(dζh))⊥)−1,

where i is the inclusion in C
n+1 and i∗ is the inclusion in ζ⊥. The lemma follows.

�

We define now a projective version of the quantity γ. Let (h, ζ) ∈W be a point
in the incidence variety, such that dζh is surjective. Then, we define

γ0(h, ζ) := ‖ζ‖2 sup
k≥2

∥

∥

∥

∥

∥

((dζh) |ζ⊥)†
d
(k)
ζ h

k!

∥

∥

∥

∥

∥

1/(k−1)

2

.

In the case that dζh is not surjective, we define γ0(h, ζ) := +∞. This definition is
independent of the representatives of h and ζ used in the formula. Observe that
γ0 is only defined for homogeneous systems, while γ (as defined in Section 2.1) is
also defined for nonhomogeneous systems. Finally, another quantity will help us
to prove our main theorems. The following is a nonhomogeneous version of the
condition number µm

norm. For f ∈ Pm
(d) and ζ ∈ V (f), we define

µm
affine(f, ζ) := ‖f‖∆‖(dζf)†Diag(d

1/2
i ‖(1, ζ)‖di−1)‖2.

Note that µm
affine(f, ζ) is not equal to µm

norm(f, ζ) in general. The quantity µm
affine

will only be used in intermediate results. All these concepts will be related in
subsequent lemmas.

The following result is easily proved following the arguments in [BCSS98, Sect.
14.2] or [SS93a]. It relates γ0 with µm

norm and γ with µm
affine.

Lemma 3.2. Let (h, ζ) ∈W be a point in the incidence variety. Then, the following
inequality holds:

γ0(h, ζ) ≤
d3/2

2
µm

norm(h, ζ).

Moreover, let f ∈ Pm
(d) and let ζ ∈ V (f) ⊆ C

n be a solution of f . Then,

‖(1, ζ)‖2γ(f, ζ) ≤
d3/2

2
µm

affine(f, ζ).

Proof. It suffices to prove the result in the case that ζ is a regular solution of h (resp.
f). We start with the projective case. We consider fixed some representatives of h,
ζ. Let h = [h1, . . . , hm] be given by the list of its polynomials. From the definition,
for every k > 1,

(

‖Diag(‖ζ‖k−did
−1/2
i )d

(k)
ζ h‖2

‖h‖∆k!

)1/k−1

≤





m
∑

i=1

(

‖d(k)
ζ hi‖2

‖ζ‖di−k
2 ‖h‖∆d

1/2
i k!

)2




1/2(k−1)

=





m
∑

i=1

(

‖d(k)
ζ hi‖2

‖ζ‖di−k
2 ‖hi‖∆i

d
1/2
i k!

‖hi‖∆i

‖h‖∆

)2




1/2(k−1)

.

From [BCSS98, Lem. 11, pg. 269], this last is at most






m
∑

i=1





(

d
3/2
i

2

)k−1
‖hi‖∆i

‖h‖∆





2






1/2(k−1)

≤ d3/2

2‖h‖∆

(

m
∑

i=1

‖hi‖2
∆i

)1/2

=
d3/2

2
.
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We have proved that for every k > 1 and every h ∈ Hm
(d), ζ ∈ C

n+1, the following

holds.

(3.1)

(

‖Diag(‖ζ‖k−did
−1/2
i )d

(k)
ζ h‖2

‖h‖∆k!

)1/k−1

≤ d3/2

2
.

Now, assume that we choose representatives such that ‖h‖∆ = ‖ζ‖2 = 1. Then, we
can write

γ0(h, ζ) = sup
k≥2

∥

∥

∥

∥

∥

(Tζh)
†Diag(d

1/2
i )Diag(d

−1/2
i )

d
(k)
ζ h

k!

∥

∥

∥

∥

∥

1/(k−1)

2

≤

sup
k≥2

‖(Tζh)
†Diag(d

1/2
i )‖1/(k−1)

2

(

‖Diag(d−1/2
i )d

(k)
ζ h‖2

k!

)1/(k−1)

.

From inequality (3.1), we obtain that

γ0(f, ζ) ≤
d3/2

2
sup
k≥2

‖(Tζh)
†Diag(d

1/2
i )‖1/(k−1)

2 =

d3/2

2
‖(Tζh)

†Diag(d
1/2
i )‖2 =

d3/2

2
µm

norm(h, ζ),

as wanted.
Finally, for the affine case, observe that

‖(1, ζ)‖2γ(f, ζ) = ‖(1, ζ)‖2 sup
k≥2

∥

∥

∥

∥

∥

(dζf)†
d
(k)
ζ f

k!

∥

∥

∥

∥

∥

1
k−1

2

=

sup
k≥2

∥

∥

∥

∥

∥

(dζf)†Diag(d
1/2
i ‖(1, ζ)‖di−1)Diag(d

−1/2
i ‖(1, ζ)‖k−di)

d
(k)
ζ f

k!

∥

∥

∥

∥

∥

1
k−1

2

≤

sup
k≥2

µm
affine(f, ζ)

1
k−1 sup

k≥2

∥

∥

∥

∥

∥

Diag(‖(1, ζ)‖k−did
−1/2
i )

d
(k)
ζ f

‖f‖∆k!

∥

∥

∥

∥

∥

1
k−1

2

.

Recall that for f ∈ Pm
(d), we have defined Θ(f) ∈ Hm

(d) as the homogenized

counterpart of f (see Section 2.1). Then, observe that

f = Θ(f) |{1}×Cn .

Hence, we have that

sup
k≥2

∥

∥

∥

∥

∥

Diag(‖(1, ζ)‖k−did
−1/2
i )

d
(k)
ζ f

‖f‖∆k!

∥

∥

∥

∥

∥

1
k−1

2

≤

sup
k≥2

∥

∥

∥

∥

∥

Diag(‖(1, ζ)‖k−did
−1/2
i )

d
(k)
ζ Θ(f)

‖Θ(f)‖∆k!

∥

∥

∥

∥

∥

1
k−1

2

.

As Θ(f) ∈ Hm
(d) is a homogeneous polynomial and (1, ζ) ∈ C

n+1 is a solution of

Θ(f), from inequality (3.1) we conclude that this last quantity is at most

d3/2

2
,
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and the lemma follows. �

The result below relates the condition number µm
norm with its affine counterpart

µm
affine.

Lemma 3.3. Let f ∈ Pm
(d) be a system, ζ ∈ C

n be a solution of f . Then, the

following inequality holds.

µm
affine(f, ζ) ≤ ‖(1, ζ)‖2µ

m
norm(Θ(f), (1, ζ)) = ‖(1, ζ)‖2µ

m
norm(f, ζ).

Proof. Again, it suffices to check the case that ζ is a regular solution of f , which
implies that (1, ζ) is a regular solution of Θ(f). Observe that f = Θ(f) |{1}×Cn .
Moreover, we have defined

‖f‖∆ := ‖Θ(f)‖∆.

Hence, we can write

µm
affine(f, ζ) = ‖Θ(f)‖∆‖(d(1,ζ)Θ(f) |e⊥

0
)†Diag(d

1/2
i ‖(1, ζ)‖di−1)‖2.

Now, observe that

‖(d(1,ζ)Θ(f) |e⊥
0
)†Diag(d

1/2
i ‖(1, ζ)‖di−1)‖2 =

‖(d(1,ζ)Θ(f) |e⊥
0
)†(d(1,ζ)Θ(f) |(1,ζ)⊥)(d(1,ζ)Θ(f) |(1,ζ)⊥)†Diag(d

1/2
i ‖(1, ζ)‖di−1)‖2 ≤

‖(d(1,ζ)Θ(f) |e⊥
0
)†(d(1,ζ)Θ(f) |(1,ζ)⊥)‖2‖(d(1,ζ)Θ(f) |(1,ζ)⊥)†Diag(d

1/2
i ‖(1, ζ)‖di−1)‖2.

From the definition of µm
norm we conclude:

µm
affine(f, ζ) ≤ µm

norm(Θ(f), (1, ζ)) ‖(d(1,ζ)Θ(f) |e⊥
0
)†(d(1,ζ)Θ(f) |(1,ζ)⊥)‖2.

Hence, it suffices to prove that for a homogeneous system h ∈ Hm
(d) and a solution

(1, ζ) of h,

‖(d(1,ζ)h |e⊥
0
)†(d(1,ζ)h |(1,ζ)⊥)‖2 ≤ ‖(1, ζ)‖2.

We check this last inequality. In fact, let w ∈ (1, ζ)⊥ be a vector. If w ∈ e⊥0 ,
then

‖(d(1,ζ)h |e⊥
0
)†(d(1,ζ)h |(1,ζ)⊥)(v)‖2 =

‖(d(1,ζ)h |e⊥
0
)†(d(1,ζ)h |e⊥

0
)(v)‖2 ≤ ‖v‖2,

from elementary properties of the Moore-Penrose inverse (see for example [Ded06]).
Assume now that v ∈ (1, ζ)⊥ ∩ ((1, ζ)⊥ ∩ e⊥0 )⊥, which is a complex subspace of
dimension 1. Then, v = t(−‖ζ‖2

2, ζ) ∈ C
n+1 for some t ∈ C. Moreover, let v be

given by
v = w − t‖ζ‖2

2(1, ζ), w ∈ e⊥0 .

Then,
1

‖v‖2
‖(d(1,ζ)h |e⊥

0
)†(d(1,ζ)h |(1,ζ)⊥)(v)‖2 =

1

‖v‖2
‖(d(1,ζ)h |e⊥

0
)†(d(1,ζ)h)(v)‖2 =

1

‖v‖2
‖(d(1,ζ)h |e⊥

0
)†(d(1,ζ)h)(w)‖2 ≤ ‖w‖2

‖v‖2
.

But
‖w‖2

‖v‖2
=

‖t(−‖ζ‖2
2, ζ) + t‖ζ‖2

2(1, ζ)‖2

‖t(−‖ζ‖2
2, ζ)‖2

= ‖(1, ζ)‖2.

This finishes the proof of the lemma. �
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Finally, we can relate the quantity γ of Section 2.1 with the condition number
µm

norm of Section 2.4 as follows.

Proposition 3.4. Let f ∈ Pm
(d) be a system of polynomial equations, and let ζ be

a solution of f . Then, the following inequality holds:

γ(f, ζ) ≤ d3/2

2
µm

norm(Θ(f), (1, ζ)).

Moreover, the following chain of inequalities also holds:

γworst(f) ≤ d3/2

2
µm

worst(f) ≤ d3/2

2
µm

worst(Θ(f)).

Proof. The second assertion immediately follows from the first one. From Lemma
3.2,

γ(f, ζ) ≤ 1

‖(1, ζ)‖2

d3/2

2
µm

affine(f, ζ).

From Lemma 3.3, this last quantity is at most

1

‖(1, ζ)‖2

d3/2

2
‖(1, ζ)‖2µ

m
norm(Θ(f), (1, ζ)),

as wanted. �

From Proposition 3.4, we can reduce the problem of the average value of γworst(f)
in Pm

(d) to the study of the quantity

EIP(Hm
(d)

)[µ
m
worst].

Hence, we are interested in the integration of functions in the projective space
of homogeneous polynomials IP(Hm

(d)). In the following sections we will face this

problem, from a more general point of view.

4. Integration on the space of polynomial systems

In this section we follow the demonstration scheme of [SS93b] to relate integration
on the space of polynomial systems to integration on the space of linear systems.
Namely, we obtain the following technical result.

Theorem 4.1. Let (d) = (d1, . . . , dm) be such that di > 1 for some i, 1 ≤ i ≤ m.
Let Φ : [0,+∞] −→ [0,+∞] be an integrable mapping. Let JIP (Φ) be the integral
defined as follows:

JIP (Φ) :=

∫

h∈IP(Hm
(d)

)

∫

ζ∈VIP (h)

Φ(µm
norm(h, ζ)) dVIP (f) dIP(Hm

(d)).

Moreover, for every real number t ∈ [0, 1], consider the following integral:

IM(Φ, t) :=

∫

M∈IP(Mm×(n+1)(C))

Φ

(

κm
D(M)

t

)

dIP(Mm×(n+1)(C)).

Then, JIP (Φ) equals the following quantity:

2πν[IPN−m−nm(C)]ν[IPn−m(C)]D
∫ 1

0

(1 − t2)N−m−nmt2nm+2m−1IM(Φ, t) dt.

A first consequence is the following result.
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Corollary 4.2. For every polynomial system h ∈ IP(Hm
(d)), except for a measure

zero set, the following equality holds:

ν[VIP (h)] = ν[IPn−m(C)]D.

Proof. Apply Theorem 4.1 to the constant function Φ ≡ 1. We obtain that
∫

h∈IP(Hm
(d)

)

ν[VIP (h)] dIP(Hm
(d)) =

2πν[IPN−m−nm(C)]ν[IPn−m(C)]Dν[IPnm+m−1(C)]×
∫ 1

0

(1 − t2)N−m−nmt2nm+2m−1 dt.

The value of this last integral is well known:

1

2

Γ(nm+m)Γ(N −m− nm+ 1)

Γ(N + 1)
,

where Γ is the Gamma function. Now, using the fact that

ν[IPk(C)] =
πk

Γ(k + 1)
,

for every nonnegative integer k ∈ N, we obtain that

1

ν[IP(Hm
(d))]

∫

h∈IP(Hm
(d)

)

ν[VIP (h)] dIP(Hm
(d)) = ν[IPn−m(C)]D.

On the other hand, for almost all polynomial system h ∈ IP(Hm
(d)), we have that

h is a regular value of the projection p1 defined in Subsection 2.2. Hence, VIP (h)
is a smooth algebraic variety of complex dimension n −m, and from [Mum76, th.
5.22] (cf. also [BP06a]) we conclude that

(4.1) ν[VIP (h)] = ν[IPn−m(C)] deg(VIP (h)),

where deg(V ) is the degree of V in the sense of [Hei83]. We conclude that

1

ν[IP(Hm
(d))]

∫

h∈IP(Hm
(d)

)

deg(VIP (h)) dIP(Hm
(d)) = D.

On the other hand, the Bézout inequality (cf. [Hei83]) yields

deg(VIP (h)) ≤ D, ∀h ∈ IP(Hm
(d)).

Thus, we conclude that deg(VIP (h)) = D for almost all h ∈ IP(Hm
(d)), and the

corollary follows from equation (4.1). �

The proof of Theorem 4.1 is divided into the following two subsections.

4.1. Some technical calculations. We recover the notations of Subsection 2.2.
Thus, let W be the incidence variety, and let Ve0

⊆ IP(Hm
(d)) be the set of systems

which have e0 as a solution. We start with the following theorem, which uses the
unitary invariance of the Riemannian structure of IP(Hm

(d)) defined in Subsection
2.1.
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Theorem 4.3. Let φ : W −→ R be an integrable mapping, such that for every
(h, ζ) ∈W and every unitary matrix U ∈ Un+1, the following equality holds:

φ(h, ζ) = φ(h ◦ U,U−1ζ).

Let J be given by

J :=

∫

(h,ζ)∈W

φ(h, ζ)NJ(h,ζ)p1 dW.

Then, the two following equalities hold:

J =

∫

h∈IP(Hm
(d)

)

∫

ζ∈VIP (h)

φ(h, ζ) dVIP (h) dIP(Hm
(d)),

J = ν[IPn(C)]

∫

h∈Ve0

φ(h, e0)
NJ(h,e0)p1

NJ(h,e0)p2
dVe0

.

Proof. The first of the two equalities comes from Theorem 2.7 applied to p1. As
for the second one, also from Theorem 2.7, we have that

J =

∫

x∈IPn(C)

∫

h∈Vx

φ(h, x)
NJ(h,x)p1

NJ(h,x)p2
dVx dIPn(C).

Now, let x ∈ IPn(C) be any point and let U ∈ Un+1 be a unitary matrix such
that Ue0 = x. Then, the mapping sending h to h ◦ U is an isometry from Vx to
Ve0

. Thus,
∫

h∈Vx

φ(h, x)
NJ(h,x)p1

NJ(h,x)p2
dVx =

∫

h∈Ve0

φ(h ◦ U−1, Ue0)
NJ(h◦U−1,Ue0)p1

NJ(h◦U−1,Ue0)p2
dVe0

.

Now, φ(h ◦ U−1, Ue0) = φ(h, e0). Also, observe that the mappings ψ1
U and ψ2

U

defined as follows

ψ1
U : W −→ W,

(g, z) 7→ (g ◦ U−1, Uz)
ψ2

U : IPn(C) −→ IPn(C)
z 7→ Uz

are isometries. Moreover, they are in the conditions of Proposition 2.8. Thus,

NJ(h◦U−1,Ue0)p2 = NJ(h,e0)p2.

A similar argument with the mapping ψ3
U : IP(Hm

(d)) −→ IP(Hm
(d)) given as

ψ3(h) := h ◦ U−1 yields

NJ(h◦U−1,Ue0)p1 = NJ(h,e0)p1,

and the theorem follows. �

Lemma 4.4. Let h ∈ Ve0
be such that rank(Te0

h) = m. Then, the following
equalities hold:

NJ(h,e0)p1 =
1

det(Idm + ((Te0
h)†)∗(Te0

h)†)
,

NJ(h,e0)p2 =
1

det(Idm + (Te0
h)(Te0

h)∗)
,

where for any matrix A, A† holds for the Moore-Penrose inverse of A, and A∗ holds
for the Hermitian transpose of A.
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Proof. Recall that from Proposition 2.2,

T(h,e0)W ≡ {(h′, x) ∈ h⊥ × e⊥0 : h′(e0) + (Te0
h)x = 0},

where some representation of norm equal to 1 of h has been chosen. Let K1 :=
Ker(d(h,e0)p1) be the kernel of the tangent maaping at (h, e0). Then, K1 = {(0, x) :
x ∈ Ker(Te0

h)}, and

NJ(h,e0)p1 = NJ(0,0)((d(h,e0)p1) |K⊥
1

) =
1

NJ(0,0)(((d(h,e0)p1) |K⊥
1

)−1)
=

=
1

NJ(0,0)((d(h,e0)p1)†)
.

Let β be an orthonormal basis of h⊥ such that the first m elements of the basis
are the systems

β1 := (Xd1
0 , 0, . . . , 0),
...

βm := (0, . . . , 0,Xdm

0 ).

Observe that the first m coordinates of any system h′ := [h′1, . . . , h
′
m] ∈ Hm

(d) in this

basis are exactly h′(e0) = (h′1(e0), . . . , h
′
m(e0)). Moreover, the following properties

hold.

• (d(h,e0)p1)
†(βi) = (βi, xi), xi := −(Te0

h)†(ei), for 1 ≤ i ≤ m.

• (d(h,e0)p1)
†(v) = (v, 0), for v ∈ β, v 6∈ {β1, . . . , βm}.

Thus,

NJ(0,0)((d(h,e0)p1)
†) = det(Idm + ((Te0

h)†)∗(Te0
h)†).

As for p2, observe that as above,

NJ(h,e0)p2 =
1

NJ(0,0)((d(h,e0)p2)†)
.

Now, the following equality holds

Ker(d(h,e0)p2)
⊥ = {(h′, 0) : h′(e0) = 0}⊥ = 〈β1, . . . , βm〉 × C

n,

where 〈β1, . . . , βm〉 stands for the linear subspace spanned by these vectors. Thus,

(d(h,e0)p2)
†(ei) = (h′i, ei), 1 ≤ i ≤ n,

where the first m coordinates of h′i in the basis β are given by

h′i := −(Te0
h)ei,

and the rest of the coordinates equal 0. Hence,

NJ(0,0)((d(h,e0)p2)
†) = det(Idn + (Te0

h)∗(Te0
h)) = det(Idm + (Te0

h)(Te0
h)∗),

and the lemma follows.
�

Lemma 4.5. Let h ∈ Ve0
be such that rank(Te0

h) = m. With the notations above,
the following equality holds.

NJ(h,e0)p1

NJ(h,e0)p2
= det((Te0

h)(Te0
h)∗).
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Proof. From Lemma 4.4,

NJ(h,e0)p1

NJ(h,e0)p2
=

det(Idm +BB∗)

det(Idm + (B†)∗B†)
,

where B := Te0
h ∈ Mm×n(C) is this matrix. Then,

1

det(BB∗)

NJ(h,e0)p1

NJ(h,e0)p2
=

det(Idm +BB∗)

det(BB∗ +BB∗(B†)∗B†)
.

Now, BB∗(B†)∗B† = B(B†B)∗B† and B†B is self-adjoint. Moreover, BB† =
Idm. Thus,

det(BB∗ +BB∗(B†)∗B†) = det(BB∗ +BB†BB†) = det(BB∗ + Idm),

and the lemma follows.
�

Corollary 4.6. Let Φ : [0,+∞] −→ [0,+∞] be an integrable mapping. Then, the
following equality holds:

∫

h∈IP(Hm
(d)

)

∫

ζ∈VIP (h)

Φ(µm
norm(h, ζ)) dVIP (h) dIP(Hm

(d)) =

ν[IPn(C)]

∫

h∈Ve0

Φ(µm
norm(h, e0)) det((Te0

h)(Te0
h)∗) dVe0

.

Proof. Observe that for every element (h, ζ) ∈ W and for every unitary matrix
U ∈ Un+1(C), we have that

µm
norm(h, ζ) = µm

norm(h ◦ U,U−1ζ).

Thus, the following equality also holds:

Φ(µm
norm(h, ζ)) = Φ(µm

norm(h ◦ U,U−1ζ)).

The corollary follows from Theorem 4.3, applied to φ := Φ ◦ µm
norm, and from

Lemma 4.5. �

Corollary 4.7. Let Φ : [0,+∞] −→ [0,+∞] be an integrable mapping. Then, the
following equality holds:

ν[IPn−m(C)]

∫

M∈IP(Mm×(n+1)(C))

Φ(κm
D(M)) dIP(Mm×(n+1)(C)) =

ν[IPn(C)]

∫

M∈IP(Mm×n(C))

Φ(κm
D(M)) det(MM∗) IP(Mm×n(C)),

where the representation of M in the last integral is chosen such that ‖M‖F = 1.

Proof. Apply Corollary 4.6 to the case that (d) := (1, . . . , 1) ∈ N
n. Then, the space

IP(Hm
(d)) turns to be IP(Mm×(n+1)(C)), and the condition number µm

norm(M, ζ),

where ζ 6= 0 is in the kernel of M , turns to be exactly κm
D(M). Hence, µm

norm(M, ζ)
does not depend on the solution ζ, and Corollary 4.6 yields

∫

M∈IP(Mm×(n+1)(C))

Φ(κm(M)) ν[Ker(M)] dIP(Mm×(n+1)(C)) =

ν[IPn(C)]

∫

M∈Ve0

Φ(κm
D(M) det((Te0

M)(Te0
M)∗)) dVe0

.



UNDERDETERMINED NEWTON METHOD 21

Now, in the linear case we have that

Ve0
= {M ∈ IP(Mm×(n+1)(C)) : Me0 = 0},

is a linear subspace of IP(Mm×(n+1)(C)) which may be obviously identified with
IP(Mm×n(C)). In fact, a matrix belongs to Ve0

if its first column is equal to zero.
Moreover, under this identification, the value of κm

D – as defined in IP(Mm×(n+1)(C))
and IP(Mm×n(C)) – does not vary. Finally, observe that for M ∈ IP(Mm×n(C)),
we have that Te0

(0 M) equals M (for some fixed representation such that ‖M‖F =
1). The corollary follows from the fact that ν[Ker(M)] = ν[IPn−m(C)], for almost
all M ∈ IP(Mm×(n+1)(C)).

�

4.2. Proof of Theorem 4.1. We introduce some extra notation, that will only be
used inside of this proof. Let V̂e0

be the set defined as follows

V̂e0
:= {h ∈ Hm

(d) : ‖h‖∆ = 1, h(e0) = 0},

and let L̂e0
⊆ Hm

(d) be the complex linear subspace of polynomial systems defined

as follows.

L̂e0
:= {h ∈ Hm

(d) : hi = Xdi−1
0

n
∑

j=1

aijXj , 1 ≤ i ≤ m}.

Let V̂e0
, L̂e0

be endowed with the Riemannian structure inherited from that of

Hm
(d). For any point h ∈ Hm

(d), h(e0) = 0, we denote by T̂e0
h the restriction of the

differential matrix to e⊥0 . Namely,

T̂e0
h := (de0

h) |e⊥
0
, in the natural basis.

We consider the following mapping,

ψ̂e0
: L̂e0

−→ Mm×n(C)

h 7→ Diag(d
−1/2
i )T̂e0

h,

where Diag(d
−1/2
i ) := Diag(d

−1/2
1 , . . . , d

−1/2
m ) ∈ Mm(C) is this matrix. Some

elementary calculations show that ψ̂e0
is an isometry (cf. also [BCSS98, Lemma

17, page 235]).

Let π̂ : V̂e0
−→ L̂e0

be the orthogonal projection. Observe that V̂e0
is a real

Riemannian manifold of real dimension 2N − 2m+ 1, L̂e0
is a complex subspace of

Hm
(d) of complex dimension nm and for every h ∈ L̂e0

, ‖h‖∆ < 1, the set π̂−1(h) is

a sphere of real dimension 2N − 2m + 1 − 2nm and radius (1 − ‖h‖2
∆)1/2. Thus,

the (2N − 2m+ 1 − 2nm)-dimensional volume of π̂−1(h) is

(4.2) ν[π̂−1(h)] = (1 − ‖h‖2
∆)N−m−nm+1/22πν[IPN−m−nm(C)].

Moreover, some elementary calculations lead to the following expression.

NJhπ̂ = (1 − ‖π̂(h)‖2
∆)1/2.

We have denoted by JIP (Φ) the integral in the space of polynomial systems.
Namely,

JIP (Φ) :=

∫

h∈IP(Hm
(d)

)

∫

ζ∈VIP (h)

Φ(µm
norm(h, ζ)) dVIP (h) dIP(Hm

(d)).
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From Corollary 4.6, we have that

JIP (Φ) = ν[IPn(C)]

∫

h∈Ve0

Φ(µm
norm(h, e0)) det((Te0

h)(Te0
h)∗) dVe0

.

Now, as observed in [BCSS98, th.1 page 256],

ν[IPn(C)]

∫

h∈Ve0

Φ(µm
norm(h, e0)) det((Te0

h)(Te0
h)∗) dVe0

=

ν[IPn(C)]

2π

∫

h∈V̂e0

Φ(µm
norm(h, e0)) det((T̂e0

h)(T̂e0
h)∗) dV̂e0

.

From Theorem 2.7, this last equals

ν[IPn(C)]

2π

∫

h∈L̂e0

∫

h′∈π̂−1(h)

Φ(µm
norm(g, e0))

det((T̂e0
h′)(T̂e0

h′)∗)

(1 − ‖h‖2
∆)1/2

dπ̂−1(h) dL̂e0
.

Now, observe that if h′ ∈ π̂−1(h), then

µm
norm(h′, e0) =

κm
D(ψ̂e0

(h))

‖ψ̂e0
(h)‖F

, T̂e0
h′ = T̂e0

h.

We conclude that

JIP (Φ) =
ν[IPn(C)]

2π

∫

h∈L̂e0
‖h‖∆≤1

ν[π̂−1(h)]Φ

(

κm
D(ψ̂e0

(h))

‖ψ̂e0
(h)‖F

)

det((T̂e0
h)(T̂e0

h)∗)

(1 − ‖h‖2
∆)1/2

dL̂e0
.

From identity (4.2),

JIP (Φ) = ν[IPn(C)]ν[IPN−m−nm(C)] ×
∫

h∈L̂e0
‖h‖∆≤1

(1 − ‖h‖2
∆)N−m−nmΦ

(

κm
D(ψ̂e0

(h))

‖ψ̂e0
(h)‖F

)

det((T̂e0
h)(T̂e0

h)∗) dL̂e0
.

Then, Theorem 2.7 applied to ψ̂e0
yields

∫

h∈L̂e0
‖h‖∆≤1

(1 − ‖h‖2
∆)N−m−nmΦ

(

κm
D(ψ̂e0

(h))

‖ψ̂e0
(h)‖F

)

det((T̂e0
h)(T̂e0

h)∗) dL̂e0
=

det(Diag(di))

∫

M∈Mm×n(C)
‖M‖F ≤1

(1 − ‖M‖2
F )N−m−nmΦ

(

κm
D(M)

‖M‖F

)

det(MM∗) dMm×n(C) =

D
∫

M∈Mm×n(C)
‖M‖F ≤1

(1 − ‖M‖2
F )N−m−nmΦ

(

κm
D(M)

‖M‖F

)

det(MM∗) dMm×n(C).

In polar coordinates, this last equals

D
∫ 1

0

(1 − t2)N−m−nm

∫

‖M‖F =t

Φ

(

κm
D(M)

t

)

det(MM∗) dSt(Mm×n(C)) dt =

D
∫ 1

0

(1−t2)N−m−nmt2mn+2m−1

∫

‖M‖F =1

Φ

(

κm
D(M)

t

)

det(MM∗) dS1(Mm×n(C)) dt.
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Now, observe that for every choice of t ∈ [0, 1],
∫

‖M‖F =1

Φ

(

κm
D(M)

t

)

det(MM∗) dS1(Mm×n(C)) =

= 2π

∫

M∈IP(Mm×n(C))

Φ

(

κm
D(M)

t

)

det(MM∗) dIP(Mm×n(C)),

where the representation M in the last formula is chosen such that ‖M‖F = 1. Let

Φt : [0,+∞] −→ [0,+∞]
s 7→ Φ

(

s
t

)

be this positive mapping. Then,

2π

∫

M∈IP(Mm×n(C))

Φ

(

κm
D(M)

t

)

det(MM∗) dIP(Mm×n(C)) =

2π

∫

M∈IP(Mm×n(C))

Φt(κ
m
D(M)) det(MM∗) dIP(Mm×n(C)),

and from Corollary 4.7, this last equals

2π
ν[IPn−m(C)]

ν[IPn(C)]

∫

M∈IP(Mm×(n+1)(C))

Φt(κ
m
D(M)) dIP(Mm×(n+1)(C)).

We have thus proved that JIP (Φ) equals

2πν[IPn−m(C)]ν[IPN−m−nm(C)]D ×
∫ 1

0

(1−t2)N−m−nmt2mn+2m−1

∫

M∈IP(Mm×(n+1)(C))

Φt(κ
m
D(M)) dIP(Mm×(n+1)(C)),

and the theorem follows.

5. The average value of µm
av

The aim of this Section is to prove Theorem 1.4. We reproduce the technical
version of this statement here.

Theorem 5.1. Let m ≥ 2, and assume there exists some i, 1 ≤ i ≤ m, such that
di > 1. Then, the expected value of the condition number µm

av satisfies:

EPm
(d)

[µm
av] ≤ 3m

√
nN.

Moreover, if m = 1, we have that

EP1
(d)

[µ1
av] =

Γ(N + 1)Γ(n+ 1/2)

Γ(N + 1/2)Γ(n+ 1)
.

Proof. From identity (2.4), the expected value EPm
(d)

[µm
av] (for the Gaussian distri-

bution) satisfies:

EPm
(d)

[µm
av] = EIP(Pm

(d)
)[µ

m
av] = EIP(Hm

(d)
)[µ

m
av].

Now, this last quantity equals

1

ν[IP(Hm
(d))]

∫

h∈IP(Hm
(d)

)

1

ν[VIP (h)]

∫

ζ∈VIP (h)

µm
norm(h, ζ) dVIP (h) dIP(Hm

(d)).
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Hence, we define the following quantity

K(d) :=

∫

h∈IP(Hm
(d)

)

∫

ζ∈VIP (h)

µm
norm(h, ζ) dVIP (h) dIP(Hm

(d)).

From Corollary 4.2,

EIP(Hm
(d)

)[µ
m
av] =

K(d)

ν[IP(Hm
(d))]ν[IPn−m(C)]D .

Let us calculate a bound for K(d). From Theorem 4.1,

K(d) = 2πν[IPN−m−nm(C)]ν[IPn−m(C)]D
∫ 1

0

(1 − t2)N−m−nmt2nm+2m−2 dt ×
∫

M∈IP(Mm×(n+1)(C))

κm
D(M) dIP(Mm×(n+1)(C)).

Now, observe that
∫ 1

0

(1 − t2)N−m−nmt2nm+2m−2 dt =
1

2

Γ(N −m− nm+ 1)Γ(nm+m− 1/2)

Γ(N + 1/2)
.

Hence, we have that

K(d) = ν[IPn−m(C)]DπN Γ(nm+m− 1/2)

Γ(N + 1/2)Γ(nm+m)
EIP(Mm×(n+1)(C))[κ

m
D ],

where E holds for expectation. Thus,

EIP(Hm
(d)

)[µ
m
av] =

Γ(N + 1)Γ(nm+m− 1/2)

Γ(N + 1/2)Γ(nm+m)
EIP(Mm×(n+1)(C))[κ

m
D ].

The case m = 1 of the theorem follows from Corollary 2.5. As for the case that
m ≥ 2, also from Corollary 2.5 we have that

EIP(Hm
(d)

)[µ
m
av] ≤

Γ(N + 1)Γ(nm+m− 1/2)

Γ(N + 1/2)Γ(nm+m)

21/4em3/2(n+ 1)

n−m+ 3/2

From Gautschi’s Inequalities (see [EGP00, Th. 3] for very sharp bounds), we
know that for x > 0,

√

x+ 1/4 ≤ Γ(x+ 1)

Γ(x+ 1/2)
≤
√

x+ 1/π.

Thus,

EIP(Hm
(d)

)[µ
m
av] ≤ 21/4e

√

N + 1/π
m3/2(n+ 1)

(n−m+ 3/2)
√

nm+m− 3/4
.

Now, some elementary calculations show that this last quantity is smaller than

3m
√
nN,

for every choice of n ≥ m ≥ 2. In fact, observe that, as di > 1 for some i,≤ i ≤ m,
we have that

N > nm.

Then, we have that

1

3m
√
nN

21/4e
√

N + 1/π
m3/2(n+ 1)

(n−m+ 3/2)
√

nm+m− 3/4
≤
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21+1/4e

9

√

1 +
1

πN

√

1 +
1

n

√

mn+m

nm+m− 3/4
≤

21+1/4e

9

√

1 +
1

4π

√

1 +
1

2

√

6

6 − 3/4
< 1.

Thus, we obtain that

EIP(Hm
(d)

)[µ
m
av] ≤ 3m

√
nN,

as wanted. �

6. The average value of µm
worst

In this section we prove Theorem 1.3. We start with the following estimation.

Corollary 6.1. Let (d) = (d1, . . . , dm) be such that di > 1 for some i, 1 ≤ i ≤ m.
Let ε > 0 be a positive real number. Then, the following inequality holds:

1

ν[IP(Hm
(d))]

∫

h∈IP(Hm
(d)

)

ν[ζ ∈ VIP (h) : µm
norm(h, ζ) > ε−1] dIP(Hm

(d)) ≤

ν[IPn−m(C)]D
(

em
√
nN ε

)2(n−m+2)

.

Proof. We apply Theorem 4.1 to the function Φε : [0,+∞] −→ [0,+∞] defined as

Φε(s) :=

{

1 if s > ε−1

0 in other case

We conclude that

Im
ε :=

∫

h∈IP(Hm
(d)

)

ν[ζ ∈ VIP (h) : µm
norm(h, ζ) > ε−1] dIP(Hm

(d)) =

2πν[IPN−m−nm(C)]ν[IPn−m(C)]D ×
∫ 1

0

(1 − t2)N−m−nmt2nm+2m−1ν[M ∈ IP(Mm×(n+1)(C)) : κm
D(M) > ε−1t] dt.

Let m = 1. Then, from Lemma 2.3,

1

ν[IPn(C)]
ν[M ∈ IP(M1×(n+1)(C)) : κ1

D(M) > ε−1t] =

{

1 if t < ε

0 in other case

Thus,

I1
ε = 2πν[IPN−1−n(C)]ν[IPn−1(C)]ν[IPn(C)]D

∫ ε

0

(1 − t2)N−1−nt2n+1 dt ≤

I1
ε = 2πν[IPN−1−n(C)]ν[IPn−1(C)]ν[IPn(C)]D

∫ ε

0

t2n+1 dt =

2πν[IPN−1−n(C)]ν[IPn−1(C)]ν[IPn(C)]D ε2n+2

2n+ 2
.

Hence,
1

ν[IP(H1
(d))]

I1
ε ≤ ν[IPn−1(C)]D

(

N

n+ 1

)

ε2n+2.
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In particular, the bound of the corollary follows for m = 1. Now, let m ≥ 2. Also
from Lemma 2.3, we know that

1

ν[IPnm+m−1(C)]
ν[M ∈ IP(Mm×(n+1)(C)) : κm

D(M) > ε−1t] ≤

2

(

em3/2(n+ 1)

n−m+ 2

ε

t

)2(n−m+2)

.

Hence, Im
ε is at most

4πν[IPN−m−nm(C)]ν[IPn−m(C)]Dν[IPnm+m−1(C)]

(

em3/2(n+ 1)

n−m+ 2
ε

)2(n−m+2)

×

∫ 1

0

(1 − t2)N−m−nmt2nm+4m−2n−5 dt.

This last integral equals

1

2

Γ(N −m− nm+ 1)Γ(nm+ 2m− n− 2)

Γ(N +m− n− 1)
.

We conclude that

1

ν[IP(Hm
(d))]

Im
ε ≤ 2ν[IPn−m(C)]D

(

em3/2(n+ 1)

n−m+ 2
ε

)2(n−m+2)

ϑ(N,n,m),

where

ϑ(N,n,m) :=
Γ(N + 1)Γ(nm+ 2m− n− 2)

Γ(N +m− n− 1)Γ(nm+m)
.

Finally, observe that

ϑ(N,n,m) ≤
(

N

(n+ 2)(m− 1)

)n−m+2

.

The estimation of the corollary follows from the fact that

2

(

em3/2(n+ 1)

(n−m+ 2)
√

(n+ 2)(m− 1)

)2(n−m+2)

≤ (em
√
n)2(n−m+2),

for every choice of n ≥ m ≥ 2. This last assertion can be verified by some elemen-
tary calculations. �

Proposition 6.2. Let h ∈ IP(Hm
(d)), ζ ∈ VIP (h) be such that µm

norm(h, ζ) <∞. Let

ζ ′ ∈ VIP (h) be another solution of h, such that

u := dIP (ζ ′, ζ)µm
norm(h, ζ)

√
2d3/2

2
< 1 −

√
2/2.

Then, the following inequality holds:

µm
norm(h, ζ ′) ≤ (1 − u)2

2u2 − 4u+ 1
µm

norm(h, ζ).
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Proof. We denote by h, ζ, ζ
′
some fixed representations of h, ζ, ζ ′ such that ‖h‖∆ =

‖ζ‖2 = ‖ζ ′‖2 = 1. Moreover, we can choose representatives such that

〈ζ, ζ ′〉2 ∈ R
0,+.

Then, observe that Tζh(Tζh)
† is the identity map. Hence,

µm
norm(h, ζ ′) = ‖(Tζ

′h)†Diag(d
1/2
i )‖2 ≤

‖(Tζ
′h)†Tζh‖2‖(Tζh)

†Diag(d
1/2
i )‖2 = ‖(Tζ

′h)†Tζh‖2µ
m
norm(h, ζ).

Hence, it suffices to prove that in the conditions of the lemma, the following in-
equality holds:

‖(Tζ
′h)†Tζh‖2 ≤ (1 − u)2

2u2 − 4u+ 1
.

Now, from Lemma 3.1,

‖(Tζ
′h)†Tζh‖2 = ‖((dζ

′h) |(ζ′
)⊥)†dζh |(ζ)⊥ ‖2 = ‖(dζ

′h)†dζh‖2.

Let γ(h, ζ) be the affine invariant defined in Section 2.1, considering h as a
polynomial in X0, . . . ,Xn. Namely,

γ(h, ζ) := sup
k≥2

∥

∥

∥

∥

∥

∥

(dζh)
†
d
(k)

ζ
h

k!

∥

∥

∥

∥

∥

∥

1/(k−1)

2

,

if dζh is surjective. From Lemma 3.1, we have that

γ(h, ζ) = γ0(h, ζ),

where γ0 is as defined in Section 3. Hence, from Lemma 3.2 we have:

γ(h, ζ) ≤ µm
norm(h, ζ)

d3/2

2
.

On the other hand, the following inequality holds:

‖ζ − ζ
′‖2 =

√
2(1 − 〈ζ, ζ ′〉2)1/2 =

√
2(1 −

√

1 − dIP (ζ, ζ ′)2)1/2 ≤
√

2dIP (ζ, ζ ′).

Hence, we conclude that

‖ζ − ζ
′‖2γ(h, ζ) ≤

√
2dIP (ζ, ζ ′)µm

norm(h, ζ)
d3/2

2
= u.

Finally, from [SS96, pg. 20] or [Ded06, Chap. 5] we know that this implies

‖(dζ
′h)†dζh‖ ≤ (1 − u)2

2u2 − 4u+ 1
,

and the lemma follows.
�

Corollary 6.3. Let ε > 0, s > 1 be two positive real numbers. Let h ∈ IP(Hm
(d)),

ζ ′ ∈ VIP (h) be such that 1/ε < µm
norm(h, ζ ′) < +∞. Let ζ ∈ VIP (h) be another

solution of h, such that

dIP (ζ ′, ζ) ≤
√

2ε

d3/2
s

(

1 −
√

s

2s− 1

)

.
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Then, the following inequality holds:

µm
norm(h, ζ) >

1

sε
.

Proof. Assume that

µm
norm(h, ζ) ≤ 1

sε
.

Then, we have that

u := dIP (ζ ′, ζ)µm
norm(h, ζ)

√
2d3/2

2
≤

√
2ε

d3/2
s

(

1 −
√

s

2s− 1

)

1

sε

√
2d3/2

2
=

(

1 −
√

s

2s− 1

)

< 1 −
√

2

2

Hence, from Proposition 6.2,

µm
norm(h, ζ ′) ≤ (1 − u)2

2u2 − 4u+ 1
µm

norm(h, ζ) ≤
(

1 −
(

1 −
√

s
2s−1

))2

2
(

1 −
√

s
2s−1

)2

− 4
(

1 −
√

s
2s−1

)

+ 1
µm

norm(h, ζ) ≤

s
2s−1

1
2s−1

1

sε
=

1

ε
,

which is false by hypothesis. �

The following result is an upper bound for the probability distribution of the
condition number µm

worst in IP(Hm
(d)).

Theorem 6.4. Let 0 < ε < d3/2 be any positive number, and assume that m < n.
Then, for a randomly chosen system h ∈ IP(Hm

(d)), the probability that µm
worst(h) >

1/ε is at most

2D
[

10m
√
nNd3/2

]2(n−m)

[6m
√
nN ε]4

Proof. Let Tε ⊆ IP(Hm
(d)) be the set defined a follows:

Tε := {h ∈ IP(Hm
(d)) : ∃ζ ∈ VIP (h), µm

norm(h, ζ) > 1/ε}.
The probability of the theorem equals

ν[Tε]

ν[IP(Hm
(d))]

=
1

ν[IP(Hm
(d))]

∫

h∈Tε

1dIP(Hm
(d)).

For every positive real number s > 1, we define the following quantity:

MINε,s := min
h∈Tε

ν[ζ ∈ VIP (h) : µm
norm(h, ζ) > 1/(sε)].

We will prove that MINε,s is a positive number for s > 1. Hence, we have that

ν[Tε]

ν[IP(Hm
(d))]

≤ 1

ν[IP(Hm
(d))]MINε,s

×
∫

h∈Tε

ν[ζ ∈ VIP (h) : µm
norm(h, ζ) > 1/(sε)]dIP(Hm

(d)) ≤
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1

ν[IP(Hm
(d))]MINε,s

∫

h∈IP(Hm
(d)

)

ν[ζ ∈ VIP (h) : µm
norm(h, ζ) > 1/(sε)]dIP(Hm

(d)).

From Corollary 6.1, we have that

1

ν[IP(Hm
(d))]

∫

h∈IP(Hm
(d)

)

ν[ζ ∈ VIP (h) : µm
norm(h, ζ) > 1/(sε)]dIP(Hm

(d)) ≤

ν[IPn−m(C)]D[sem
√
nN ε]2(n−m+2).

We conclude the following inequality:

ν[Tε]

ν[IP(Hm
(d))]

≤ ν[IPn−m(C)]D[sem
√
nN ε]2(n−m+2)

MINε,s
,

for every positive real number s > 1. Now, we can give a lower bound for MINε,s.
In fact, let h ∈ Tε be a system, and let ζ ′ ∈ VIP (h) be such that µm

norm(h, ζ ′) > 1/ε.
We may assume that every point of VIP (h) is a regular solution of h, as the set of
systems not satisfying this hypothesis has measure zero in IP(Hm

(d)) and does not

affect for integration purposes. Then, from Corollary 6.3, we have:

ν[ζ ∈ VIP (h) : µm
norm(h, ζ) >

1

sε
] ≥ ν

[

VIP (h) ∩BIP

(

ζ ′,

√
2ε

d3/2
s

(

1 −
√

s

2s− 1

)

)]

,

where BIP (x, λ) is the ball in IPn(C) centered in x of radius λ, for the projective
distance dIP . Moreover, VIP (h) is a smooth algebraic variety of complex dimension
n −m. From [BP06a, Th. 24] we can give a lower bound estimation for this last
quantity:

ν

[

VIP (h) ∩BIP

(

ζ ′,

√
2ε

d3/2
s

(

1 −
√

s

2s− 1

)

)]

≥

1

2
ν[IPn−m(C)]

(√
2ε

d3/2
s

(

1 −
√

s

2s− 1

)

)2(n−m)

,

whenever the following inequality holds:

(6.1)

√
2ε

d3/2
s

(

1 −
√

s

2s− 1

)

≤
√

2

2
.

We conclude that, in this case,

MINε,s ≥ 1

2
ν[IPn−m(C)]

(√
2ε

d3/2
s

(

1 −
√

s

2s− 1

)

)2(n−m)

.

Finally, this implies the following inequality

ν[Tε]

ν[IP(Hm
(d))]

≤ 2D
[

e√
2
m
√
nNd3/2

]2(n−m)

[em
√
nN ε]4

s4
(

1 −
√

s
2s−1

)2(n−m)
,

which holds for every positive number s > 1. Let s := 6
e > 1 be this positive

number. Then, we have that

ν[Tε]

ν[IP(Hm
(d))]

≤ 2D
[

e√
2
m
√
nNd3/2

]2(n−m)

[6m
√
nN ε]4

1
(

1 −
√

6/e
12/e−1

)2(n−m)
.
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and the theorem follows from the fact that
e

√
2
(

1 −
√

6/e
12/e−1

) ≤ 10.

We have imposed the condition (6.1). Some elementary calculations show that
it suffices that

ε ≤ d3/2.

�

6.1. Proof of Theorem 1.3.

Proof. From inequality (2.3), the following chain of inequalities holds:

EPm
(d)

[µm
worst] = EIP(Pm

(d)
)[µ

m
worst] ≤ EIP(Hm

(d)
)[µ

m
worst].

Hence, we concentrate our efforts in the estimation of this last quantity.
First, assume that n > m. Let t > 1/d3/2 be any positive real number. Then,

from Theorem 6.4 we have that

Prob[h ∈ IP(Hm
(d)) : µm

worst(h) > t] = Prob[h ∈ IP(Hm
(d)) : µm

worst(h) >
1

1/t
] ≤

2D
[

10m
√
nNd3/2

]2(n−m)

[6m
√
nN ]4

1

t4
.

From Lemma 2.4, we obtain:

EIP(Hm
(d)

)[µ
m
worst] ≤

4

3
(2D)1/4

[

10m
√
nNd3/2

]
n−m

2

6m
√
nN.

Now, observe that
4

3
21/46 ≤ 10,

and the theorem follows in the case that m < n.
Finally, assume that m = n. This case has been studied by Shub and Smale in

[SS93b]. However, we can follow our scheme of proof (which in the zero-dimensional
case is essentially the same as theirs). Observe that in this case,

Prob[h ∈ IP(Hm
(d)) : µm

worst(h) > t] = Prob[h ∈ IP(Hm
(d)) : µm

worst(h) >
1

1/t
] ≤

1

ν[IP(Hm
(d))]

∫

h∈IP(Hm
(d)

)

♯[ζ ∈ VIP (h) : µm
norm(h, ζ) >

1

1/t
] dIP(Hm

(d)).

From Corollary 6.1, this last is at most

ν[IP0(C)]D
(

en
√
nN

1

t

)4

= D
(

en
√
nN

1

t

)4

.

From Lemma 2.4, this implies

EIP(Hm
(d)

)[µ
m
worst] ≤

4

3
D1/4en

√
nN.

In particular, the theorem holds, as 4
3e ≤ 10.

�
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6.2. Proof of Theorem 1.2. Observe that claim (1) in this result is a direct
consequence of claim (2). Moreover, claim (3) in is also a consequence of claim (2).
In fact, Jensen Inequality yields

E

[

1

X

]

≥ 1

E[X]
,

for any random variable X. Now, from Corollary 1.1, the convergence radius for
f ∈ P(d) is at least u0γworst(f)−1. Hence, it suffices to prove claim (2). But claim
(2) is immediate from Proposition 3.4, and Theorem 1.3. �

References

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation,
Springer-Verlag, New York, 1998. MR 1479636 (99a:68070)

[Bel06] C. Beltrán, Sobre el Problema 17 de Smale: Teoŕıa de la Intersección y Geometŕıa
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Math. Inequal. Appl. 3 (2000), no. 2, 239–252. MR 1749300 (2001g:33001)
[Fed69] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wis-

senschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
(41 #1976)

[GLSY05] M. Giusti, G. Lecerf, B. Salvy, and J.P. Yakoubsohn, On location and approximation

of clusters of zeros: case of embedding dimension one, Found. Comp. Mathematics to

appear (2005).
[GVL96] Gene H. Golub and Charles F. Van Loan, Matrix computations, third ed., Johns Hop-

kins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore,

MD, 1996. MR 1417720 (97g:65006)
[Hei83] J. Heintz, Definability and fast quantifier elimination in algebraically closed fields,

Theoret. Comput. Sci. 24 (1983), no. 3, 239–277. MR 716823 (85a:68062)
[Hig02] N.J. Higham, Accuracy and stability of numerical algorithms, second ed., Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. MR 1927606
(2003g:65064)

[Kah00] W. Kahan, Huge generalized inverses of rank-deficient matrices., Unpublished Manu-

script, 2000.
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