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Abstract. These pages contain a short overview on the state of the
art of efficient Numerical Analysis methods that solve systems of multi–
variate polynomial equations. We focus on the work of Steve Smale
who initiated this research framework, and on the collaboration between
Steve Smale and Mike Shub, which set the foundations of this approach
to polynomial system–solving.

1. Introduction

In 1981, a manuscript by Steve Smale initiated a research framework: the
design and analysis of efficient polynomial equation solvers by numerical
methods, a cornerstone of the Foundations of Numerical Analysis. In the
mid–eighties and early nineties, a close collaboration between Steve Smale
and Mike Shub established the foundations of this new framework. Key
to their work was the development of a new Model of Computation (with
algebraic alphabets, allowing infinite alphabet cases) that emerged from a
collaboration with Lenore Blum. It was known as the BSS machine model.

The influence of Smale’s paper [Sma81] has been especially remarkable in
the modern treatment of polynomial root–finding and polynomial system–
solving. Smale pointed to Numerical Analysis tractable algorithms, i.e. al-
gorithms whose “running time” (in terms of their BSS machine model) is
polynomial in the input length. The 17th problem in his list of problems
[Sma00] is

Problem. Can a zero of n complex polynomial equations in n unknowns
be found approximately, on the average, in polynomial time with a uniform
algorithm?

This problem belongs to a long tradition of mathematical questions re-
lating efficiency to solving, and whose origins may go back to the “Rhind
Mathematical Papyrus” or the “Sulba Sutras” on tractable methods to com-
pute square roots. In more recent times, the problem goes back to I. Newton
and his “De analysi per aequationes numero terminorum infinitas,” and to
the comment in E. Galois’ last manuscript where this young mathematician
claimed “En un mot, les calculs sont impracticables.” Galois was probably
the first mathematician to recognize the modern concept of Computational
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Complexity as the amount of effort required to solve mathematical prob-
lems: after describing a method to compute symbolic descriptions of the
solutions of univariate polynomial equations, he noticed that it was feasible,
but required too much effort in practice.

The problem of solving multivariate polynomial equations underlies most
of the developments of 19th and early 20th centuries on foundations of Alge-
braic Geometry, also called Elimination Theory. See for instance, the works
by L. Kronecker [Kr1882], D. Hilbert [Hi1893] or the version of G. Hermann
of Hilbert’s Nullstellensatz [Her26]. Traces of this combination of efficiency
and multi–variate polynomial equation–solving can also be found in clas-
sical texts like [Mac16] or [Kö1903]. However, during the first half of the
past century, the problem seemed to fall into oblivion. Since then, it has
regained its previous importance by being one of the central questions of
Symbolic Computation. A description of this symbolic approach is beyond
the scope of these pages; the reader may follow wide bibliographic collec-
tions in [BeWe93], [BePa06], [GiHe01], [Kri04], [DuLe08], [Mor05], [Par95],
[MiSt05], for instance.

We want to make a few comments on the term efficiency (sometimes
referred to as tractability). Computational Complexity studies the design
and analysis of algorithms that are tractable in practice. Even after the
appearance of the first modern computers and powerful processors, certain
problems have resisted a computational treatment. Problems are classified
as unsolvable when there is no algorithm that solves them. This is the case
of Gödel’s Undecidablity Theorem, Turing’s Halting Problem or Robinson–
Matiyasevich’s negative answer to Hilbert’s Tenth Problem. Some other
problems are intractable in practice: they are algorithmically solvable, but
they require too much computational resources (either in terms of running
time or memory/space). Tractable or efficient problems are those algorith-
mically solvable problems whose resource requirements grow polynomially
with the size of the input. In these cases, we say that the associated algo-
rithm runs on polynomial time, or is a polynomial time algorithm. Not only
are polynomial time algorithms considered efficient, but also their proba-
bilistic versions, including average polynomial time algorithms or bounded
error probability polynomial time algorithms. In order to analyze these
Theoretical Computation problems in the context of Numerical Analysis –
rather than in a Turing Machine discrete framework – Steve Smale and his
collaborators suggested a “continuous” model of computation in [BSS89].
See [BCSS98] or the more recent [Blm04] for a more detailed reference list.
Note that the model is a uniform version of the classical models of Algebraic
Complexity Theory.

This manuscript focuses only on the influence played by Steve Smale’s
kick-off on the Foundations of Numerical Analysis through the study of
efficient polynomial equation–solving.

2. Approximate Zero Theory and the Univariate Case

In [Sma81], Steve motivated the problem as an interdisciplinary subject.
In his own words:
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“A second goal [for studying the tractability of Newton’s method] is to
give the background of the various areas of mathematics, pure and applied,
which motivate and give the environment for our problem. These areas are
parts of (a) Algebra, the “Fundamental theorem of algebra”, (b) Numerical
Analysis, (c) Economic equilibrium theory and (d) Complexity Theory of
computer science”

Many of the future developments around the topic of equation–solving
are already pointed out in [Sma81]: approximate zero theory, probabilistic
behavior, liaisons with Integral Geometry... Steve recalls Gauss’ first“proof”
of the Fundamental Theorem of Algebra as one of his inspirations.

One of the main outcomes of that work was an algorithm (tractable with
high probability) for solving univariate complex polynomials f using a “mod-
ified Newton operator” Th(z) := z − hf(z)/f ′(z). One innovation of his
approach is, for example, that tractability (i.e. running time) is analyzed
in probabilistic terms, thus yielding an “almost always very fast” algorithm
that solves “almost every” instance problem.

Theorem 1 ([Sma81]). There is a universal polynomial S(d, 1/µ) and a
function h = h(d, µ) such that for degree d and 0 < µ < 1, the following is
true with probability 1−µ. Let x0 = 0. Then xn = Th(xn−1) is well–defined
for all n > 0 and xs is an approximate zero for f where s = S(d, 1/µ).

More specifically, Smale proved that if s ≥ [100(d + 2)]9/µ7, then with
probability 1−µ, xs is well–defined for suitable h, and xs is an approximate
zero of f .

The scheme suggested by Smale introduces a tradeoff between probability
of error and computational complexity. This idea is also useful in studying
the complexity of other problems like linear equation solving or linear pro-
gramming (cf. [Sma85]).

Theorem 1 bounds the probability that certain algorithm fails; now one
can try to analyze the “probability of failure” for any Numerical Analysis
algorithm. A second, and sometimes more difficult, question is the average
behavior of such algorithms. This question underlies many of the Problems
in the list stated at the end of [Sma81].

In the forthcoming pages, we will recall many results which are conse-
quences of a fruitful collaboration between Steve Smale and Mike Shub
from the mid–eighties to the early nineties. In the univariate case, this
collaboration is explicit in [ShSm85, ShSm86] which explored the average
complexity of algorithms based on the so–called Global Newton Method
([Sma76, HiSm79]). The main outcome of these two manuscripts can be
stated as follows.

Let Pd(1) be the class of all univariate, monic, complex polynomials whose
coefficients have absolute value bounded by 1. Namely,

Pd(1) = {f =
d

∑

i=0

aiX
i : ad = 1, |ai| < 1 for 0 ≤ i ≤ d − 1}.

Let Nf : z 7→ z − f(z)
f ′(z) be Newton’s operator. An approximate zero of f is

some point z0 ∈ C
n such that the successive iterations of Nf , zk = Nk

f (z0)
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satisfy

|ζ − zk| ≤
1

22k−1
|ζ − z0|,

for some actual zero ζ ∈ C of f . Namely, z0 is in the strong basin of
attraction of Newton’s operator and converges quickly to an exact zero of
f .

Let E be the Euler–Newton iteration scheme (cf. [ShSm85]) and define
the following algorithm. For each f ∈ Pd(1), we consider

εf :=
1

(2d)4d
| Df |≥ 0,

where Df is the discriminant of f . Let

n := ⌊K(d+ | log εf |)⌋ + 1,

where K is some universal constant and ⌊·⌋ means integer part.
Algorithm (N-E) Let f ∈ Pd(1), satisfy εf > 0.

(1) Set m = 1.
(2) Choose z0 ∈ C, |z0| = 3 at random and set zn := En(z0). If |f(zn)| <

εf terminate and print: “ zn is an approximate zero”.
(3) Otherwise let m = m + 1 and go to (2).

Here m is just counting the number of iterations of the algorithm.

Theorem 2 ([ShSm86]). Algorithm (N-E) terminates (and hence produces
an approximate zero) with probability 1 and the average number of iterations
is less than K1d log d where K1 is a universal constant.

In the first half of the eighties, there were other studies on the tractability
of the problem of numerically–solving univariate polynomial equations. It
was a period of great activity on the subject. We may cite, among others,
[Sch81, Sch86], [Ren85, Ren87],[Kim85, Kim88], [Pan87] which also stated
tractability results of numerical methods that deal with univariate polyno-
mial equation–solving from different perspectives and different models of
complexity. We also mention a more recent paper [HSS01], where a dif-
ferent approach is proposed, and it is proved that there is a universal set
of initial complex numbers which converge to every solution of normalized
polynomials.

At this stage, Problem 17 may be re–stated as follows.

Problem (Problem 17). Generalize Theorem 2 to the multi–variate case.

3. Approximate Zero Theory and Multi–variate Case

The multi–variate case is the central problem in Computational Algebraic
Geometry. For this problem, the collaboration between Mike Shub and Steve
Smale produced important results, which have inspired many other authors
afterwards. Some features of their work are:

• The problem is treated from a Numerical Analysis point of view.
• Probability and Approximation are an essential part of the context,

so involving Integral Geometry is a must.
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• New point estimates are needed. This need leads to the study of
the α, β, γ quantities and theorems, and the normalized condition
number µnorm. The first three quantities continue Kantorovich’s
modern treatment of Newton’s method.

• A geometric–iterative algorithmic scheme (path–following methods,
homotopy) is used to compute approximate zeros.

• A strong incidence with the continuous version of Cook’s conjecture
appears (Hilbert’s Nullstellensatz as NPC–complete problem).

An extensive account of these ideas may be found in [BCSS98]. Here we
just briefly discuss some of them.

In the affine multi–variate case, we deal with multi–variate polynomial
mappings:

f = (f1, . . . , fn) : C
n −→ C

n,

where fi is a polynomial of degree di. Let (d) be the list of degrees and P(d)

the vector space of such f ’s. We denote d = max{di : 1 ≤ i ≤ n}. The
solution set is the algebraic variety V (f) defined as the fiber at 0 ∈ C

n of
f . Namely, V (f) := f−1({0}). Newton’s multi–variate operator Nf is

Nf (z) = z − Df(z)−1f(z),

where Df(z) is the jacobian matrix.
An (affine) approximate zero of f ∈ P(d) with associated zero ζ ∈ V (f) is

a point z ∈ C
n satisfying:

||ζ − Nk
f (z)|| ≤ 1

22k−1 ||ζ − z||.

We recall here the main definitions and results of Smale’s α–Theory in
the affine case. We encourage the reader to see the original papers [Sma86,
Sma87].

Let f : C
n −→ C

n be analytic, and z ∈ C
n. Let D(k)f(z) be the k–th

derivative of f at z, seen as a multi–linear map. Then, define the following
quantities:

γ(f, z) = sup
k>1

∥

∥

∥

∥

∥

Df(z)−1 D(k)f(z)

k!

∥

∥

∥

∥

∥

1
k−1

2

,

β(f, z) := ‖Df(z)−1f(z)‖2,

and

α(f, z) = β(f, z)γ(f, z).

Here, ‖·‖2 holds for operator norm (or Euclidean norm, if applied to vectors).
The following result shows a bound for the radius of a ball where safe and
fast convergence of Newton’s operator is guaranteed.

Theorem 3 (γ−Theorem, [Sma86]). Let ζ ∈ C
n be such that f(ζ) = 0 and

let z ∈ C
n satisfy

‖z − ζ‖ <
3 −

√
7

2 γ(f, ζ)
.

Then, z is an approximate zero of f with associated zero ζ.
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Note that this statement yields a sufficient condition but not a checkable
test: deciding whether z is close enough to some zero ζ or not requires
an “a priori” knowledge of the zero ζ. But ζ is the quantity we want to
approximate, thus yielding a paradox. Smale avoided this paradox with the
following statement.

Theorem 4 (α−Theorem, [Sma86]). There is a universal constant α0 (ap-
proximately equal to 0.130707) such that the following holds for every z ∈ C

n:
If α(f, z) < α0, then z is an approximate zero of f .

Indeed, Smale proved this result with greater generality, valid for analytic
maps between Banach spaces. We do not treat this general framework here.

Theorems 3 and 4 and their consequences are among the most impor-
tant results known about Newton’s Method. They have been generalized
to the underdetermined and overdetermined cases (i.e. f : C

n → C
m with

m 6= n) [ShSm96, Ded01], analysis on manifolds [Shb93, DPM03, DeSh00],
the singular case [DeSh01, GLSY05, GLSY07], diophantine aspects [Mal00,
CHMP01, CMSP02, CSP03], error analysis [Mal94] and even to other oper-
ators and methods. An exhaustive bibliography would be too extensive for
the narrow margins of this manuscript.

Kantorovich’s Theory, which also gives convergence criteria for Newton’s
operator, is a natural precedent to Theorem 3. The criteria for Kantorovich’s
result involve bounds for the second derivative in a ball containing the zero.
The power of Smale’s α–theory is that it allows us to decide convergence of
the sequence z0, z1, z2, . . . knowing only the function and its derivatives at
z0.

M. Shub extended the definition of Newton’s method to be valid in a
homogeneous setting in [Shb93]. Let

f = (f1, . . . , fn) : C
n+1 −→ C

n

where fi is a homogeneous polynomial of degree di. Let (d) be the list of
degrees and H(d) the vector space of such f ’s. Note that P(d) and H(d) can
be identified as every element of H(d) can be seen as the homogenization of

some f ∈ P(d). Note also that if ζ ∈ C
n+1 is a zero of f ∈ H(d) then every

point in the complex line {λζ : λ ∈ C} is also a zero of f . Thus, it is natural
to consider zeros of f as projective points ζ ∈ P(Cn+1). We will denote by
VP(f) ⊆ P(Cn+1) the (non–empty) projective algebraic variety defined by f .
Shub’s projective version of Newton’s operator is then defined as

NP

f (z) = z − (Tzf)−1f(z), z ∈ P(Cn+1),

where Tzf = Df(z) |z⊥ is the restriction of the differential matrix to the
orthogonal complement of z. A projective approximate zero of f is then
a point z ∈ P(Cn+1) such that the successive iterations of NP

f with initial
point z are well–defined and converge quadratically to an actual projective
zero ζ ∈ VP(f).

In [ShSm93a], Shub and Smale generalized theorems 3 and 4 to this ho-
mogeneous/projective context. Moreover, they transformed point estimates
and local convergence results like Theorem 3 into estimates for the com-
plexity of path–following methods. This was achieved by introducing a new
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quantity, the (normalized) condition number for polynomial system–solving:
Given f ∈ H(d) and z ∈ P(Cn+1), let

(3.1) µnorm(f, z) = ‖f‖∆‖(Tzf)−1Diag(‖z‖di−1d
1/2
i )‖2,

and µnorm(f, z) = +∞ if Tzf is not onto. Here, ‖f‖∆ is the Bombieri–
Weyl–Kostlan unitarily invariant norm in H(d). See [ShSm93a] for a detailed
description.

As in Eckardt and Young’s Theorem [EcYo36] for the linear case, this
condition number is related to the inverse of the distance of some “singular
locus”. More exactly,

Theorem 5 (Condition Number Theorem,[ShSm93a]).

µnorm(f, ζ) =
1

sin (dR(f,Σζ))
,

where dR is the Riemannian distance in P(H(d)) and

Σζ = {f ∈ P(H(d)) : f(ζ) = 0, and Tζf is not an onto mapping}.
Shub and Smale used the condition number µnorm(f, z) to analyze the

behavior of a homotopy method to solve systems f ∈ H(d). They first
proved a statement similar to Theorem 3:

Theorem 6 (µ–Theorem, [ShSm93a]). Let ζ ∈ VP(f) and let z ∈ P(Cn+1)
satisfy

tan(dR(z − ζ)) <
3 −

√
7

2 d3/2 µnorm(f, ζ)
.

where dR is the Riemannian distance in P(Cn+1). Then, z is an approximate
zero of f with associated zero ζ.

Consider the solution variety V = {(f, ζ) ∈ H(d) × P(Cn+1) : f(ζ) = 0},
and the two canonical projections π1 : V → H(d) and π2 : V −→ P(Cn+1).

Let Σ′ ⊆ V be the set of all critical points of π1 and Σ := π1(Σ
′) the

set of critical values. Note that Σ is the classical discriminant variety of
Elimination Theory, and

Σ′ = {(f, ζ) ∈ V : µ(f, ζ) = ∞}.
In particular, both Σ and Σ′ are complex codimension 1 algebraic subvari-
eties of their respective ambient spaces.

Let f ∈ H(d) be a target system to be solved, and let g ∈ H(d) be another

system that has a known solution ζ0 ∈ Pn(C). Consider some piecewise C1

curve C := {ft : t ∈ [0, 1]} joining g and f , so that f0 = g, f1 = f .
Under some regularity hypothesis (C∩Σ = ∅ suffices), π1 defines a D−fold

covering map π1 : π−1
1 (C) −→ C and the curve C can be lifted to a differen-

tiable curve {(ft, ζt), t ∈ [0, 1]} ⊆ H(d)×Pn(C), with initial vertex (g, ζ0) and
such that ft(ζt) = 0, ∀t ∈ [0, 1]. This curve will be denoted by Γ(f, g, ζ0).

The homotopy method constructs a polygonal path that closely follows
Γ(f, g, ζ0). This path has initial vertex (g, ζ0) and final vertex (f, z), for
some z ∈ Pn(C), which is the output of the algorithm. The polygonal path
is constructed by homotopy steps, each of which is an application of the
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projective Newton operator, with an appropriate step size selection. Hence,
the method constructs a finite partition 0 = t0, t1, . . . , tk = 1 and defines

z0 = ζ0, zi+1 = NP

fti+1
(zi). Output : zk.

The choice of the steps ti has to be done in a sensible fashion, guaranteeing
that every zi is in the strong basin of attraction of the next system fti+1 . This
is possible thanks to Theorem 6 above. One can see that high values of µnorm

will lead to a small radius for the strong basin of attraction ball, forcing us
to choose smaller steps ti and thus slowing down the process. Reciprocally,
small values of µnorm will increase the size of those balls, allowing us to
choose greater ti and thus speeding the algorithm up.

The main result of [ShSm93a] is a qualitative version of this last idea: it
provides a bound for the number of steps k needed, in order to guarantee
that zk is an approximate zero of f .

Theorem 7 ([ShSm93a]). The number NS(f, g, ζ0) = k of (projective) New-
ton steps necessary to guarantee that zk is an approximate zero of f satisfies

NS(f, g, ζ0) ≤ Cd3/2 max
t∈[0,1]

µnorm(ft, ζt)
2,

C > 0 a universal constant.

That is, the number of Newton steps necessary to follow homotopy paths
depends mainly on the condition number along the path! This result has
been recently improved in [Shu09].

Theorem 8 ([Shu09]). The number NS(f, g, ζ0) = k of (projective) Newton
steps necessary to guarantee that zk is an approximate zero of f satisfies

NS(f, g, ζ0) ≤ Cd3/2

∫ 1

0
µnorm(ft, ζt)‖(ḟt, ζ̇t)‖2 dt,

C > 0 a universal constant. Thus, NS(f, g, ζ0) is bounded by Cd3/2 times
the length of the path (ft, ζt) ⊆ V in the condition metric, obtained by mul-
tiplying the canonical Riemannian (product) metric by the condition number
µ at each point. The following bound also holds,

NS(f, g, ζ0) ≤ C2d
3/2

∫ 1

0
µ(ft, ζt)

2 dt.

Shub and Smale were interested in the average behavior of the method, so
they described the probability distribution of µnorm in [ShSm93b]. Let S be
the sphere of radius one in H(d) with respect to the Bombieri-Weyl Hermitian
norm. Let S be endowed with the inherited Riemmanian structure. As the
volume of S is finite we may introduce a probability distribution that we
simply denote by P.

Theorem 9 (cf [ShSm93b]). With these notations

P
[

f ∈ S : ∃ζ ∈ VP(f), µnorm(f, ζ) > ε−1
]

≤ 1

4
n3(n + 1)N(N − 1)Dε4,

where N + 1 is the complex dimension of H(d).
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There are several conceivable ways to choose the path to be lifted ft. One
may prove the existence of curves (ft, ζt) in V \Σ′ that have small length in
the condition metric, and then look for some strategy to explicitly describe
the projection on the first coordinate ft. This is the idea behind Theorem
17 below. However, until now there is not a practical way to describe these
“a priori” short curves. For example, explicitly describing the short curves
of Theorem 17 requires the knowledge of the target solution ζ of f . We refer
the reader to Subsection 5.1 for details.

An easier method is to construct a path ft in the space of systems S

that avoids the discriminant variety Σ. The existence of lifting curves then
suffices to apply the homotopy method described above, and thus approxi-
mate the lifting Γ. Sometimes, one can be sure “a priori” that the path ft

will not intersect Σ. Otherwise, one can just use a dimensional argument:
Σ has complex codimension 1, thus real codimension 2, and hence most
“reasonable” curves ft will not intersect it.

This philosophy has been used in all path–following methods (also called
homotopy continuation methods or simply homotopy methods). See [GaZa79],
[Li83, Li87], [Mor87], [SoWa05], [Ver96] for a complementary list of historical
references.

Shub and Smale centered their attention on the most simple choice of
paths ft: linear paths, i.e. great circles in S. More specifically, let f, g ∈ S,
f 6= ±g. Then, one can choose the ft to be the (short) portion of the
great circle between g and f . The use of Integral Geometry allowed them to
transform probability results like Theorem 9 into much more sophisticated
results, like the following one.

Theorem 10 ([ShSm94]). There exists a initial pair (g, ζ0) ∈ V such that,
for random f ∈ H(d) such that ‖f‖ = 1, the average number of Newton steps
necessary to follow the linear homotopy and thus produce an approximate
zero of f , is at most CN3 logD, C a universal constant. Namely, for some
(g, ζ0) ∈ V ,

Ef∈S(NS(f, g, ζ0)) ≤ CN3 logD.

(if some di = 1 or n ≤ 4 this quantity must be replaced by CN4 logD.)

Theorem 10 suggests for the first time that an algorithm may exist to
produce approximate zeroes of random systems in average polynomial time.
However, [ShSm94] does not show how the pair (g, ζ0) of Theorem 10 can
be constructed, so a practical algorithm cannot be deduced immediately. At
this stage, Problem 17 could have the following form:

Problem (Problem 17). Find an explicit (i.e. algorithmically constructive)
description of the initial pair (g0, ζ0) that satisfies the thesis of Theorem 10
above.

In [ShSm94], the following pair was conjectured to satisfy the conditions
of Theorem 10 above, and this is still an open question.

g(z) =















d
1/2
1 zd1−1

0 z1,
...

d
1/2
n zdn−1

0 zn

, ζ0 = (1, 0, . . . , 0).
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The pair conjectured in [ShSm94] does not contain these d
1/2
i factors. There

is, however, some consensus that these extra factors should be added. With
these extra factors, this pair satisfies that µnorm(g, e0) = n1/2 is minimal.

4. Attacks based on Average Las Vegas algorithms

After a frenetic activity in the first half of the nineties, there were years
with no progress on the search for an initial pair. This is the context where
Smale proposed Problem 17. Ten years later, the authors of this manuscript
tried an alternative approach to Problem 17: since finding the initial point
(g0, ζ0) of Theorem 10 seems to be hard, let’s think probabilistically!

Probabilistic algorithms have been extensively used in Computational
Mathematics since the first famous examples in Primality testing (cf. [SoSt77],
[Mi76], [Rab80], for instance). Even after the appearance of deterministic
primality testings ([AKS04]), probabilistic procedures are still used in prac-
tice. The reasons are multiple. On one hand, running probabilistic proce-
dures on a computer does not differ perceptively from running deterministic
ones. On the other hand, probabilistic procedures are often faster. The
main outcomes of [Sma81] and [ShSm85] (i.e. Theorems 1 and 2 above)
describe probabilistic algorithms for the univariate case.

In the case of multi–variate polynomial equation–solving, having a uni-
form, probabilistic, efficient algorithmic procedure that runs in average poly-
nomial time yields a positive answer to an old question and may, perhaps,
open the way to efficient deterministic algorithms that solve the problem.

In the series of papers [BePa08, BePa09a, BePa09b, BePa09c], the authors
of this manuscript demonstrated a uniform, probabilistic, efficient algorithm
that solves systems of multi–variate polynomial equations both for affine or
projective solutions,with a running time polynomial on the size of the input,
on the average. That algorithm is a solution to Smale’s 17th problem, with a
probabilistic component. This section contains a short account of the main
results of these works.

4.1. Generalizing Theorem 1 of [Sma81]. We first describe a multi–
variate version of the main statement in [Sma81] (Theorem 1 above). Global
Newton method is replaced by homotopy continuation. As we have said, the
main problem was to find a good set of initial pairs.

A Homotopic Deformation scheme (HD for short) with initial pair (g, z0) ∈
H(d) × Pn(C) and resource function ϕ : H(d) × R

+ −→ R
+ is an algorithmic

scheme based on the following strategy:

Input: f ∈ H(d), ε ∈ R
+.

Perform ϕ(f, ε) homotopy steps following the segment (1−t)g+tf , t ∈ [0, 1],
starting at (g, z0), where z0 is an approximate zero of g associated with some
zero ζ0 ∈ V (g).

Output:

either failure, or
an approximate zero z1 ∈ Pn(C) of f .

Unless otherwise specified, the homotopy steps are chosen to be equally
spaced in the segment (1 − t)g + tf .
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We say that an initial pair (g, z0) ∈ H(d) × Pn(C) is ε-efficient for HD if
the HD scheme with initial pair (g, z0) and resource function

ϕ(f, ε) = 18 · 104n5N2d3ε−2, ∀f ∈ H(d), ε > 0,

satisfies the following property:
“ For a randomly chosen system f ∈ H(d), the probability that HD outputs
an approximate zero of f is at least 1 − ε”.

A set G ⊆ H(d) × Pn(C) is called a correct test set (also questor set)
for efficient initial pairs if for every ε > 0 the probability that a randomly
chosen pair (g, ζ) ∈ G is ε-efficient is greater than

1 − ε.

Main Theorem (Weak Version) of [ShSm94] could be read in this context
as: “There is a questor set G for efficient initial pairs with a single element
(i.e. ♯(G) = 1)”. Hence, the problem becomes to find such a singleton which
is a questor set.

We didn’t succeed in solving this “singleton” case, but in [BePa08] we
exhibited a subset G(d) ⊆ V which satisfies the following two properties.

• It is a questor set for efficient initial pairs.
• It is constructible and its elements may be used in a probabilistic

version of the HD scheme.

Thus, we can consider the following HD scheme:

Input: f ∈ H(d), ε ∈ R
+.

• Guess at random (g, ζ) ∈ G(d).

• Perform ϕ(f, ε) = 18 · 104n5N2d3ε−2 homotopy steps following the
segment (1 − t)g + tf , t ∈ [0, 1], starting at (g, ζ).

Output:

either failure, or
an approximate zero z ∈ Pn(C) of f .

The following statement generalizes Theorem 1 above to the multi–variate
case.

Theorem 11 ([BePa08]). The set G(d) is a questor set for efficient initial
pairs in H(d). Moreover, for every positive real number ε > 0, the probability
that a randomly chosen pair (g, e0) ∈ G(d) is ε-efficient is greater than

1 − ε.

In particular, for these ε-efficient pairs (g, e0) ∈ G(d), the probability that
a randomly chosen input f ∈ H(d) is solved by HD with initial pair (g, e0)

performing O(n5N2d3ε−2) homotopy steps is at least

1 − ε.

A less technical but more comprehensive version of this statement is the
following one (just replacing ε by 1

N ):
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Corollary 1. There is a Bounded Error Probability (BPP) Numerical Anal-
ysis procedure that solves most systems of multivariate homogeneous polyno-
mial equations with running time polynomial in

n, N, d.

In fact, the probability that a randomly chosen system f ∈ H(d) is solved by
this procedure is greater than

1 − 1

N
.

4.2. Generalizing Theorem 2 of [ShSm86]: The average complexity

case. Problem 17 asks about average complexity and the main outcome of
[BePa08] does not immediately yield an average complexity estimate. This
was achieved for the first time in [BePa09a]. The main innovation was to
adapt the inclusion/exclusion homotopy method described in Section 6 of
[ShSm94] to the probabilistic algorithm described in Subsection 4.1 above.

Note that the algorithm of Subsection 4.1 considers partitions of 18 ·
104n5N2d3ε−2 subintervals of the great circles (or segments). Namely, the
number of subintervals of the partition is fixed by the input. As we have
seen, this suffices to prove that most systems are solved for random choice
of (g, ζ) ∈ G(d). In [ShSm94] a path–following method is described that has
no “a priori” number of steps. Namely, given a path ft it creates a partition
adapted to that path, and when the method finishes, it always returns an
approximate zero of the target system f . As a (necessary) drawback, there
are some bad choices of paths ft for which the method never ends. These
bad choices are precisely those whose lifted paths (ft, ζt) intersect Σ′. This is
the philosophy used in theorems 7 and 8 above, and it suggests the following
method. We will call this kind of path–following strategy “adaptive homo-
topy method”, as it adapts the step size (and hence the resulting partition)
to the path–to–follow ft, instead of fixing “a priori” such partition.

Adaptative Homotopy Method with random initial pair (ahmr)

Input: f ∈ H(d).

• Guess at random (g, ζ) ∈ G(d).
• Perform the adaptive homotopy method following the segment (1 −

t)g + tf , t ∈ [0, 1], starting at (g, ζ).

Output: an approximate zero z ∈ P(Cn+1) of f .

Note that this algorithm may never give an answer, if (ft, ζt) ∩ Σ′ 6=
∅. Nonetheless, as we have seen by the Integral Geometry argument, the
probability that this happens is 0.

The combination of the ideas described in Section 4.1 and this adaptative
homotopy method yields the following answer to Smale’s 17th Problem.

Theorem 12 ([BePa09a]). Algorithm ahmr terminates (and hence produces
an approximate zero) with probability 1 and the average number of arithmetic
operations is

O(n6N3d3 log2 d log2 D),

where D =
∏n

i=1 di is the Bézout number.
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Moreover, one can modify slightly ahmr to compute not only projective,
but also affine approximate zeros of polynomial systems, with a running time
of the same order.

More specifically, the kind of algorithm that we obtain belongs to the
class Average ZPP (for Zero error probability, Probabilistic, Average
Polynomial Time), or equivalently Average Las Vegas. Namely, it satis-
fies the following properties:

• The algorithm is probabilistic: For a fixed input f , it may output
either Failure or some information.

• For f 6∈ Σ, the probability that the algorithm provides an answer
different to Failure is 1.

• If an output is given by the algorithm, it is a correct answer.
• The expected value of the running time is bounded by a polynomial

in the input length.

See [BePa09a] for more precise details.
However, the result in [Shu09] (as stated in Theorem 8 above) suggests

that the expected complexity estimates must be improved to some quan-
tity which is better than the O(n6N3d3 log2 d log2 D) bound of Theorem 12
above. This was achieved in [BePa09b].

Theorem 13 ([BePa09b]). Algorithm ahmr – after changing G(d) by a sim-
ilar set U(d) – terminates (and hence produces an approximate zero) with

probability 1 and the average number of Newton steps is O(nNd3/2). The

average number of arithmetic operations is O(d3/2n2N2 log(nd)).
Moreover, a random choice of (g, ζ) ∈ U(d) satisfies the thesis of Theorem

10 above, with probability at least 1/2. Namely, with probability at least 1/2
we have

Ef∈S(NS(f, g, ζ)) ≤ CnNd3/2.

The new idea was to choose a new questor set U(d) which, in fact, is the
solution variety V with a special distribution, and to use the new estimates
described in [Shu09].

The process for randomly choosing an initial pair (g, ζ0) ∈ U(d) is as
follows: Choose at random a full rank n × (n + 1) matrix M , and compute
its solution ζ0. Then, construct a polynomial system with solution ζ0 whose
“linear part” at ζ0 is given by M and add a higher degree non-linear term h,
chosen at random from the vector space defined by h(ζ0) = 0 and Dh(ζ0) =
0. Linear and non-linear parts must be correctly weighted. The precise
description of this process requires the introduction of some extra notation
and is beyond the scope of this paper.

Here is a very brief sketch of the proof of Theorem 13: the main technical
result of [BePa09b] is

Theorem 14 ([BePa09b]). Let U(d) be equal to V , but with the probability
distribution inherited from the process described above. Then,

E(g,θ)∈U(d)
[Θ(g, θ)] =

1

DEf∈S

[

∑

ζ∈VP(g)Θ(f, ζ)
]

,

for any projective measurable mapping Θ : V −→ [0,∞).
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That is to say, choosing a random pair (g, ζ0) ∈ U(d) is equivalent to
choosing a random system g ∈ S, and then choosing one of its solutions ζ0

with the uniform distribution. One can combine Integral Geometry results
and average studies of the condition number like Theorem 9 above to prove
that a random root ζ0 of a random system g ∈ S provides a pair (g, ζ0)
that most likely satisfies the thesis of Theorem 10. The main consequence
of Theorem 14 is that this apparently difficult process of choosing can be
substituted by another one which is computationally doable: choosing a pair
(g, ζ0) ∈ U(d). Theorem 13 follows after a careful study of these ideas. We
refer the reader to [BePa09b] for further details.

We also mention two extensions of Theorem 13. One of them is oriented
toward the search of several solutions.

Theorem 15 ([BePa09c]). Consider the method ahmr above, with random
initial pair (g, ζ0) ∈ U(d). Then,

• Fixed f 6∈ Σ, every solution ζ ∈ V (f) is equally probable as an output
of this algorithm. Namely, the Shannon entropy of the algorithm is
maximal.

• For f 6∈ Σ and s ≥ 1, execute the algorithm s times on the same
input f . Then, the probability that the algorithm approximates at
least k different zeros of f is greater than

1 −
( D

k − 1

)

e−s(1− k−1
D

).

Thus, randomized linear homotopy methods can be used for the search of
more than one solution.

Further work due to the first author of this paper and Mike Shub proved
that the variance (and some other higher moments) of the randomized linear
homotopy algorithm is also finite and, moreover, polynomial on the size of
the input N .

Theorem 16 ([BeSh09b]). Let Var denote variance. For f 6∈ Σ let NS(f)
be the average number of homotopy steps needed by algorithm anhr starting
at a random pair (g, ζ) ∈ U(d). Then,

Varf∈S(NS(f)) ≤ Cd3n2N2 lnD,

C a universal constant.

5. Open Problems

5.1. Find a deterministic version of the algorithms described in

Subsection 4.2 above. Smale’s 17th Problem demands a uniform algo-
rithm, and theorems 12 and 13 prove the existence of such an algorithm:
anhr. anhr is of a probabilistic nature, as are many other popular methods
in Numerical Analysis, Computer Science and Computational Mathematics.

However, one may still ask for a deterministic and uniform algorithm
for Smale’s 17th Problem. Currently, we have no answer for that question,
although solving the Conjecture about the initial pair described in [ShSm94]
and recalled at the end of Section 3 would be one way to resolve this issue.
Toward this end, the first author of this paper has obtained the following
statement with M. Shub.
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Theorem 17 ([BeSh09a]). Let (g, e0) be the pair of Shub & Smale’s Con-
jecture above. For every pair (f, ζ) ∈ V such that µnorm(f, ζ) < ∞, there
exists a curve Γt ⊆ V joining (f, ζ) and (g, e0), and such that its length in
the condition metric is at most

9nd3/2 + 2
√

n ln

(

µnorm(f, ζ)√
n

)

.

Moreover, the average number of homotopy steps necessary to solve random
systems f ∈ S and following these short curves, is O(nd3 lnN).

Note that this proves that the lifting curves associated with linear ho-
motopy are not the shortest ones. However, the curves used to prove this
statement are up until now not constructible without the knowledge of the
zero we want to compute. Thus, this result does not define a new algorithm,
but it points out that if we can find those short curves, which are geodesics
in the condition metric, then the method could be fastened w.r.t. the linear
homotopy. Further developments of this idea are ongoing. For example,
the condition metric is being studied from the point of view of convex and
non-smooth analysis, see [BDMS07, BoDe09].

In order to find good paths for the homotopy method, one may have to
take into account the topology of the solution variety V . This has been
recently studied in [BeSh09c], proving for example that the first homotopy
group of V is relatively small. In fact, it is often trivial and hence any curve
can be smoothly deformed into a length-minimizing geodesic. Some higher
homotopy groups are also computed in [BeSh09c]: In the case that n > 1,

K = R

n and d1 + · · · + dn − 1 even
K = R

other cases
K = C

π0(V ) {0, 1} {0} {0}
π1(V ) 8 elements 4 elements Z/aZ

π2(V ) {0} {0} Z

πk(V ), k ≥ 3 πk(SOn+1) πk(SOn+1) πk(SUn+1)

where a = gcd(n, d1 + · · ·+ dn − 1) and Z/aZ is the finite cyclic group of
a elements, and SOn+1, SUn+1 are the special orthogonal/unitary groups
of dimension n + 1.

5.2. Find an Efficient Numerical Analysis Method for Real Poly-

nomial Equation Solving. As we pointed out, one of the motivations
of Steve Smale’s initial studies on the complexity of polynomial equation–
solving was the computation of equilibria, and in particular, this means
computing real solutions of real systems of equations.

Homotopy continuation methods are not easily adapted to solve real sys-
tems of equations. Firstly, because the (real) discriminant variety Σ has
(real) codimension one, and hence, random choices of great circles will most
likely intersect Σ. There is thus no dimensional argument that grants the
existence of lifting curves to be followed by Newton’s method or any other.
Secondly, the behavior of real equations and real solutions is much more er-
ratic than complex ones. Studies on the expected number of real solutions of
a randomly chosen, real system were already initiated in [ShSm93b]. Other
studies on the probability distribution of certain estimates concerning real
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solving may be found in [Cuc99], [AzWs05],[CKMW08], [BoPa08]. Algorith-
mic methods are described in [CuSm99], [CKMW08], [BePa09c], but none of
them has been shown to be efficient. Symbolic methods, like those described
in [BGHP05] (cf. also references therein), are known to be more efficient
than the ones presently derived from approximate zero theory in the real
case. However, numerical methods are usually expected to be faster!

5.3. Over–Determined Systems and Hilbert’s Nullstellensatz. There
are generally three different cases in polynomial system solving: well–deter-
mined (i.e. equal number of equations and unknowns), under–determined
(more unknowns than equations) and over–determined (more equations than
unknowns). In the previous pages, we have focused on the well–determined
case, although many of the results can be easily generalized to the under–
determined case. In terms of Algebraic Geometry, these two cases are
called smooth complete intersection. However, a central question is the
over–determined case. This is just an algorithmic version of Hilbert’s Null-
stellensatz which has been shown to be NPC–complete in the theory of real
Turing machines (cf. [BSS89] or [BCSS98]). The problem can be stated as
follows:

Problem (Hilbert’s Nullstellensatz). Find an algorithm, efficient on the
average, that solves the following problem:
Given f1, . . . , fn+1 homogeneous polynomials of respective degrees d1, . . . , dn+1,

(1) Decide whether their have a common zero in Pn(C).
(2) If this were true, find an approximate zero of each common zero.

Solving the first part of this problem would imply having an (almost)
positive answer to Cook’s Conjecture. For the moment, the fastest numer-
ical analysis method that we know requires exponential average time (in
fact, linear in the Bézout number D :=

∏n
i=1 di, cf. [BePa09c]), which is

not tractable at all. Even if we assume that our input system f1, . . . , fn+1

belongs to the algebraic variety of consistent systems (i.e. those sharing
a common zero), we do not know how to compute efficiently the (most
likely) unique common solution. Less is known about the tractability of
this question from the Numerical Analysis approach. For references on the
symbolic/geometric approach to this problem, see [HeMo93, Par95, GiHe01,
HMPS00, KPS01, CGHMP03].

5.4. Adapting the algorithms to other data structures. Another draw-
back of the algorithms and methods described above is their dependence on
the data structure chosen to write down the input polynomials: Dense En-
coding of Polynomials. The average complexity estimates are polynomial in
N which is the number of coefficients, assuming that none are zero. How-
ever, less is known about how to adapt these results to subclasses of input
systems.

Typical classes of polynomial equations to be solved are not given in dense
encoding. They are, for instance, families of multi–homogeneous or sparse
polynomials, few–nomials (only a few non–zero coefficients) or polynomials
given by straight–line programs. All these cases refer to subvarieties and
submanifolds I ⊆ H(d) of positive complex co–dimension. As we only know
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average complexity estimates, the behavior of the algorithm on these zero–
measure subsets is unknown.

Some progress regarding the probability analysis of the condition number
in the sparse case, is due to G. Malajovich and M. Rojas [MaRo00, MaRo04].

5.5. Lower complexity bounds for the homotopy method. J. P. De-
dieu and Smale also studied lower bounds for the number of Newton steps
necessary to perform the homotopy [DeSm98]. Consider f : C

n+1 −→ C
m

homogeneous, and define a Newton Continuation Method Sequence as

(fi, ζi), 0 ≤ i ≤ k, fi(ζi) = 0, α(fi+1, ζi) ≤ α0 with assoc. zero ζi+1.

A detailed analysis shows that in these conditions, homotopy with initial
pair (f0, ζ0) yields an approximate zero of fk with associated zero ζk. Then,

Theorem 18 ([DeSm98]). If (fi, ζi), 1 ≤ i ≤ k is a Newton Continuation
Method Sequence, then

k ≥ c max

{

1,
d − 1

2

}

dR(ζ0, ζk).

Moreover, for homogeneous f let Σf be the set of x ∈ C
n+1 such that

rank(Df(x)) is not maximal. assume that dR(ζi, Σfi
) ≤ ε, 0 ≤ i ≤ k.

Then,

k ≥ cε−1dR(ζ0, ζk).

The main tool used to measure complexity of homotopy methods, i.e. the
condition number µnorm, appears somehow implicitly in this lower bound, as
it may be commensurable with dR(ζi, Σfi

)−1. For example both quantities
are infinity if ζi is a singular solution of fi. However, we still have that factor
dR(ζ0, ζk) that may be very small.

One may wonder if the condition number is more directly related to lower
bounds. If we add the concept of stability to the Newton Continuation
Method Sequence, it looks like the condition number µnorm(fi, ζi) should
play a role, as condition number and stability do have a relation. So, a
natural question is

Conjecture. If (fi, ζi), 1 ≤ i ≤ k is a “Stable” Newton Continuation
Method Sequence (in some sense to be specified), then

k ≥ c1 max{log µnorm(fi, ζi)}c2 ,

c1, c2 > 0 some universal constants.
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18 C. BELTRÁN AND L.M. PARDO

[BDMS07] C Beltrán, J.P. Dedieu, G. Malajovich, and M. Shub, Convexity properties of
the condition number, to appear (2007).

[BePa06] C. Beltrán and L.M. Pardo, On the complexity of non–universal polynomial
equation solving: old and new results., Foundations of Computational Mathe-
matics: Santander 2005. L. Pardo, A. Pinkus, E. Süli, M. Todd editors., Cam-
bridge University Press, 2006, pp. 1–35.

[BePa08] C. Beltrán and L.M. Pardo,, On Smale’s 17th problem: a probabilistic positive
solution, Found. Comput. Math. 8 (2008), no. 1, 1–43.

[BePa09a] C. Beltrán and L.M. Pardo,, Smale’s 17th problem: Average polynomial time
to compute affine and projective solutions, J. Amer. Math. Soc. 22 (2009), 363–
385.

[BePa09b] C. Beltrán and L.M. Pardo,, Fast linear homotopy to find approximate zeros
of polynomial systems, To appear (2009).

[BePa09c] C. Beltrán and L.M. Pardo,, Computing several zeros of polynomial systems:
A complexity analysis and shannon’s entropy, To appear (2009).

[BeSh09a] C. Beltrán and M. Shub, Complexity of Bezout’s Theorem VII: Distance esti-
mates in the condition metric, Found. Comput. Math. 9 (2009), no. 2, 179–195.

[BeSh09b] C. Beltrán and M. Shub, A note on the finite variance of the averaging function
for polynomial equation solving, To appear in Found. Comput. Math.

[BeSh09c] C. Beltrán and M. Shub, On the Geometry and Topology of the Solution Variety
for Polynomial System Solving, To appear (2009).

[Blm04] L. Blum. Computing over the reals: where Turing meets Newton. Notices Amer.
Math. Soc. 51 (2004) 1024–1034.

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation,
Springer-Verlag, New York, 1998.

[BSS89] L. Blum, M. Shub, S. Smale. On a Theory of Computation and Complexity
over the Real Numbers; NP Completeness, Recursive Functions and Universal
Machines. Bull. Amer. Math. Soc. (New Series) 21 (1989) pp. 1–46.

[BoDe09] P. Boito and J.P. Dedieu, The condition metric in the space of rectangular full
rank matrices, To Appear (2009).

[BoPa08] C. E. Borges, L. M. Pardo. On the probability distribution of data at points in
real complete intersection varieties. Journal of Complexity 24 (2008) 492–523

[CGHMP03] D. Castro, M. Giusti, J Heintz, G. Matera, L. M. Pardo. The hardness of
polynomial equation solving. J. Found. Comput. Math. 3-4 (2003) 347–420.

[CHMP01] D. Castro, K. Hägele, J.E. Morais, L. M. Pardo. Kronecker’s and Newton’s
approaches to solving: a first comparison. Journal of Complexity 17 (2001)
212–303.

[CMSP02] D. Castro, J.L. Montaña, J. San Martin, L. M. Pardo.The Distribution of
the Condition Number of Rational Data of Bounded bit length. Foundations of
Comput. Math. 2 (2002) 1–52.

[CSP03] D. Castro, J. San Martin, L. M. Pardo.Systems of Rational Homogeneous Poly-
nomial Equations have Polynomial Size Approximate Zeros. Journal of Com-
plexity 19 (2003) 161–209.

[Cuc99] F. Cucker.Approximate zeros and condition numbers. J. Complexity 15 (1999)
214-226.

[CKMW08] F. Cucker, T. Krick, G. Malajovich, M. Wschebor. A numerical algorithm for
zero counting, I: Complexity and accuracy. Journal of Complexity 24 (2008)
582–605.

[CuSm99] F. Cucker, S. Smale.Complexity estimates depending on condition and round-off
error. J. ACM 46 (1999) 113-184.

[Ded01] J.P. Dedieu, Newton’s method and some complexity aspects of the zero-finding
problem, Foundations of computational mathematics (Oxford, 1999), London
Math. Soc. Lecture Note Ser., vol. 284, Cambridge Univ. Press, Cambridge,
2001, pp. 45–67.

[DPM03] J.P. Dedieu, P. Priouret, and G. Malajovich, Newton’s method on Riemannian
manifolds: convariant alpha theory, IMA J. Numer. Anal. 23 (2003), no. 3,
395–419.



EFFICIENT POLYNOMIAL SYSTEM SOLVING BY NUMERICAL METHODS 19

[DeSh00] J.P. Dedieu and M. Shub, Multihomogeneous Newton methods, Math. Comp.
69 (2000), no. 231, 1071–1098 (electronic).

[DeSh01] J.P. Dedieu and M. Shub, On simple double zeros and badly conditioned zeros
of analytic functions of n variables, Math. Comp. 70 (2001), no. 233, 319–327.

[DeSm98] J.P. Dedieu and S. Smale, Some lower bounds for the complexity of continuation
methods, J. Complexity 14 (1998), no. 4, 454–465.

[DuLe08] C. Durvye, G. Lecerf, A concise proof of the Kronecker polynomial system solver
from scratch. Expo. Math. 26 (2008) 101–139.

[EcYo36] C. Eckart and G. Young, The approximation of one matrix by another of lower
rank, Psychometrika 1 (1936), 211-218.

[GaZa79] C.B. Garcia, W.I. Zangwill. Finding all solutions to polynomial systems and
other systems of equations. Math. Programming 16 (1979) 159–176.

[GiHe01] M. Giusti, J. Heintz.Kronecker’s smart, little black boxes. In Foundations of
computational mathematics (Oxford, 1999), London Math. Soc. Lecture Note
Ser., 284, Cambridge Univ. Press, 69–104, 2001.

[GLSY05] M. Giusti, G. Lecerf, B. Salvy and J.-C. Yakoubsohn. On Location and Approx-
imation of Clusters of Zeros of Analytic Functions. Foundations of Comput.
Mat. 5 (2005) 257–311.

[GLSY07] M. Giusti, G. Lecerf, B. Salvy and J.-C. Yakoubsohn. On Location and Approx-
imation of Clusters of Zeros: Case of Embedding Dimension One. Foundations
of Comput. Mat. 7 (2007) 1–58.
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Gröbner technology. Encyclopedia of Mathematics and its Applications, 99.
Cambridge University Press, Cambridge, 2005.

[Mor87] A. Morgan. Solving Polynomial Systems using continuation for engineering
and scientific problems. Prentice–Hall, Englewood Cliffs, N.J., 1987.

[Pan87] V. Y. Pan. Algebraic Complexity of Computing Polynomial Zeros. Computers
& Math (with Applications) 14 (1987) 285–304.

[Par95] L. M. Pardo. How lower and upper complexity bounds meet in elimination the-
ory. In G. Cohen, M. Giusti, and T. Mora, editors, Applied algebra, algebraic al-
gorithms and error-correcting codes (Paris, 1995), volume 948 of Lecture Notes
in Computer Science, pages 33–69. Springer, Berlin, 1995.

[Rab80] M.O. Rabin. Probabilistic algorithms for testing primality. J. Number Theory
12 (1980) 128–138.

[Ren85] J. Renegar. On the cost of approximating all roots of a complex polynomial.
Math. Programming, 32(3):319–336, 1985.

[Ren87] J. Renegar. On the worst-case arithmetic complexity of approximating zeros of
polynomials. Journal of Complexity, 3(2)(1987) 90–113.

[Sch81] A. Schönhage. The fundamental theorem of algebra in terms of computa-
tional complexity. Preliminary report, Mathematisches Institut der Universität
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