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Abstract

We exhibit some new techniques to study volumes of tubes about algebraic varieties
in complex projective spaces. We prove the existence of relations between volumes
and Intersection Theory in the presence of singularities. In particular, we can exhibit
an average Bézout Equality for equi–dimensional varieties. We also state an upper
bound for the volume of a tube about a projective variety. As a main outcome, we
prove an upper bound estimate for the volume of the intersection of a tube with an
equi–dimensional projective algebraic variety. We apply these techniques to exhibit
upper bounds for the probability distribution of the generalized condition number of
singular complex matrices.
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1 Introduction.

In these pages we exhibit some upper bound estimates of the probability distribution
of the condition number of singular complex matrices. These estimates are immediate
consequences of some more general techniques dealing with volumes of tubes about pro-
jective algebraic varieties. This Introduction is devoted to state the main outcomes and
the motivations of this study.
Condition numbers in Linear Algebra were introduced by A. Turing in [44]. They were also
studied by J. von Neumann and collaborators (cf. [32]) and by J.H. Wilkinson (cf. also
[48]). Variations of these condition numbers may be found in the literature of Numerical
Linear Algebra (cf. [7], [17], [25], [43] and references therein).
A relevant breakthrough was the study of the probability distribution of these condition
numbers. The works by Steve Smale (cf. [38]), J. Renegar (cf. [33]), J. Demmel (cf. [6],
[7]) and mainly the works by A. Edelman (cf. [9], [10]) showed the exact values of the
probability distribution of the condition number of dense complex matrices.
From a computational point of view, these statements can be translated in the following
terms. Let P be a numerical analysis procedure whose space of input data is the space of
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arbitrary square complex matrices Mn(C). Then, Edelman’s statements mean that the
probability that a randomly chosen dense matrix in Mn(C) is a well–conditioned input for
P is high (cf. also [3]).
Sometimes however we deal with procedures P whose input space is a proper subset C ⊆
Mn(C). Additionally such procedures with particular data lead to particular condition
numbers κC adapted both for the procedure P and the input space C. Renegar’s, Demmel’s,
Edelman’s and Smale’s results do not apply to these new conditions. In these pages we
introduce a new technique to study the probability distribution of condition numbers κC .
Namely, we introduce a technique to exhibit upper bound estimates of the quantity

vol[{A ∈ C : κC(A) > ε−1}]
vol[C] , (1)

where ε > 0 is a positive real number, and vol[·] is some suitable measure on the space C
of acceptable inputs of P.
As an example of how these questions arise, let C := Σn−1 ⊆ Mn(C) be the class of all
singular complex matrices. From [27] and [40], a condition number for singular matrices
A ∈ C is introduced. This condition number measures the precision required to perform
kernel computations (cf. Section 4 for precise details). For every singular matrix A ∈ Σn−1

of corank 1, the condition number κn−1
D (A) ∈ R is defined by the following identity

κn−1
D (A) := ‖A‖F ‖A†‖2,

where ‖ ·‖F is the Frobenius norm of a matrix A, A† is the Moore–Penrose pseudo–inverse
of A and ‖A†‖2 is the norm of A† as a linear operator.
As Σn−1 is a complex homogeneous hypersurface in Mn(C) (i.e. a cone of complex codi-
mension 1), it is endowed with a natural volume vol induced by the 2(n2−1)−dimensional
Hausdorff measure of its intersection with the unit disk (cf. Section 2 for details). We
then wish to have upper bound estimates for the following quantity:

vol[A ∈ Σn−1 : κn−1
D (A) > ε−1]

vol[Σn−1]
(2)

In Section 4 other proper subclasses of Mn(C) are also discussed. Upper bound estimates
for the quantity in (2) belong to a wider class of results we state in Theorem 2 below.
First of all, most condition numbers are by nature projective functions. For instance, the
classical condition number κ of Numerical Linear Algebra is naturally defined as a function
on the complex projective space IP(Mn(C)) defined by the complex vector space Mn(C).
Namely, we may see κ as a function

κ : IP(Mn(C)) −→ R+ ∪∞.

Secondly, statements like the Schmidt–Mirsky–Eckart–Young Theorem (cf. [8],[35], [29])
imply that Smale’s, Demmel’s and Edelman’s estimates are, in fact, estimates of the
volume of a tube about a concrete projective algebraic variety in IP(Mn(C)) (cf. also
Section 4).
We prove a general upper bound for the volume of a tube about any (possibly singular)
complex projective algebraic variety (see Theorem 1 below), that slightly improves the
constants obtained by Renegar (cf. [33]) and Demmel (cf. [7]) for the same problem.
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Estimates on volumes of tubes is a classic topic that began with Weyl’s Tube Formula for
tubes in the affine space (cf. [47]). Formulae for the volumes of some tubes about analytic
submanifolds of complex projective spaces are due to A. Gray (cf. [18], [19] and references
therein). However, Gray’s results do not apply even to Smale’s and Edelman’s case. They
also do not apply to particular classes C as above. First of all, Gray’s statements are
only valid for smooth submanifolds and not for singular varieties (as, for instance, Σn−1).
Secondly, Gray’s theorems are only valid for tubes of small enough radius (depending on
intrinsic features of the manifold under consideration) which may become dramatically
small in the case of existence of singularities. These two drawbacks pushed J. Renegar
and J. Demmel to look for a general statement concerning upper bound estimates for the
volumes of tubes about equidimensional complex projective varieties that may contain
some singularities (cf. [33] for the hypersurface case, [6] or [7] for the general case). Here
we obtain a slight improvement of Demmel’s Theorem 4.2 in [7], that may be summarized
as follows.
Let dνN be the volume form associated to the complex Riemannian structure of IPN (C).
Let V ⊆ IPN (C) be any subset of the complex projective space and let ε > 0 be a positive
real number. We define the tube of radius ε about V in IPN (C) as the subset Vε ⊆ IPN (C)
given by the following identity.

Vε := {x ∈ IPN (C) : dIP (x, V ) < ε},

where dIP (x, y) := sin dR(x, y) and dR : IPN (C)2 −→ R is the Fubini–Study distance.

Theorem 1 Let V ⊆ IPN (C) be a (possibly singular) equi–dimensional complex algebraic
variety of (complex) codimension r in IPN (C). Let 0 < ε ≤ 1 be a positive real number.
Then, the following inequality holds

νN [Vε]
νN [IPN (C)]

≤ 2 deg(V )
(

e N ε

r

)2r

, (3)

where e stands for the basis of the natural logarithms, and deg(V ) is the degree of V (in
the sense of [24]).

The proof of this theorem is a by–product of the techniques we introduce to deal with the
upper bound estimates of the quantity described in inequality (2). This theorem can be
applied to Edelman’s conditions to conclude the following estimate:

vol[{A ∈Mn(C) : κD(A) > ε−1}]
vol[Mn(C)]

≤ 2e2n5ε2,

where κD(A) := ‖A‖F ‖A−1‖2, and vol is the standard Gaussian measure in Cn2
. The

reader will observe that this kind of upper bounds is less sharp than Edelman’s or Smale’s
bounds, but they are a particular instance of a more general statement.
Next, observe that neither Renegar’s Demmel’s, Smale’s, Edelman’s results nor Theorem
1 above apply to exhibit upper bounds of the quantity described in equation (2) above.
Neither does Gray’s theorem apply to such kinds of questions. The reason is the following
one. The probability space of input data is the projective algebraic variety Σn−1. As we
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said above, this variety is neither smooth nor a complex projective space (i.e. it is not
“linear”, even at a local level).
In order to deal with this kind of estimates, we need to introduce a brand new technique
that combines Intersection Theory and Integral Geometry. Again, the Schmidt–Mirsky–
Eckart–Young Theorem implies

κn−1
D (A) =

1
dIP (A, Σn−2)

,

where Σn−2 is the projective variety of matrices of rank at most n − 2 and dIP is the
projective distance. Hence, in order to bound the quantity in equation (2), we need to
prove some kind of upper bound for the volume of the intersection of an extrinsic tube
about a (possibly singular) projective algebraic subvariety with a proper (possibly singular)
projective algebraic variety.
Hence, the main outcome in this paper is the following theorem.

Theorem 2 Let V, V ′ ⊆ IPN (C) be two (possibly singular) projective equi–dimensional
algebraic varieties of respective dimensions m > m′ ≥ 1. Let 0 < ε ≤ 1 be a positive real
number. With the same notations as in Theorem 1 above, the following inequality holds:

νm[V ′
ε ∩ V ]

νm[V ]
≤ c deg(V ′)N

(
N

m′

)2 [
e
N −m′

m−m′ ε

]2(m−m′)
,

where c ≤ 4e1/3π, νm is the 2m−dimensional natural measure in the algebraic variety V ,
and deg(V ′) is the degree of V ′ in the sense of [24].

The occurrence of deg(V ′) on the right–hand side of the inequality seems to be unavoidable
because of Bézout’s Theorem, whereas the constants depending on N,m, m′ are essentially
the square of the multinomial coefficient:

N !
(m′)!(N −m)!(m−m′)!

.

This statement can finally be applied to show upper bound estimates for the quantity
described in equation (2). Noting that the complex projective dimensions of Σn−1 and
Σn−2 satisfy dim(Σn−1) = n2 − 2 and dim(Σn−2) = n2 − 5, we immediately conclude (cf.
also Corollary 29).

Corollary 3 With the same notations and assumptions as above, the following inequality
holds:

vol[A ∈ Σn−1 : κn−1
D (A) > ε−1]

vol[Σn−1]
≤ 9 deg(Σn−2)

[
n8/3ε

]6
.

Moreover, noting that

deg(Σn−2) =
n2(n2 − 1)

12
,

we can estimate the upper bound in this last corollary by:
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Corollary 4 With the same notations as in Corollary 3 above, the following inequalities
also hold:

vol[A ∈ Σn−1 : κn−1
D (A) > ε−1]

vol[Σn−1]
≤ 9n4

12

[
n8/3ε

]6
≤

[
n10/3ε

]6
.

Let the reader observe that the exponent 6 is unavoidable since it is two times the complex
codimension of Σn−2 in Σn−1. In Section 4 other proper subclasses of Mn(C) are also
discussed.
As we have said, the condition number κn−1

D can be defined as the inverse of the projective
distance to the algebraic variety Σn−2 of matrices of rank at most n−2. This allows us to
consider κn−1

D defined in the whole space of matrices Mn(C). We may use Theorem 1 and
Corollary 4 to obtain upper bounds for the expected value of κn−1

D in the respective prob-
ability spaces Σn−1 and Mn(C) (with the Gaussian distribution), and thus compare the
different behavior of κn−1

D when considering as inputs randomly chosen singular matrices
or randomly chosen dense matrices. Namely, we have the following result (cf. Corollary
44 for a more technical version).

Corollary 5 The expected value of κn−1
D in the space Σn−1 satisfies:

EΣn−1 [κn−1
D ] ≤ 2n10/3.

Moreover, the expected value of κn−1
D in the whole space Mn(C) satisfies

EMn(C)[κ
n−1
D ] ≤ n5/2.

The paper is structured as follows. Section 2 is devoted to stating most of the notations
and some basic lemmata to be used in the sequel. Section 3 is devoted to proving Theorem
2. A proof of Theorem 1 is also included in Subsection 3.2. Finally, in Section 4 we prove
Corollaries 4, 5 and other applications to other particular classes of complex matrices.

1.1 Appendix to the Introduction

Although Theorem 1 is not the main outcome of these pages, a relevant question about
this theorem concerns the optimality of the constants occurring on the right–hand side of
equation (3). However, it seems to be a hard result to prove this optimality. For instance,
in Proposition 27 of Section 3.2 we prove that the constants are essentially optimal in the
case V is a linear subvariety of a complex projective space.
A second approach to understand the optimality of the constants occurring in the upper
bound estimate of Theorem 1 will be to compare it with Gray’s main theorem in [18] (cf.
also [19]). Gray’s main theorem can be stated as follows. Assume that the projective
algebraic variety V satisfies the following hypothesis:

• The variety V is smooth (i.e., it contains no singularity) and it is a complex sub-
manifold of IPN (C).

• The variety V is a complete intersection. Namely, there are homogeneous polynomi-
als f1, . . . , fr ∈ C[X0, . . . , XN ] of respective degrees deg(fi) = di, 1 ≤ i ≤ r such that
V is the set of common projective zeros of f1, . . . , fr and such that the codimension
of V is r (i.e., the number of equations equals the codimension).
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Additionally, let us assume that ε > 0 is a positive real number smaller than the minimum
of the convergence radius of the Taylor expansion of the normal exponential map of V
at any point of V . Under all these conditions, A. Gray proves the following equality (cf.
[18]):

νN [Vε]
νN [IPN (C)]

=
N−r∑

c=0

(
N

c

)
ε2(N−c)(1− ε2)c

r∏

i=1

(
1− (1− di)N−r−c+1

)
.

The dominant term in Gray’s equality corresponds to the minimum exponent of ε. Then,
there is a constant ρ > 0 such that the following inequality holds:

νN [Vε]
νN [IPN (C)]

≥ ρ

(
N

N − r

)
ε2r(1− ε2)N−r

r∏

i=1

deg(fi). (4)

Noting that deg(V ) ≤ ∏r
i=1 deg(fi) (Bézout Inequality) and that this inequality is gener-

ically an equality, the reader may easily compare the lower bound in equation (4) with
the upper bound of Theorem 1. Namely, under the very restrictive conditions of Gray’s
theorem, the constants in Theorem 1 are given by

(
eN

r

)2r

,

whereas the “constants” in Gray’s lower bound are
(

N

N − r

)
(1− ε2)N−r.

Constants occurring in inequality (3) are not so far from constants occurring in Gray’s
lower bound. It does not prove that the bound of Theorem 1 is optimal but it is not so
far from being optimal at least in some restrictive cases.

2 Some Intersection Theory in complex projective space.

By (W,< ·, · >W ) we denote an hermitian space where W is a complex vector space
and < ·, · >W : W × W −→ C is the hermitian product. The norm in (W,< ·, · >W )
will be denoted by ‖ · ‖W . In the case W = CN+1, we denote by < ·, · >2 the usual
hermitian product, and by ‖ · ‖2 the usual norm. We say that a finite set of vectors
S = {v1, . . . , vs} ∈ W are mutually orthogonal if < vi, vj >W = 0, i 6= j. We say that
S is an orthonormal frame if its elements are mutually orthogonal and ‖vi‖W = 1 for
1 ≤ i ≤ s.
As usual, the terms orthogonal and orthonormal will be used in the case of real inner
product spaces.
Let UN+1 be the group of unitary matrices of size N +1. Recall that the hermitian product
in CN+1 is unitarily invariant. That is, for every x, y ∈ CN+1 and every U ∈ UN+1, the
following holds:

< x, y >2=< Ux,Uy >2 .

We denote by BCN+1(x, ε) the open ball of radius ε centered at x. Namely,

BCN+1(x, ε) := {y ∈ CN+1 : ‖x− y‖2 < ε}.
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Let S2N+1(ε) = ∂BCN+1(0, ε) be the sphere of radius ε in CN+1. Namely,

S2N+1(ε) := {x ∈ CN+1 : ‖x‖2 = ε}.

As usual, we denote by S2N+1 := S2N+1(1) the sphere of radius 1 centered at 0. Recall that
S2N+1 is a real differentiable submanifold of CN+1 ≡ R2N+2 of real dimension 2N +1. We
consider S2N+1 equipped with the Riemannian structure inherited from that of CN+1. Let
IPN (C) := IP(CN+1) be the complex projective space of dimension N . We also consider
the canonical projection

π : CN+1 \ {0} −→ IPN (C)
x 7→ {y : y = λx, λ ∈ C}.

Let p := π |S2N+1 : S2N+1 −→ IPN (C) be the Hopf Fibration. Then, there exists a unique
Riemannian structure in IPN (C) such that p is a Riemannian submersion, i.e., p is a
smooth submersion and for every x ∈ S2N+1, dxp is an isometry between the orthogonal
complement of (dxp)−1(0) and TxIPN (C) (cf. for example [15, Prop. 2.28]). This defines
a Riemannian structure in IPN (C) (cf. example [15, ex. 2.29] for details). Points in
the complex projective space IPN (C) are usually represented by their homogeneous co-
ordinates, which are defined the following way: If x ∈ IPN (C) is the class of the point
x = (x0, . . . , xN ), the homogeneous coordinates of x are (x0 : · · · : xN ). The Riemannian
distance (or Fubini–Study distance) between any two points in the complex projective
space is given by the formula:

dR(x, y) := arccos
| < x, y >2 |
‖x‖2‖y‖2

,

where x, y are respective affine representants of x and y. We denote by dIP the projective
distance, which is defined to be the sinus of the Riemannian distance. Namely,

dIP (x, y) = sin dR(x, y).

Let BIP (x, ε) ⊆ IPN (C) be the open ball of radius ε centered at x with respect to dIP .
Namely,

BIP (x, ε) := {y ∈ IPN (C) : dIP (x, y) < ε}.
For every complex submanifold M ⊂ IPN (C) of complex dimension m, we denote by dνm

the volume element induced by its Riemannian structure inherited from that of IPN (C).
The following formula is well–known.

νN [IPN (C)] =
1
2π

H 2N+1[S2N+1] =
πN

N !
,

where H 2N+1 is the (2N + 1)−dimensional Hausdorff measure. If we consider IPm(C),
m < N , as a submanifold of IPN (C) (i.e. as a linear subvariety of dimension m of IPN (C)),
then its volume as submanifold agrees with its volume as a projective space itself.
Since [42] we have a explicit formula for the volume of BIP (x, ε) (see [4] for a modern
reference). Namely,

νN [BIP (x, ε)] = νN [IPN (C)]ε2N .
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The Riemannian structure we have defined in IPN (C) is unitarily invariant. That is, for
any unitary matrix U ∈ UN+1, the following map is an isometry.

U : IPN (C) −→ IPN (C)
x 7→ Ux := π(U(π−1(x))).

Also, the tangent map at 0 ∈ CN of the following affine chart is an isometry:

ϕ0 : CN −→ AN
0 ⊆ IPN (C)

(z1, . . . , zN ) 7→ (1 : z1 : · · · : zN ),

where AN
0 ⊆ IPN (C) := IPN (C) \ {x ∈ IPN (C) : x0 = 0} is the projective space without

the hyperplane of infinity, and CN is seen as the affine space with the natural Riemannian
structure.
As in the Introduction, MN+1(C) denotes the complex vector space of all (N +1)×(N +1)
complex matrices. It is well–known that UN+1 is a real submanifold of MN+1(C) of real
dimension (N + 1)2. The Riemannian structure of UN+1 is the inherited from that of
MN+1(C), normalized such a way that the volume of UN+1 is equal to 1. The volume
element for this Riemannian structure will be simply denoted by dUN+1 and the volume of
a measurable subset T ⊆ UN+1 will be denoted by νUN+1

[T ]. We say that some property
is satisfied for almost all U ∈ UN+1 if it is satisfied up to a zero–measure subset of UN+1.
The two following mappings are isometries for any U ∈ UN+1:

UL : UN+1 −→ UN+1,
U ′ 7→ UU ′

UR : UN+1 −→ UN+1

U ′ 7→ U ′U.

We usually refer to the left mapping UL and we simply denote by U = UL : UN+1 −→ UN+1

this left mapping. For every unitary matrix U ∈ UN+1 and any set A ⊂ IPN (C), we denote
by UA ⊂ IPN (C) the image of A by U in IPN (C). Namely,

UA := {y ∈ IPN (C) : ∃x ∈ A : Ux = y}.

A projective algebraic variety (or, simply, a projective variety) is a subset of the complex
projective space IPN (C) given as the set of projective zeros of a collection of homogeneous
polynomials. We refer to the reader to [36], [37], [31] for general background on projective
varieties.
A quasi–projective complex variety is a Zariski open subset of a projective variety (cf. [36]
for additional terminology).
Let V ⊆ IPN (C) be a quasi–projective variety. A simple point in a ∈ V is a point such that
the germ Va of V at a is a complex submanifold of IPN (C) of complex dimension equal
to dim(V ). We denote by Reg(V ) the set of all simple points in V . The Zariski closure
of Reg(V ) (i.e. the smallest projective variety containing Reg(V )) equals to the union of
all irreducible components of the Zariski closure of V of dimension equal to dim(V ). In
other terms, there is a projective variety V1 ⊆ IPN (C) such that dim(V1) < dim(V ) and
the following equality holds:

Reg(V ) \ V1 = V \ V1.

We shall say that two subsets A,B ⊆ V are generically equal in V if there is V1 ⊆ IPN (C)
a projective variety satisfying dim(V1) < dim(V ) and A \ V1 = B \ V1. In other words, V
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and Reg(V ) are generically equal. If V were equi–dimensional, then Reg(V ) is dense (in
the standard topology induced by that of IPN (C) in V ).
Let V ⊆ IPN (C) be a quasi–projective variety of dimension m. Then, Reg(V ) ⊆ IPN (C)
is a complex submanifold of complex dimension m, endowed with a volume form dνm. We
define a measure on V in the following terms:

νm[A] := νm[A ∩Reg(V )],

for every subset A ⊆ V such that A ∩ Reg(V ) is measurable for dνm. Accordingly,∫
A f dνm is the integral of a function f : A −→ R (when it can be defined with respect

to this measure). Note that given A,B ⊆ V generically equal in V , then νm[A] = νm[B],
and

∫
A f dνm =

∫
B f dνm.

The notion of geometric degree (or, simply, degree) of a projective variety V ⊆ IPN (C) is
a classical notion that comes from the origins of Elimination Theory in the XIX century.
The main property satisfied by any accurate notion of degree is a Bézout Inequality. The
reader may follow several proofs of Bézout’s Inequalities in [24],[45],[14]. Let W ⊆ IPN (C)
be a Zariski open subset in an irreducible projective variety V ⊆ IPN (C) of Krull dimension
m. The geometric degree of W is defined as the following quantity

deg(W ) := max{](L ∩W ) : L ⊆ IPN (C) linear, dim(L) = N −m, ](L ∩W ) < +∞}.
One immediately observes that deg(W ) = deg(V ) for any Zariski open subset W of the
irreducible projective variety V . If V ⊆ IPN (C) is any projective variety, deg(V ) is defined
to be the sum of the degrees of its irreducible components. Similarly, for every constructible
subset C ⊂ IPN (C) we may define deg(C) as the sum of the degrees of its locally closed
irreducible components (cf. [24] for some ideas in this sense). This notion of geometric
degree satisfies a Bézout Inequality for locally closed subsets of IPN (C) (cf. [24]), namely:

deg(W1 ∩W2) ≤ deg(W1) deg(W2),

for W1 and W2 locally closed sets. The following equality immediately follows from the
notion of degree.

Proposition 6 Let V ⊆ IPN (C) be an equi–dimensional projective subvariety of dimen-
sion m. Let L ⊆ IPN (C) be a fixed projective linear subspace of dimension N −m. Then,
the following equality holds:

deg(V ) = max{](UL ∩ V ) : U ∈ UN+1, ](UL ∩ V ) < +∞}.
The following quantitative estimate is a consequence of Bertini’s theorems as used in [28],
[16] or [21].

Lemma 7 Let V ⊆ IPN (C) be an equi–dimensional projective variety of dimension m.
Assume there is a finite subset of homogeneous polynomials {f1, . . . , fs} ⊆ C[X0, . . . , XN ]
of degree at most d such that

V = V (f1, . . . , fs) = {x ∈ IPN (C) : fi(x) = 0, 1 ≤ i ≤ s}.
Then, the following inequality holds:

deg(V ) ≤ ds.
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The following lemma is probably a well–known fact in Lie Group Theory. We include its
proof here for lack of an appropriate reference.

Lemma 8 Let x ∈ CN+1\{0} be a non–zero point. The following mapping is a submersion
(i.e. its set of critical values is empty):

ψ : UN+1 −→ S2N+1(‖x‖2)
U 7→ Ux.

Proof.– Since ψ is surjective, from Sard’s Lemma, we conclude that the set of regular values
of ψ is a non–empty dense residual subset of S2N+1. Moreover, given z, z′ ∈ S2N+1(‖x‖2),
let U1, U2 ∈ UN+1 be such that ψ(U1) := U1x = z and ψ(U2) = U2x = z′. Let U ′ := U2U

−1
1

be the unitary matrix such that U ′U1 = U2. Then, U ′z = z′ and the following diagram
commutes:

UN+1
ψ−→ S2N+1(‖x‖2)

U ′ ↓ ↓ IsoU ′

UN+1
ψ−→ S2N+1(‖x‖2)

where U ′(U) = U ′
L(U) = U ′U is the left translation defined by U ′ and IsoU ′ is the isometry

defined by U ′ (IsoU ′(v) = U ′v ∀v ∈ S2N+1(‖x‖2)). As the differential mappings dU1U
′
L

and dzIsoU ′ are linear isomorphisms, we also conclude that dU1ψ is surjective if and only
if dU2ψ is surjective. That is, z is a regular value of ψ if and only if z′ is a regular value of
ψ. Thus, we conclude that the set of critical values of ψ is empty and the lemma follows.

Lemma 9 Let M be a complex submanifold of IPN (C), of complex dimension m. Let M ′

be a complex submanifold of IPN (C), of complex dimension p. Then, there is a dense resid-
ual subset W ⊂ UN+1 (depending only on M and M ′) such that the following properties
hold:

i) If m + p < N , for all U ∈ W , M ∩ UM ′ = ∅.
ii) If m + p ≥ N , for all U ∈ W , M ∩ UM ′ is the empty set or a complex submanifold

of IPN (C) of complex dimension m + p−N .

Proof.– Let M̃, M̃ ′ ⊂ CN+1 respectively be the cones over M and M ′. Namely,

M̃ := π−1(M), M̃ ′ := π−1(M ′).

Note that M̃ and M̃ ′ are complex submanifolds of CN+1 and their complex dimensions
satisfy:

dim(M̃) = dim(M) + 1,

dim(M̃ ′) = dim(M ′) + 1.

Let us define the following mapping between (real) submanifolds of R2(N+1)2 ×R2(N+1)×
R2(N+1):

ϕ : UN+1 × M̃ ′ × M̃ −→ CN+1

(U, y, x) 7→ Uy − x.

10



We claim that ϕ is transversal to the submanifold {0} of CN+1. Equivalently, we prove
that 0 ∈ CN+1 is not a critical value of ϕ. Let F := ϕ−1({0}) be the fiber over {0}. We
then prove that every point P := (U, y, x) ∈ F is a regular point of ϕ. In other words, we
just need to prove that the tangent mapping dP ϕ is surjective, where

dP ϕ : TUUN+1 × TyM̃
′ × TxM̃ −→ T0CN+1.

Observe that Uy = x implies ‖y‖2 = ‖x‖2. As M̃ and M̃ ′ are cones, identifying TxM̃, TyM̃
′

with subspaces of CN+1 we immediately conclude that x ∈ TxM̃ and y ∈ TyM̃
′. Hence,

we also have (0, y, 0) ∈ TUUN+1 × TyM̃
′ × TxM̃ and

dP ϕ(0, y, 0) = Uy = x ∈ T0CN+1.

On the other hand, let ϕy,x be the restriction of ϕ to UN+1 × {y} × {x}, and let us define
the mapping

ψy,x : UN+1 −→ S2N+1(‖y‖2)
U 7→ Uy.

Note that ψy,x = tx ◦ ϕy,x, where

tx : ∂B(−x, ‖y‖2) −→ S2N+1(‖y‖2)
v 7→ v + x

is a simple translation, where ∂B(−x, ‖y‖2) = {z ∈ CN+1 : ‖z + x‖2 = ‖y‖2}.
From Lemma 8 we know that ψy,x has no critical values and, hence, ϕy,x has no critical
values. In particular, we have that

T0∂B(−x, ‖y‖2) ⊆ Im(dUϕy,x) ⊆ Im(dP ϕ).

Finally, as x + T0∂B(−x, ‖y‖2) = CN+1 we conclude that dP ϕ is a surjective mapping
and P is a regular point of ϕ. Now, we apply the Weak Transversality Theorem (cf. [5])
to conclude that there is a residual subset W of UN+1 such that for every U ∈ W , the
mapping

ϕU : M̃ ′ × M̃ −→ CN+1

(y, x) 7→ Uy − x

is transversal to the submanifold {0} of CN+1. In particular, the fiber ϕ−1
U ({0}) is a

(possibly empty) complex submanifold of (complex) dimension satisfying the following
equality:

dim(ϕ−1
U ({0})) = dim(M̃ ′) + dim(M̃)− codimCN+1({0}) = m + p−N + 1, (5)

for every U ∈ W .
On the other hand, let U ∈ W be a unitary matrix. Let M ∩ UM ′ ⊂ IPN (C) be the
projective subset defined by the intersection of M and UM ′ and let ˜M ∩ UM ′ be the cone
over M ∩ UM ′. Namely

˜M ∩ UM ′ = π−1(M ∩ UM ′).

11



Note that the following is a diffeomorphism between ϕ−1
U ({0}) and ˜M ∩ UM ′:

π2 : ϕ−1
U ({0}) −→ ˜M ∩ UM ′
(y, x) 7→ x.

The inverse of π2 is obviously given by the following identity

π−1
2 (x) = (U−1x, x).

Thus, ˜M ∩ UM ′ is a complex submanifold of CN+1 of complex dimension m + p−N + 1
for every U ∈ W . As ˜M ∩ UM ′ is the cone over M ∩UM ′, we also conclude that for every
U ∈ W , M ∩ UM ′ is empty or a complex submanifold of IPN (C) of complex dimension
m + p −N . Noting that M ∩ UM ′ = ∅ if and only if dim(M ∩ UM ′) = m + p −N < 0,
we have achieved the proof of the lemma.

The following statement is a consequence of the application of the general Poincare’s
Formula to the complex projective space. It can be read with detail in the paper by Ralph
Howard [26, pp. 13-18].

Theorem 10 Let M, M ′ be two complex submanifolds of IPN (C), of respective complex
dimensions m, p ∈ N. Let f : M −→ R be a measurable function, such that f is integrable
or f is non–negative. Assume that m + p ≥ N . Then, the following equality holds:

νm[M ′]
∫

M
f dνm =

νp[IPp(C)]νm[IPm(C)]
νp+m−N [IPp+m−N (C)]

∫

U∈UN+1

∫

x∈UM ′∩M
f(x) dνUM ′∩M dUN+1.

In order to prove this statement we just need to apply Lebesgue’s Monotone Convergence
Theorem to obtain this result from the very similar one found in [26, pp. 13-18]. A direct
proof of this result can also be obtained from Federer’s Coarea Formula (cf. [12, Th.
3.2.22]).

Remark 11 Let the reader observe that the integration on UN+1 in the formula above is
done on the residual dense subset W which exists from Lemma 9. Namely,

∫

U∈UN+1

∫

x∈UM ′∩M
f(x) dνUM ′∩M dUN+1 =

∫

U∈W

∫

x∈UM ′∩M
f(x) dνUM ′∩M dUN+1,

where W ⊆ UN+1 is the residual dense subset of these unitary matrices U ∈ UN+1 such
that M ∩UM ′ is a (possibly empty) complex submanifold of complex dimension m+p−N .

Corollary 12 Let f : IPN (C) −→ R be an integrable function or a non–negative function.
Let z ∈ IPN (C) be any point. Then, the following equality holds:

∫

x∈IPN (C)
f(x) dIPN (C) = νN [IPN (C)]

∫

U∈UN+1

f(Uz) dUN+1.

Proof.– Apply Theorem 10 to M = IPN (C) and M ′ = {z}.
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Corollary 13 Let V, V ′ be two equi–dimensional complex quasi–projective varieties of re-
spective dimensions m and p. Assume that m + p − N ≥ 0. Let A ⊂ V , A′ ⊂ V ′ be
two open (for the topology induced by IPN (C)) subsets of V and V ′. Then, for almost
all U ∈ UN+1, V ∩ UV ′ is an equi–dimensional quasi–projective variety of dimension
m + p−N . Moreover, the following equality holds:

νm[A] νp[A′] =
νp[IPp(C)]νm[IPm(C)]
νp+m−N [IPp+m−N (C)]

∫

U∈UN+1

νm+p−N [A ∩ UA′] dUN+1.

Proof.– Let W1 ⊆ UN+1 be the residual dense subset of Lemma 9. Namely, for all
U ∈ W1, Reg(V ) ∩ UReg(V ′) is a (possibly empty) complex submanifold of complex
dimension m+p−N . On the other hand, V \Reg(V ) can be described as a disjoint union
of complex submanifolds of complex dimensions at most m − 1. Similarly, V ′ \ Reg(V ′)
can also be described as a disjoint union of complex submanifolds of complex dimension
at most p− 1. Hence, there is a residual dense subset W2 of UN+1 such that:

U(V ′ \Reg(V ′)) ∩Reg(V ), UReg(V ′) ∩ (V \Reg(V )) and

U(V ′ \Reg(V ′)) ∩ (V \Reg(V ))

are disjoint unions of complex submanifolds of dimension at most m + p−N − 1. Then,
for every U ∈ W = W1 ∩W2 the following properties hold:

• V ∩ UV ′ is a quasi–projective complex variety.

• V ∩ UV ′ is given as a disjoint union of complex submanifolds of dimension at most
m + p−N .

• Reg(V ) ∩ UReg(V ′) is a complex submanifold of complex dimension m + p−N .

• (V ∩ UV ′) \ (Reg(V ) ∩ UReg(V ′)) is a constructible subset of dimension at most
m + p−N − 1.

Hence, V ∩ UV ′ is a quasi–projective variety of dimension m + p − N . Now, there exist
open subsets T, T ′ ⊆ IPN (C) such that A = V ∩ T,A′ = V ′ ∩ T ′ and so we have:

A ∩ UA′ = (T ∩ UT ′) ∩ (V ∩ UV ′).

So, for every U ∈ W , A ∩ UA′ is an open subset of V ∩ UV ′. So, for U ∈ W we have:

νm+p−N [A ∩ UA′] = νm+p−N [(A ∩ UA′) ∩Reg(V ∩ UV ′)] =

= νm+p−N [(A ∩Reg(V )) ∩ (UA′ ∩Reg(UA′))].

Additionally, we have:

νm[A] = νm[A ∩Reg(V )] νm[A′] = νm[A′ ∩Reg(V ′)].

The statement of the corollary follows immediately from Theorem 10 above, applied to
the complex manifolds A ∩Reg(V ) and A′ ∩Reg(V ′).

The following identity relates the geometric degree of an equi–dimensional quasi–projective
variety and its volume. A different proof of this identity for the case that the variety is
algebraic and smooth, may be found in [31, Th. 5.22].
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Corollary 14 Let V ⊆ IPN (C) be an equi–dimensional quasi–projective variety of dimen-
sion m. Then, the following equality holds:

νm[V ] = νm[IPm(C)] deg(V ).

Proof.– Let M := Reg(V ) be the submanifold of all the simple points of V . Let LN−m ⊆
IPN (C) be a linear subspace of dimension N − m. From the proof of Lemma 9 above,
there is a dense residual subset W of UN+1 such that for every U ∈ W , ULN−m and
M are transversal at any common zero. Namely, for every U ∈ W , ULN−m ∩ M is a
zero–dimensional complex submanifold and for every x ∈ ULN−m∩M , the tangent spaces
TxULN−m and TxM are transversal. From [31, Th. 5.16], we conclude that for all U ∈ W ,
](ULN−m ∩M) = ](ULN−m ∩ V ) = deg(V ).
From Corollary 13 above we conclude:

νm[V ] νN−m[LN−m] = νN−m[IPN−m(C)]νm[IPm(C)]
∫

U∈UN+1

](V ∩ ULN−m) dUN+1.

Thus we conclude

νm[V ] νN−m[LN−m] = νN−m[IPN−m(C)]νm[IPm(C)] deg(V ),

and hence the equality above.

Corollary 15 Let V be an equi–dimensional quasi–projective subvariety of IPN (C), of
complex dimension m. Let A ⊆ V be an open subset of V and 0 ≤ ε ≤ 1 be a positive
number. The following equality holds:

νm[A]νN [IPN (C)]ε2N =
∫

x∈IPN (C)
νm[BIP (x, ε) ∩A] dIPN (C).

Proof.– Apply Corollary 13 to A and BIP (e0, ε), obtaining:

νm[A]νN [BIP (e0, ε)] =
νN [IPN (C)]νm[IPm(C)]

νm[IPm(C)]

∫

U∈UN+1

νm[UBIP (e0, ε) ∩A] dUN+1.

Now, use Corollary 12 to see that:
∫

U∈UN+1

νm[UBIP (e0, ε) ∩A] dUN+1 =
1

νN [IPN (C)]

∫

x∈IPN (C)
νm[BIP (x, ε) ∩A] dIPN (C).

So, we have obtained:

νm[A]νN [BIP (e0, ε)] =
∫

x∈IPN (C)
νm[BIP (x, ε) ∩A] dIPN (C).

Now, the following equality holds:

νN [BIP (e0, ε)] = νN [IPN (C)]ε2N ,

and we conclude the result.

The following corollary may be understood as a Bézout Theorem on the average.
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Corollary 16 Let V and V ′ be equi–dimensional quasi–projective subvarieties of IPN (C)
of respective complex dimensions m and p. Suppose that m + p ≥ N . Then, for almost all
U ∈ UN+1, V ∩UV ′ is an equi–dimensional quasi–projective variety of dimension m+p−N
and the following equality holds:

deg(V )deg(V ′) =
∫

UN+1

deg(V ∩ UV ′) dUN+1.

Proof.– Apply Corollary 13 to V and V ′, then use Corollary 14 to replace νm[V ] by
νm[IPm(C)]deg(V ), and the same for V ′ and UV ′ ∩ V .

Remark 17 In [34], a result similar to Corollary 16 is announced without a proof. Com-
bination of the classical Bézout inequality with Corollary 16 yields the following equality:

νUN+1
[U ∈ UN+1 : deg(V ∩ UV ′) 6= deg(V )deg(V ′)] = 0,

for V and V ′ equi–dimensional varieties of respective dimensions m, p with m + p ≥ N .
A similar result to that of Corollary 13 can be stated for the case that the ambient space
is either the real projective space IPN (R) or the N−dimensional sphere SN ⊂ RN+1. In
these cases, the unitary group turns to be the orthogonal group of matrices, also normalized
with total volume 1.
In [26], more consequences of Poincare’s Formula in the real case are exhibited.

3 Extrinsic tubes.

In this Section we prove Theorem 2. Namely, we state upper and lower bounds for the
volume of the intersection of a projective variety with a tube about another projective
variety.
For every two positive integer numbers 1 ≤ m < N , let C(N, m) ∈ Q be the number given
by

C(N, m) := 2
N2N

m2m(N −m)2(N−m)
≤ 2

(
e N

N −m

)2(N−m)

,

where e stands for the basis of the natural logarithms. Then, for every three positive
integer numbers 1 ≤ m′ < m < N , let C(N, m,m′) ∈ Q be the number given by

C(N, m,m′) :=
1
2
C(N,m′)C(N −m′, N −m).

For every subset A ⊂ IPN (C), N > 1 and for every positive real number 0 < ε, let the
tube of radius ε about A be the subset Aε ⊆ IPN (C) defined by the following identity:

Aε := {z ∈ IPN (C) : dIP (z, A) < ε}.

That is, Aε is the set of projective points z ∈ IPN (C) such that the projective distance to
some point in A is smaller than ε.
The following statement is a more technical and precise version of Theorem 2. Note that
the lower bound is a partial answer to the question in the last paragraph of [20, p. 178].
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Theorem 18 Let V, V ′ be two proper equi–dimensional projective varieties of IPN (C), of
respective dimensions m > m′ ≥ 1. Let 0 < ε ≤ 1 be a positive real number. Suppose that
m < N . Then, the following inequality holds:

νm[V ′
ε ∩ V ]

νm[V ]
≤ C(N, m,m′)deg(V ′)ε2(m−m′). (6)

Moreover, if V ′ ⊆ V and 0 ≤ ε ≤
√

2
2 , the following also holds:

νm[V ′
ε ∩ V ]

νm[IPm(C)]
≥ 1

2
ε2(m−m′). (7)

The constant C(N,m) also satisfies the following inequality:

C(N,m) = C(N, N −m) ≤ 2
(

e N

m

)2m

.

Moreover, the following estimate is consequence of [39]:

2
√

π

√
m
√

N −m√
N

(
N

m

)
< C(N,m)1/2 < 2e1/6√π

√
m
√

N −m√
N

(
N

m

)
.

Hence, the constant C(N, m, m′) is essentially equal to the square of the multinomial
coefficient

N !
(m′)!(N −m)!(m−m′)!

.

We start by some technical results that we will use to prove Theorem 18.

3.1 Some Technical Lemmata.

The first technical result is due to H. Federer [11, Th. 4.2]. A more readable version can be
found in [41]. In what follows, H m denotes the usual Hausdorff m−dimensional measure
(cf. [12, p. 171], for instance). Recall that for every complex equi–dimensional affine
algebraic variety V ⊆ CN of dimension m and for every open subset A ⊆ CN , H 2m[V ∩A]
equals the 2m−volume of the regular part of V ∩A, considered as a submanifold of CN .

Lemma 19 (cf. [11],[41]) Let ε > 0 be a positive real number, and let V be an equi–
dimensional algebraic subvariety of CN , of dimension m. Suppose that 0 ∈ V . Then, the
following formula holds:

H 2m[V ∩BCN (0, ε)] ≥ H 2m[BCm(0, 1)]ε2m.

Next statement is a classical formula discovered by Federer that can be found many places
in the literature. Some classic references are [12], [30], [34]. Our formulation bellow has
been taken from [1, p. 241].

Theorem 20 (Coarea Formula) Consider a differentiable map F : M −→ N, where
M,N are Riemannian manifolds of real dimensions n1 ≥ n2. Consider a measurable
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function f : M −→ R, such that f is integrable. Then, for every y ∈ N except a zero–
measure set, F−1(y) is empty or a real submanifold of M of real dimension n1 − n2.
Moreover, the following equality holds (and the integrals appearing on it are well defined):

∫

M
fNJxF dM =

∫

y∈N

∫

x∈F−1(y)
f(x) dF−1(y)dN,

where NJxF is the normal jacobian of F in x, defined as the volume in TF (x)N of the
image by dxF of an unit cube in (TxM) ∩Ker(dxF )⊥ (see [1] for details).

Lemma 21 Let {(AN
i , ϕi) : 0 ≤ i ≤ N} be the atlas of IPN (C) given by the affine charts.

Namely,

ϕi : CN −→ AN
i := {x ∈ IPN (C) : xi 6= 0} ⊆ IPN (C)

(z1, . . . , zN ) 7→ (z1 : · · · : zi : 1 : zi+1 : · · · : zN ).

Then, for every z ∈ CN the following properties hold:

i) For every tangent vector v ∈ TzCN , ‖v‖TzCN = 1, we have

1
1 + ‖z‖2

CN

≤ ‖dzϕi(v)‖Tϕi(z)IPN (C) ≤
1

(1 + ‖z‖2
CN )1/2

.

ii) The normal jacobian of ϕi satisfies

NJz ϕi =
1

(1 + ‖z‖2
CN )N+1

.

iii) For every complex submanifold M ⊆ CN of complex dimension m ≥ 1, and for every
z ∈ M , the normal jacobian of ϕi |M : M −→ ϕi(M) satisfies

1
(1 + ‖z‖2

CN )m+1
≤ NJz(ϕi |M ) ≤ 1

(1 + ‖z‖2
CN )m

.

Proof.– First of all, it is enough to prove the claim for i = 0. Denote ϕ := ϕ0. Namely,

ϕ := ϕ0 : CN −→ AN
0 := {x ∈ IPN (C) : x0 6= 0} ⊆ IPN (C)

(z1, . . . , zN ) 7→ (1 : z1 : · · · : zN ).

Let 0 ∈ CN be the origin and e0 = ϕ(0) = (1 : 0 : · · · : 0) its image. Observe that the
tangent mapping

d0ϕ : T0CN −→ Te0IPN (C)

is an isometry and, hence, NJ0ϕ = 1. Let z ∈ CN be any point, z = (z1, . . . , zN ). Let
U ∈ UN+1, U = (uij)i,j=0...N be an unitary matrix such that Uϕ(z) = e0. Namely,

U

(
1
zt

)
=

(
(1 + ‖z‖2

CN )1/2

0

)
. (8)
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Let U0, . . . , UN be the rows of U . Note that U0 can be chosen to be the complex vector

U0 =
1

(1 + ‖z‖2
CN )1/2

(1, z1, . . . , zN ),

where zi holds for the complex conjugate of zi. Additionally, U1, . . . , UN are orthogonal
to U0. On the other hand, U : IPN (C) −→ IPN (C) is also an isometry at any projective
point and, hence, NJϕ(z)U = 1. Finally, let φ : CN −→ CN be the mapping given by

φ := ϕ−1 ◦ U ◦ ϕ.

Observe that φ(z) = 0 and ϕ ◦ φ = U ◦ ϕ. This yields the following equality between
normal jacobians:

NJ0ϕ NJzφ = NJϕ(z)U NJzϕ.

Hence, we conclude that NJzφ = NJzϕ.
Additionally, for every tangent vector v ∈ TzCN , we have

dzφ(v) =
1

(1 + ‖z‖2
CN )1/2

(
U1

(
0
vt

)
, . . . , UN

(
0
vt

))
,

where vt is the transpose of the vector v. Let v, w ∈ TzCN be two tangent vectors. Then,
we have

< dzφ(v), dzφ(w) >T0CN =
1

1 + ‖z‖2
CN

N∑

i=1

Ui

(
0
vt

)
Ui

(
0
wt

)
,

where · stands for complex conjugation. Hence,

< dzφ(v), dzφ(w) >T0CN =
1

1 + ‖z‖2
CN

[
< v,w >CN −U0

(
0
vt

)
U0

(
0
wt

)]
.

Assume now that < v, z >CN = 0. Then, we have

U0

(
0
vt

)
=

1
(1 + ‖z‖2

CN )1/2
< v, z >CN = 0.

Hence, for every v ∈ TzCN such that < v, z >CN = 0, and for every w ∈ TzCN , the
following equality holds:

< dzφ(v), dzφ(w) >T0CN =
1

1 + ‖z‖2
CN

< v,w >CN .

Now, let {b1, . . . , bN} be an orthonormal frame of TzCN such that bN = 1
‖z‖CN

z. This
implies that < bi, z >TzCN = 0 for i = 1 . . . N − 1. Then, we have

< dzφ(bi), dzφ(bj) >T0CN =
1

1 + ‖z‖2
CN

< bi, bj >CN = 0 i 6= j.

Additionally, for every i, 1 ≤ i ≤ N − 1,

< dzφ(bi), dzφ(bi) >T0CN =
1

1 + ‖z‖2
CN

.
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For i = N , we have

< dzφ(bN ), dzφ(bN ) >T0CN =
1

1 + ‖z‖2
CN

[
1− 1

‖z‖2
CN

U0

(
0
zt

)
U0

(
0
zt

)]
.

Now, observe that:

U0

(
0
zt

)
U0

(
0
zt

)
=

[
U0

(
1
zt

)
− u00

] [
U0

(
1
zt

)
− u00

]
=

‖z‖4
CN

1 + ‖z‖2
CN

.

Thus, we conclude

‖dzφ(bN )‖2
T0CN =

1
1 + ‖z‖2

CN

[
1− ‖z‖2

CN

1 + ‖z‖2
CN

]
=

1
(1 + ‖z‖2

CN )2
.

We immediately obtain claim ii), since

NJzϕ = NJzφ =
N∏

i=1

‖dzφ(bi)‖2
T0CN =

1
(1 + ‖z‖2

CN )N+1
.

Now, let v = TzCN , v =
∑N

i=1 λivi,
∑N

i=1 |λi|2 = 1. Then,

‖dzφ(v)‖2
T0CN =

N∑

i=1

|λi|2‖dzφ(bi)‖2
T0CN =

1
1 + ‖z‖2

CN

(
N−1∑

i=1

|λi|2 + |λN |2 1
1 + ‖z‖2

CN

)
,

which implies
1

1 + ‖z‖2
CN

≤ ‖dzφ(v)‖T0CN ≤ 1
(1 + ‖z‖2

CN )1/2
. (9)

Now, since φ = ϕ−1 ◦ U ◦ ϕ, we have

d0ϕ dzφ(v) = dϕ(z)U dzϕ(v),

where d0ϕ and dϕ(z)U are linear isometries. Thus, we conclude

‖dzφ(v)‖T0CN = ‖dzϕ(v)‖Tϕ(z)IPN (C),

and claim i) follows from inequalities (9) above.
Let us denote by {b′1, . . . , b′N} the image under dzϕ of the basis {b1, . . . , bN}. Namely,

b′i = dzϕ(bi), i = 1 . . . N.

Then, we have proved that {b′1, . . . , b′N} is orthogonal. In fact,

< b′j , b
′
i >Tϕ(z)IPN (C)=< dzφ(bi), dzφ(bj) >T0CN = 0, i 6= j.

Moreover,

‖b′i‖Tϕ(z)IPN (C) =
1√

1 + ‖z‖2
CN

, i = 1 . . . N − 1,
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and
‖b′N‖Tϕ(z)IPN (C) =

1
1 + ‖z‖2

CN

.

Let M ⊆ CN be a complex submanifold of complex dimension m, and let z ∈ M be a
point. Recall that TzM is a m−dimensional complex subspace of TzCN , endowed with the
Hermitian product inherited from that of TzCN . Then, the following expression defines a
linear subspace of TzCN of complex dimension at least m− 1:

W := TzM∩ < {b1, . . . , bN−1} >,

where < {b1, . . . , bN−1} > is the complex subspace of CN generated by these vectors.
Then, we can find an orthonormal frame {c1, . . . , cm} of TzM such that c1, . . . , cm−1 ∈ W .
Hence, for every i = 1 . . . m− 1 we have

‖dz(ϕ |M )(ci)‖Tϕ(z)IPN (C) =
1

(1 + ‖z‖2
CN )1/2

,

and the real number ‖dz(ϕ |M )(cm)‖ is bounded from equation (9). Without loss of
generality we may assume ci = bi, for 1 ≤ i ≤ m− 1. Then, dz(ϕ |M (cm)) belongs to the
complex subspace < b′m, . . . , b′N > and it is orthogonal to the complex subspace generated
by {dz(ϕ |M )(ci) : 1 ≤ i ≤ m− 1}. In particular, we have seen that the family of vectors
{dz(ϕ |M )(c1), . . . , dz(ϕ |M )(cm)} is orthogonal. Thus, the normal jacobian satisfies the
following equality:

NJz(ϕ |M ) =
m∏

i=1

‖dz(ϕ |M )(ci)‖2
Tϕ(z)IPN (C),

and claim iii) follows.

Lemma 22 Let V be an irreducible projective variety in IPN (C) of dimension m ≥ 1. Let
x ∈ V be a point in V and 0 < ε ≤ 1 a positive real number. Then, the following inequality
holds:

νm[V ∩BIP (x, ε)] ≥ νm[IPm(C)]ε2m(1− ε2).

In particular, for every ε > 0 such that ε ≤
√

2
2 , we have

νm[V ∩BIP (e0, ε)] ≥ 1
2
νm[IPm(C)]ε2m.

Proof.– Let AN
0 and ϕ0 be as in the former lemma. Without loss of generality we may

assume that
x = e0 = (1 : 0 : · · · : 0) ∈ V ∩ AN

0 6= ∅.
In particular, the variety V ∩AN

0 is dense in V both for the Zariski and the usual topology.
Note that d0ϕ0 : T0CN −→ Te0IPN (C) is a linear isometry. Additionally, observe that the
following equality holds for every ε, 0 < ε < 1:

ϕ−1
0 (BIP (e0, ε)) = BCN (0,

ε√
1− ε2

). (10)
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This equality follows from the following chain of identities:

dIP (e0, ϕ0(z)) = sin arccos
| < e0, (1, z) >CN+1 |

‖(1, z)‖CN+1

=
‖z‖CN√

1 + ‖z‖2
CN

=
dCN (0, z)√

1 + dCN (0, z)2
,

and, hence,

dCN (0, z) =
dIP (e0, ϕ0(z))√

1− dIP (e0, ϕ0(z))2
,

which leads to equality (10) above.
Let W = Reg(V ) be the complex submanifold of IPN (C) of complex dimension m consist-
ing of the regular points of V . Let W = ϕ−1

0 (W ) be the inverse image of W by ϕ0. W is
the complex submanifold of CN of complex dimension m formed by the regular points of
the algebraic variety V = ϕ−1

0 (V ). From Lemma 21 the following inequality holds:

NJz(ϕ0 |W ) ≥ 1
(1 + ‖z‖2

CN )m+1
.

Now, Theorem 20 yields the following chain of equalities and inequalities:

νm[W ∩BIP (e0, ε)] =
∫

z∈W∩BCN (0, ε√
1−ε2

)
NJz(ϕ0 |W ) dW ≥

≥
∫

z∈W∩BCN (0, ε√
1−ε2

)

1(
1 + ‖z‖2

CN

)m+1 dW ≥ 1(
1 + ε2

1−ε2

)m+1 H 2m

[
W ∩BCN (0,

ε√
1− ε2

)
]

=

= H 2m

[
W ∩BCN (0,

ε√
1− ε2

)
]

(1− ε2)m+1,

where H 2m holds for the usual Hausdorff 2m−dimensional measure. As V \W = ϕ−1
0 (V \

W ) is contained in an affine algebraic subvariety of complex dimension at most m− 1, we
have:

H 2m

[
W ∩BCN (0,

ε√
1− ε2

)
]

= H 2m

[
V ∩BCN (0,

ε√
1− ε2

)
]

.

Next, Lemma 19 implies:

H 2m

[
V ∩BCN (0,

ε√
1− ε2

)
]
≥ H 2m[BCm(0, 1)]

(
ε√

1− ε2

)2m

.

Finally, observe that

H 2m[BCm(0, 1)] =
πm

m!
= νm[IPm(C)].

Thus, we conclude that

νm[V ∩BIP (e0, ε)] ≥ νm[IPm(C)]ε2m(1− ε2).

The following result immediately follows from Lemma 22 above:
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Corollary 23 Let V be a (possibly not equi–dimensional) algebraic projective variety in
IPN (C), and let m be the maximum of the dimensions of its irreducible components. Let
x ∈ V be a point in V and 0 < ε ≤ 1 a positive real number. Then, the following inequality
holds:

νm[V ∩BIP (x, ε)] ≥ C(V, x) νm[IPm(C)]ε2m(1− ε2),

where C(V, x) holds for the number of irreducible components of dimension m of V which
contain x.

Corollary 24 Let V ⊆ IPN (C) be an equi–dimensional algebraic variety of dimension m.
Let 0 < ε < ε1 be two positive real numbers, ε < 1. Assume that ε1 − ε ≤

√
2

2 . Then, the
following inequality holds for every z ∈ Vε,

νm[BIP (z, ε1) ∩ V ]
νm[Pm(C)]

≥ 1
2
(ε1 − ε)2m.

Proof.– As z ∈ Vε, there exists y ∈ V such that dIP (z, y) < ε. Hence,

BIP (z, ε1) ⊇ BIP (y, ε1 − ε).

Thus, Lemma 22 implies the following chain of inequalities:

νm[BIP (z, ε1) ∩ V ]
νm[Pm(C)]

≥ νm[BIP (y, ε1 − ε) ∩ V ]
νm[Pm(C)]

≥ 1
2
(ε1 − ε)2m.

Lemma 25 Let V ⊆ IPN (C) be a projective subspace of complex dimension m. Let 0 <
ε < ε1 ≤ 1 be two positive real numbers. Then, the following inequality holds for every
z ∈ Vε,

νm[BIP (z, ε1) ∩ V ]
νm[Pm(C)]

≥ (ε2
1 − ε2)m 1− ε2

1

(1− ε2)m
.

Proof.– Let AN
0 = IPN (C) \ {x0 = 0} and ϕ = ϕ0 be like in Lemma 21 above. Without

loss of generality we may assume that z = e0 := (1 : 0 : · · · : 0) ∈ Vε. Let z′ ∈ V be a
point such that

dIP (e0, V ) = dIP (e0, z
′) = d < ε.

We may also assume that ε1 < 1, namely z′ ∈ AN
0 ∩ V . As in the proof of Lemma 22

above, we have

dCN (0, ϕ−1(z′)) =
d√

1− d2
≤ ε√

1− ε2
.

Moreover,

νm[V ∩BIP (e0, ε1)] ≥ H 2m

[
ϕ−1(V ) ∩BCN

(
0,

ε1√
1− ε2

1

)]
(1− ε2

1)
m+1.

Now, observe that ϕ−1(V ) ⊆ CN is a linear affine subspace . Hence,

‖ϕ−1(z′)‖CN =
d√

1− d2
= dCN (0, ϕ−1(V )).
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Moreover, ϕ−1(z′) is orthogonal to the vector space of directions of ϕ−1(V ). Namely, for
every x ∈ ϕ−1(V ), x− ϕ−1(z′) and ϕ−1(z′) are orthogonal. Hence, for every x ∈ ϕ−1(V ),

‖x‖2
CN = ‖x− ϕ−1(z′)‖2

CN + ‖ϕ−1(z′)‖2
CN .

This obviously implies that

ϕ−1(V ) ∩BCN

(
ϕ−1(z′),

(
ε2
1

1− ε2
1

− d2

1− d2

)1/2
)
⊆ ϕ−1(V ) ∩BCN

(
0,

ε1√
1− ε2

1

)
.

Now, we apply Lemma 19 to conclude the following chain of inequalities:

H 2m

[
ϕ−1(V ) ∩BCN

(
ϕ−1(z′),

(
ε1

2

1− ε1
2
− d2

1− d2

)1/2
)]

≥

≥ H 2m[BCm(0, 1)]
(

ε1
2

1− ε1
2
− d2

1− d2

)m

≥

≥ H 2m[BCm(0, 1)]
(

ε1
2

1− ε1
2
− ε2

1− ε2

)m

= H 2m[BCm(0, 1)]
(

ε1
2 − ε2

(1− ε1
2)(1− ε2)

)m

.

So, we have:

νm[V ∩BIP (e0, ε1)] ≥ (1− ε1
2)m+1H 2m[BCm(0, 1)]

(
ε1

2 − ε2

(1− ε1
2)(1− ε2)

)m

.

Now, H 2m[BCm(0, 1)] = νm[IPm(C)]. That finishes the proof of the lemma.

3.2 Upper bounds for the volume of a tube in the ambient space.

Now we show a proof of Theorem 1, which is a slight improvement of Theorem 4.2 in [7] (cf.
also the article by Renegar [33]). Namely, we state upper and lower bound estimates on the
volume of projective tubes about complex projective varieties. The following statement is
a technical version of Theorem 1.

Proposition 26 Let V ⊂ IPN (C) be a (possibly singular) projective equi–dimensional
variety of dimension m < N . Then, the following inequalities hold for every positive real
number ε ∈ R, 0 < ε ≤ 1.

ε2(N−m) ≤ νN [Vε]
νN [IPN (C)]

≤ C(N, m)deg(V )ε2(N−m).

In particular,
νN [Vε]

νN [IPN (C)]
≤ 2deg(V )

(
e N ε

N −m

)2(N−m)

.
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Proof.– Let L ⊆ IPN (C) be a fixed projective subspace of dimension N − m. From
Corollary 13 we have

νm[Vε] =
νN [IPN (C)]

νN−m[IPN−m(C)]

∫

U∈UN+1

νN−m[Vε ∩ UL] dUN+1.

As V and UL are projective algebraic varieties of respective dimensions m and N − m,
the Dimension of the Intersection Theorem (cf. [36], [23] for instance) implies

V ∩ UL 6= ∅ ∀ U ∈ UN+1.

Moreover, if z ∈ V ∩ UL the following inequality holds:

νN−m[Vε ∩ UL] ≥ νN−m[BIP (z, ε) ∩ UL] = νN−m[IPN−m(C)]ε2(N−m),

from which the first inequality of the proposition follows.
For the second inequality, observe that if ε > 0 satisfies

√
2

2
N −m

m
≤ ε ≤ 1,

then we have
C(N, m) deg(V )ε2(N−m) ≥ 1.

In fact, it suffices to see that the following function is always greater than 1 in the interval
[1, N − 1]:

f(x) := 2
N2N

x2x(N − x)2N−2x

(√
2

2
N − x

x

)2N−2x

= 2
(

N

x

)2N 1
2N−x

.

Now, f ′(x) ≤ 0 is always negative, and consequently f(x) ≥ f(N − 1) > 1. The second
inequality of the proposition obviously follows in this case.
Assume that 0 < ε < min{1,

√
2

2
N−m

m }. Let ε1 > 0 be another positive real number,
0 < ε < ε1. We consider the quantity

ϕV (ε1, ε) = inf
z∈Vε

(νm[BIP (z, ε1) ∩ V ]).

We will prove that ϕV (ε1, ε) > 0. Then, we have that:

νN [Vε] =
∫

Vε

1 dIPN (C) ≤
∫

z∈Vε

νm[BIP (z, ε1) ∩ V ]
ϕV (ε1, ε)

dIPN (C) ≤

≤ 1
ϕV (ε1, ε)

∫

z∈IPN (C)
νm[BIP (z, ε1) ∩ V ] dIPN (C).

From Corollary 15, we conclude:

νN [Vε] ≤ νN [IPN (C)]
ϕV (ε1, ε)

νm[V ]ε2N
1 .
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Now, from Corollary 14, νm[V ] = νm[IPm(C)]deg(V ). So we conclude:

νN [Vε] ≤ νN [IPN (C)]
ϕV (ε1, ε)

νm[IPm(C)]deg(V )ε2N
1 . (11)

From Corollary 24, the following inequality holds whenever ε1 − ε ≤
√

2
2 and z ∈ Vε:

νm[BIP (z, ε1) ∩ V ]
νm[IPm(C)]

≥ 1
2
(ε1 − ε)2m.

Thus, whenever ε1 − ε ≤
√

2
2 , we have that

ϕV (ε1, ε) ≥ νm[IPm(C)]
1
2
(ε1 − ε)2m.

Finally, we choose ε1 = N
N−mε. Observe that

ε1 − ε =
m

N −m
ε <

m

N −m

√
2

2
N −m

m
=
√

2
2

.

From inequality (11) above we conclude

νN [Vε] ≤
νN [IPN (C)]νm[IPm(C)]deg(V )

(
N

N−mε
)2N

νm[IPm(C)]12
(

m
N−m

)2m
ε2m

= νN [IPN (C)]C(N, m) deg(V )ε2(N−m),

as wanted. The last inequality of the proposition follows from the next obvious inequality.

C(N,m) = 2
(

1 +
N −m

m

)2m (
N

N −m

)2(N−m)

≤ 2
(

eN

N −m

)2(N−m)

.

The estimates in Proposition 26 are essentially optimal in the case that V ⊆ IPN (C) is a
linear projective subspace of dimension m. Namely, we have the following estimate.

Proposition 27 Let V ⊂ IPN (C) be a linear subspace of dimension 1 ≤ m < N . Let
0 < ε be a positive real number satisfying

ε ≤
(

N −m

2N

)1/2

.

Then, the following inequalities hold:
(

N

m

)
ε2(N−m)(1− ε2)m ≤ νN [Vε]

νN [IPN (C)]
≤ 6

√
m

(
N

m

)
ε2(N−m)(1− ε2)m.
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Proof.– The lower bound is in Gray’s article [18]. In fact, observe that [18, Cor. 1.3]
implies

νN [Vε]
νN [IPN (C)]

≥
(

N

m

)
ε2(N−m)(1− ε2)m.

For the upper bound, we follow essentially the same steps as in the proof of Proposition
26, replacing Corollary 24 by Lemma 25. Namely, given two positive real numbers 0 <
ε < ε1 < 1 we define the function

ϕV (ε1, ε) = inf
z∈Vε

(νm[BIP (z, ε1) ∩ V ]).

As in the proof of Proposition 26, we conclude:

νN [Vε] ≤ νN [IPN (C)]
ϕV (ε1, ε)

νm[IPm(C)]ε2N
1 ,

since deg(V ) = 1. Also, from Lemma 25 we have

ϕV (ε1, ε) ≥ νm[IPm(C)](ε2
1 − ε2)m 1− ε2

1

(1− ε2)m
.

Thus, we conclude

νN [Vε] ≤ νN [IPN (C)]
ε2N
1

(ε2
1 − ε2)m

(1− ε2)m

1− ε2
1

.

Assume that ε ≤ (
N−m
2N

)1/2. Then, we choose

ε1 =
(

N

N −m

)1/2

ε ≤
√

2
2

< 1

and we conclude:

νN [Vε] ≤ νN [IPN (C)]
NN

mm(N −m)N−m
ε2(N−m)(1− ε2)m N −m

N −m−Nε2
≤

≤ 2νN [IPN (C)]
NN

mm(N −m)N−m
ε2(N−m)(1− ε2)m.

The following estimate from [39] finishes the proof:

NN

mm(N −m)N−m
< e1/6

√
2π

√
m
√

N −m√
N

(
N

m

)
< 3

√
m

(
N

m

)
.

The following corollary is consequence of Proposition 27.

Corollary 28 Let V be an equi–dimensional projective variety in IPN (C), N > 1, dim(V ) =
m, and z ∈ IPN (C) any point. Let 0 < ε ≤ 1 be a positive real number, such that

ε <
( m

2N

)1/2
.

Then, the following inequality holds for every 1 ≤ m ≤ N − 1:

νm[V ∩BIP (z, ε)]
νm[V ]

≤ 6
√

N −m

(
N

m

)
ε2m(1− ε2)N−m.
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Proof.– Let L be any fixed linear subspace of IPN (C) of dimension N −m.
From Corollary 13 we conclude

νm[V ∩BIP (z, ε)] = νm[IPm]
∫

U∈UN+1

](UL ∩ V ∩BIP (z, ε)) dUN+1.

Hence, we conclude

νm[V ∩BIP (z, ε)] ≤ deg(V )νm[IPm]νUN+1
[U ∈ UN+1 : UL ∩ V ∩BIP (z, ε) 6= ∅] ≤

≤ νm[V ]νUN+1
[U ∈ UN+1 : UL ∩BIP (z, ε) 6= ∅] =

= νm[V ]νUN+1
[U ∈ UN+1 : L ∩ U∗BIP (z, ε) 6= ∅],

where U∗ holds for the conjugate transpose matrix of an unitary matrix U . The mapping
A 7−→ A∗ defines an isometry on UN+1. Hence, we have

νUN+1
[U ∈ UN+1 : L ∩ U∗BIP (z, ε) 6= ∅] = νUN+1

[U ∈ UN+1 : L ∩BIP (Uz, ε) 6= ∅],
since UBIP (z, ε) = BIP (Uz, ε). Let Lε ⊆ IPN (C) be the tube of radius ε about the
projective subspace L and let U(z, L, ε) ⊆ UN+1 be the set given by

U(z, L, ε) := {U ∈ UN+1 : L ∩BIP (Uz, ε) 6= ∅} = {U ∈ UN+1 : Uz ∈ Lε}.
Hence, we have

νm[V ∩BIP (z, ε)] ≤ νm[V ]
∫

UN+1

χU(z,L,ε) dUN+1.

Now, Corollary 12 implies:

νm[V ∩BIP (z, ε)] ≤ νm[V ]
νN [IPN (C)]

∫

IPN (C)
χLε dIPN (C) =

νN [Lε]
νN [IPN (C)]

νm[V ].

Proposition 27 yields:

νm[V ∩BIP (z, ε)]
νm[V ]

≤ 6
√

N −m

(
N

m

)
ε2m(1− ε2)N−m.

3.3 Proof of Theorem 18

In order to prove inequality (6) of Theorem 18 we discuss two main cases. If m−m′
N−m′ ≤ ε ≤ 1,

the quantity on the right is obviously greater than 1 and the inequality immediately follows.
We discuss the upper bound in the case that ε < m−m′

N−m′ < 1. Let ε1 > 0 be a positive real
number such that ε1 + ε < 1. Then, the following holds for every z ∈ IPN (C).

dIP (z, V ′) ≥ ε1 + ε =⇒ BIP (z, ε1) ∩ V ′
ε = ∅. (12)

As in former statements, let e0 := (1 : 0 : · · · : 0) ∈ IPN (C) be a fixed projective point
and let L0 ⊆ IPN (C) be a fixed projective linear subspace of dimension N −m such that
e0 ∈ L0. From Corollary 13 we conclude

νm[V ′
ε ∩ V ]νN−m[BIP (e0, ε1) ∩ L0] =
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νm[IPm(C)]νN−m[IPN−m(C)]
∫

U∈UN+1

][BIP (Ue0, ε1) ∩ V ′
ε ∩ V ∩ UL0] dUN+1.

Now, observe that

][BIP (Ue0, ε1) ∩ V ′
ε ∩ V ∩ UL0] ≤ ][V ∩ UL0] ≤ deg(V ).

On the other hand, if Ue0 /∈ V ′
ε1+ε, then

][BIP (Ue0, ε1) ∩ V ′
ε ∩ V ∩ UL0] = 0.

Thus, let A1 ⊆ UN+1 be the subset given by

A1 := {U ∈ UN+1 : Ue0 ∈ V ′
ε1+ε}.

We conclude that

νm[V ′
ε ∩ V ]νN−m[BIP (e0, ε1) ∩ L0] ≤ νm[IPm(C)]νN−m[IPN−m(C)]

∫

A1

deg(V ) dUN+1.

From Corollary 12 we have
∫

A1

deg(V ) dUN+1 =
1

νN [IPN (C)]

∫

z∈V ′ε1+ε

deg(V ) dIPN (C) =
deg(V )νN [V ′

ε1+ε]
νN [IPN (C)]

.

Thus, we have

νm[V ′
ε ∩ V ]νN−m[BIP (e0, ε1) ∩ L0] ≤ νm[IPm(C)]νN−m[IPN−m(C)]

νN [IPN (C)]
deg(V )νN [V ′

ε1+ε].

Moreover, the following equality holds:

νN−m[BIP (e0, ε1) ∩ L0] = νN−m[IPN−m(C)]ε1
2(N−m).

Thus, we conclude

νm[V ′
ε ∩ V ]ε2(N−m)

1 ≤ νm[V ]
νN [IPN (C)]

νN [V ′
ε1+ε].

From Proposition 26, we obtain

νm[V ′
ε ∩ V ]

νm[V ]
≤ C(N, m′)deg(V ′)

(ε1 + ε)2(N−m′)

ε1
2(N−m)

.

Now, choose ε1 = N−m
m−m′ ε to conclude

νm[V ′
ε ∩ V ]

νm[V ]
≤ C(N, m,m′)deg(V ′)ε2(m−m′).

As for the proof of inequality (7), let L ⊆ IPN (C) be a projective linear subspace of
dimension N −m′. From Corollary 13 we have

νm[V ′
ε ∩ V ] =

νm[IPm(C)]
νm−m′ [IPm−m′(C)]

∫

U∈UN+1

νm−m′ [V ′
ε ∩ V ∩ UL] dUN+1.

28



Now, observe that V ′ ∩ UL 6= ∅ for every U ∈ UN+1, and if z ∈ V ′ ∩ UL we have that:

νm−m′ [V ′
ε ∩ V ∩ UL] ≥ νm−m′ [BIP (z, ε) ∩ (V ∩ UL)].

From Lemma 9, there is a dense residual subset W ⊆ UN+1 such that for every U ∈ W ,
V ∩UL is a projective variety of dimension m−m′. Hence, Lemma 22 implies the following
inequality:

νm−m′ [BIP (z, ε) ∩ (V ∩ UL)] ≥ 1
2
νm−m′ [IPm−m′(C)]ε2(m−m′),

and the claim follows.

4 The Condition Number of Linear Algebra.

In this section we apply Proposition 26 and Theorem 18 to prove Corollary 29, which is a
more general version of Corollary 4.
Just to fix the notations, let n1, n2 ∈ N be two positive integer numbers and letMn1×n2(C)
be the space of n1 × n2 complex matrices. From the natural identification Mn1×n2(C) ≡
Cn1n2 , we also have that IP(Mn1×n2(C)) ≡ IP(Cn1n2) = IPn1n2−1(C). Thus, we can
consider IP(Mn1×n2(C)) endowed with the natural Riemannian structure of IPn1n2−1(C).
From now on, n1 and n2 are considered fixed natural numbers such that n1 ≥ n2 ≥ 2.
The results for 2 ≤ n1 ≤ n2 are totally symmetrical.
Let A ∈ IP(Mn1×n2(C)) be a projective matrix such that rank(A) = n2. Then, the
condition number of A is given by the following formula:

κD(A) := ‖A‖F ‖A†‖2,

where A† stands for the Moore–Penrose inverse of A. Recall that given a projective singular
matrix A ∈ IP(Mn1×n2(C)) such that rank(A) = n2−1, the generalized condition number
of A is also defined to be

κn2−1
D (A) := ‖A‖F ‖A†‖2.

Inside the proofs of this section, for simplicity of notation we do not distinguish between
a projective matrix A ∈ IP(Mn1×n2(C)) and any representant of it. Both elements are
simply denoted by A.
Let Σn2−1 ⊆ IP(Mn1×n2(C)) be the algebraic variety of matrices of rank at most n2 − 1.
Namely,

Σn2−1 := {A ∈ IP(Mn1×n2(C)) : rank(A) ≤ n2 − 1}.
The main result of this Section is the following one.

Corollary 29 With the notations and assumptions as above, the following inequality
holds:

νdim(Σn2−1)[A ∈ Σn2−1 : κn2−1
D (A) > 1

ε ]
νdim(Σn2−1)[Σn2−1]

≤ (e n2
1n

3
2ε)

2(n1−n2+3). (13)

Moreover, in the case that n1 = n2 = n, the following equality holds:

νdim(Σn−1)[A ∈ Σn−1 : κn−1
D (A) > 1

ε ]
νdim(Σn−1)[Σn−1]

≤ 7
10

(n10/3ε)6. (14)
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4.1 Technical statements.

In this subsection we state some technical results to prove Corollary 29. We also recall
some properties of the generalized condition number. Let IP(Mn1×n2(C)) be the projective
space of complex n1×n2 matrices. For every positive integer r, 1 ≤ r ≤ n2, we denote by
Σr the algebraic variety of all the complex matrices of rank at most r. Namely,

Σr := {A ∈ IP(Mn1×n2(C)) : rank(A) ≤ r}.

The first part of the following Proposition is [2, Prop. 1.1]. The equality on the degree
can be read in [22, pp. 243-244], or in [14, p. 261].

Proposition 30 For every positive integer number 1 ≤ r ≤ n2, the set Σr is an irreducible
projective variety of IPn1n2−1(C) of codimension (n2 − r)(n1 − r). Moreover,

deg(Σr) =
n2−r−1∏

i=0

(n1 + i)! i!
(r + i)! (n1 − r + i)!

.

An immediate consequence is the following corollary.

Corollary 31 The following equality on the degree of Σr holds.

deg(Σr) =
n1−r∏

i=1

n2−r∏

j=1

r + i + j − 1
i + j − 1

.

In particular,

deg(Σr) ≤
(

n1

r

)n2−r

, deg(Σr) ≤ (r + 1)(n2−r)(n1−r).

William Kahan, G.W. Stewart and J. Sun have studied the condition numbers for singular
matrices. We refer to [27] and [40] for general background on this topic. However, we
recall some basic concepts and results on these numbers. Recall that given any matrix
A ∈Mn1×n2(C), there exists a Singular Value Decomposition (SVD) of A,

A = U

(
D

0

)
V ∗. (15)

Namely, A = U
(
D
0

)
V ∗ where:

• The matrices U ∈ Un1 and V ∈ Un2 are unitary matrices of respective sizes n1 and
n2, and V ∗ holds for the transpose conjugate of V .

• The matrix D := Diag(σ1, · · · , σn2) ∈Mn2(C) is the matrix of singular values of A,
σ1 ≥ · · · ≥ σn2 ≥ 0.

• The expression
(
D
0

) ∈ Mn1×n2(C) holds for the matrix of n1 rows and n2 columns
obtained by adding to D a zero matrix of size (n1 − n2)× n2.
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Definition 32 (Generalized Condition Number) Let A ∈ Mn1×n2(C) be any ma-
trix. We consider a SVD of A,

A = U

(
D

0

)
V ∗, D := Diag(σ1, · · · , σn2).

For every natural number r, 2 ≤ r ≤ n2, we define the following quantity:

κr
D(A) :=

‖A‖F√
σ2

r + · · ·+ σ2
n2

,

where ‖A‖F :=
√

σ2
1 + · · ·+ σ2

n2
stands the Frobenius norm of A.

This definition is also valid for the projective space of matrices, IP(Mn1×n2(C)), in the
sense that it is does not change under multiplication by a scalar.

In the case that n1 = n2 = n, the generalized condition number κn
D we have defined turns to

be the usual condition number for square matrices, κD(A) := ‖A‖F ‖A−1‖2, A ∈Mn(C).

Lemma 33 The generalized condition number κr
D(A) of a matrix A ∈ Mn1×n2(C) such

that rank(A) = r satisfies the following equality:

κr
D(A) = ‖A‖F ‖A†‖2,

where A† holds for the Moore-Penrose inverse of A.

Proof.– In fact, if D = diag(σ1, · · · , σr, 0, . . . , 0), σ1 ≥ . . . ≥ σr > 0, then A† is given by
the following formula (see [40, pp. 102-104] for details).

A† = V




σ−1
1 0 · · · 0

. . .

σ−1
r

...
...

0
. . .

0 0 · · · 0




U∗ ∈Mn2×n1(C).

So, the equality ‖A†‖2 = σ−1
r immediately follows.

The following result remarks the importance of the generalized condition number as a
measure of the stability of the Moore–Penrose inverse of a given matrix under small per-
turbations. It is an immediate consequence of the Corollary 3.10 in [40, p. 145].

Proposition 34 Let A,A′ ∈ Mn1×n2(C) be two matrices of equal rank r. Then, the
following inequality holds:

‖A† − (A′)†‖F

‖(A′)†‖2
≤
√

2 κr
D(A)

‖A−A′‖F

‖A‖F
.
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Now let us recall the Singular Value Decomposition Theorem.

Theorem 35 (Singular Value Decomposition) Let L and L′ be two linear subspaces
of Cn of dimension m. Then, there are orthonormal frames {v1, . . . , vm} of L and {w1, . . . , wm}
of L′, and real numbers 1 ≥ λ1 ≥ · · · ≥ λm ≥ 0 such that:

< vi, wj >= λiδij .

There are different definitions for the distance between two subspaces of the same dimen-
sion. The following one is widely accepted (c.f. for example [17, p. 76]).

Definition 36 Let LR, L′R be two real linear subspaces of Rn, of equal real dimension m.
Then, we define the projective distance between LR and L′R as follows:

dist(LR, L′R) = ‖πLR − πL′R
‖2,

where πLR (resp. πL′R
) is the orthogonal projection onto LR (resp. L′R), and ‖πLR − πL′R

‖2

is the norm of this map as a linear operator.
The distance between two complex subspaces L,L′ ⊆ Cn of equal dimension m is defined
the same way:

dist(L,L′) = ‖πL − πL′‖2.

Remark 37 Some properties of this distance may be read in [17] and [46]. We cite two
of them:

• Let θ be the largest principal angle (in the sense of [17, p. 603]) between L and L′.
Then, the following equality holds:

dist(L, L′) = sin θ.

• If dim(L) = dim(L′) = 1, then dist(L,L′) = dIP (L,L′) where dIP (L,L′) is the pro-
jective distance between the projective points defined by L and L′.

The following theorem relates the generalized condition number κr
D to the stability of the

solutions of (possibly singular) square systems under perturbations. We guess it has been
proved elsewhere but we have not found an appropriate reference to cite.

Proposition 38 Let A,A′ ∈ Mn(C) be two square matrices, rank(A) = rank(A′) = r.
Let L and L′ be the complex subspaces of dimension m = n − r which are the respective
kernels of A and A′. Namely:

L := {x ∈ Cn : Ax = 0} L′ := {x ∈ Cn : A′x = 0}.

Then, the following inequality holds:

dist(L,L′) ≤ κr
D(A)

‖A′ −A‖2

‖A‖F
.
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Proof.– Let {v1, . . . , vm}, {w1, . . . , wm}, and 1 ≥ λ1 ≥ · · · ≥ λm ≥ 0 be like in Theorem
35, spanning L and L′ respectively. The characterization of dist(L,L′) as the sinus of the
largest principal angle between L and L′ reads:

dist(L,L′) =
√

1− λ2
m.

On the other hand, the following equality holds:

κr
D(A)

‖A′ −A‖2

‖A‖F
=
‖A′ −A‖2

σr
,

where σr holds for the smallest non–zero singular value of A.
So, it suffices to prove the following inequality:

√
1− λ2

m ≤ ‖A′ −A‖2

σr
.

Let the reader observe that the following equality holds:

L⊥ = {w ∈ Cn : V ∗w ∈< e1, . . . , er >},
where A = UDV ∗ is the SVD of A, and < e1, . . . , er > is the subspace of Cn spanned
by the first r vectors of the canonical basis. As a consequence, we observe that for every
vector w ∈ L⊥, the following equality holds:

A†Aw = V

(
Idr 0
0 0

)
V ∗w = w.

So, the following inequalities hold for every vector w ∈ L⊥:

‖w‖2 = ‖A†Aw‖2 ≤ ‖A†‖2‖Aw‖2, =⇒ ‖Aw‖2 ≥ ‖w‖2

‖A†‖2
.

First, suppose that λm = 0. Then, wm ∈ L⊥. So, we have:

‖(A′ −A)wm‖2 = ‖Awm‖2 ≥ 1
‖A†‖2

,=⇒ ‖(A′ −A)‖2 ≥ 1
‖A†‖2

.

From Lemma 33, we conclude that 1
‖A†‖2 = σr. So, in this case we have:

√
1− λ2

m = 1 ≤ ‖(A′ −A)‖2‖A†‖2 =
‖A′ −A‖2

σr
,

and the theorem follows in the case λm = 0.
Now, suppose that λm 6= 0. Let w′m = wm

λm
. Then, we have the following equality:

< vm, w′m − vm >2=
1

λm
< vm, wm >2 −‖vm‖2

2 = 1− 1 = 0.

We define δw = w′m − vm, and δA = A′ −A. We have the following chain of equalities:

‖δw‖2
2

‖w′m‖2
2

= λ2
m < w′m − vm, w′m − vm >2=
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λ2
m < w′m, w′m >2 −λ2

m < w′m, vm > −λ2
m < vm, w′m − vm >2= 1− λ2

m,

and consequently:
‖δw‖2

‖w′m‖2
=

√
1− λ2

m.

So, it suffices to prove that:

‖δA‖2 ≥ σr‖δw‖2

‖w′m‖2
.

Now, we have that δAw′m + Aδw = (A + δA)(vm + δw) = A′w′m = 0, and consequently:

δA
w′m

‖w′m‖2
=
−Aδw

‖w′m‖2
,

Hence,

‖δA‖2 ≥ ‖Aδw‖2

‖w′m‖2
.

So, to finish the proof we must check that:

‖Aδw‖2 ≥ σr‖δw‖2.

Now, observe that δw ∈ L⊥. So, the following inequality holds:

‖Aδw‖2 ≥ 1
‖A†‖2

‖δw‖2.

From Lemma 33, 1
‖A†‖2 = σr and the theorem follows.

The following theorem is usually attributed to Eckart and Young. A brief history on
this result with references to Schmidt and Mirsky can be read in [40, p. 210]. It is an
immediate consequence of Theorem 4.18 in [40, p. 208].

Theorem 39 (Schmidt–Mirsky–Eckart–Young) Let A be a matrix in IP(Mn1×n2(C)).
Let 2 ≤ r ≤ n2 be a natural number. Then, the following holds:

dIP (A,Σr−1) =
1

κr
D(A)

.

Proof.– Theorem [40, p. 208] is the affine version of the theorem. Namely, for any affine
matrix A ∈Mn1×n2(C), the following equality holds:

min
rank(A′) ≤ r − 1
A′ ∈Mn1×n2(C)

‖A′ −A‖F =
√

σ2
r + · · ·+ σ2

n2
,

where σr, . . . , σn2 hold for the last singular values of A. To achieve the projective version of
this result, we choose a representant A such that ‖A‖F = σ2

1 + · · ·+σ2
n2

= 1. Consider the
SVD of A, A = U

(
D
0

)
V ∗. Consider the matrix D′ = Diag(σ1, . . . , σr−1, 0, . . . , 0). Then,

the matrix A′ = U
(
D′
0

)
V ∗ satisfies:

| < A′, A >2 | = σ2
1 + . . . + σ2

r−1 ∈ R, rank(A′) = r − 1, ‖A′‖2
F = σ2

1 + . . . + σ2
r−1.
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Then, the following chain of equalities holds:

dIP (A,A′) =

√
1− (σ2

1 + . . . + σ2
r−1)2

σ2
1 + . . . + σ2

r−1

=
√

σ2
r + · · ·+ σ2

n2
=

1
κr

D(A)
.

Now, let A′ ∈ IP(Mn1×n2(C)) be any projective matrix such that rank(A′) ≤ r − 1. We
can choose a representant of A′ such that:

‖A′‖F = 1− (σ2
r + · · ·+ σ2

n2
), < A′, A >2∈ R0,+.

Then, σ2
r +· · ·+σ2

n2
≤ ‖A′−A‖2

F =< A′−A,A′−A >2= 2−(σ2
r +· · ·+σ2

n2
)−2 < A′, A >2,

and the following chain of equalities holds:

| < A, A′ >2 | ≤
2− 2(σ2

r + · · ·+ σ2
n2

)
2

= 1− (σ2
r + · · ·+ σ2

n2
).

So, the following chain of inequalities holds:

dIP (A,A′) =

√
1− | < A′, A >2 |2

‖A‖2
F ‖A′‖2

F

≥
√

1− (1− σ2
r + · · ·+ σ2

n2
)2

1− σ2
r + · · ·+ σ2

n2

=
1

κr
D(A)

.

That finishes the proof of the lemma.

The following corollaries bound the distribution of κr
D in different subspaces of IP(Mn1×n2(C)).

Corollary 40 For every positive integer number r ∈ N, 2 ≤ r ≤ n2, and for every positive
real number 0 < ε < 1, the probability that a random projective matrix A ∈ IP(Mn1×n2(C))
has a generalized condition number κr

D(A) greater than 1
ε is bounded by the following

formula:

νn1n2−1[A ∈ IP(Mn1×n2(C)) : κr
D(A) > 1

ε ]
νn1n2−1[IP(Mn1×n2(C))]

≤ 2
[

e (n1n2 − 1)
√

r

(n1 − r + 1)(n2 − r + 1)
ε

]2(n1−r+1)(n2−r+1)

.

Moreover, in the case that n1 = n2 = n and r = n− 1, the following inequality holds:

νn2−1[A ∈ IP(Mn(C)) : κn−1
D (A) > 1

ε ]
νn2−1[IP(Mn(C))]

≤ 1
6

(
e n5/2 ε

4

)8

Proof.– From Theorem 39, the following equality holds:

νn1n2−1[A ∈ IP(Mn1×n2(C)) : κr
D(A) > 1

ε ]
νn1n2−1[IP(Mn1×n2(C))]

=
νn1n2−1[A ∈ IP(Mn1×n2(C)) : dIP (A, Σr−1) < ε]

νn1n2−1[IP(Mn1×n2(C))]
.

Proposition 26 immediately yields a bound for this quantity. From Corollary 31 we know
the dimension and the degree of Σr−1. In the particular case that n1 = n2 = n and
r = n − 1, we use the sharp bound of Proposition 26 to obtain the inequality of the
corollary.
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Corollary 41 With the notations above, the following inequality holds:

νr(n2+n1)−r2−1[A ∈ Σr : κr
D(A) > 1

ε ]
νr(n2+n1)−r2−1[Σr]

≤ deg(Σr−1)D(n1, n2, r)ε2(n2+n1−2r+1),

where

D(n1, n2, r) := C(n1n2 − 1, r(n2 + n1)− r2 − 1, (r − 1)(n2 + n1)− (r − 1)2 − 1)

and C(N, m, m′) is as in Theorem 18 for every three positive integer numbers N > m >
m′ ∈ N.

Proof.– From Theorem 39, the following equality holds:

νr(n2+n1)−r2−1[A ∈ Σr : κr
D(A) > 1

ε ]
νr(n2+n1)−r2−1[Σr]

=
νr(n2+n1)−r2−1[A ∈ Σr : dIP (A, Σr−1) < ε]

νr(n2+n1)−r2−1[Σr]
.

Theorem 18 yields a bound for this quantity. The expressions for the dimension and degree
of Σr−1 and Σr are known from Corollary 31.

Remark 42 For fixed n2, n1 and r the bounds we obtain become much better than those
stated in the general results.
With the same technique we can also bound the probability distribution of the generalized
condition number κr′

D in Σr for every possible integer values of n1, n2, r, r
′ such that 1 ≤

r′ ≤ r ≤ n2 ≤ n1.

4.2 Proof of Corollary 29.

We apply Corollary 41 to the case that r = n2 − 1. The constant appearing in Corollary
41 turns to be:

C(n1n2 − 1, n1n2 − n1 + n2 − 2, n1n2 − 2n1 + 2n2 − 5) ≤

≤ 2
(

e n1n2

2n1 − 2n2 + 4

)4n1−4n2+8

(2e)2n1−2n2+6 ≤
(

2e3

16
n2

1n
2
2

)2n1−2n2+6

<

<
(
e n2

1n
2
2

)2n1−2n2+6
.

Moreover, the degree of Σn2−2 is specified in Proposition 30:

deg(Σn2−2) =
(

n1

n2 − 2

)(
n1 + 1
n2 − 1

)
1

n1 − n2 + 3
≤ n

2(n1−n2+2)
2 .

Equation (13) in Corollary 29 follows. As for equation (14), observe that in the case that
n1 = n2 = n are equal,

C(n2 − 1, n2 − 2, n2 − 5) deg(Σn−2) =
1
2
C(n2 − 1, n2 − 5)C(4, 1)

1∏

i=0

(n + i)!i!
(n− 2 + i)!(i + 2)!

=
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2

(
(n2 − 1)n2−1

(n2 − 5)n2−544

44

33

)2
n!(n + 1)!

(n− 2)!(n− 1)!2!3!
=

= 2

((
1 +

4
n2 − 5

)n2−5 (n2 − 1)4

33

)2
n2(n + 1)(n− 1)

12
≤

2
e8

36

n20

12
≤ 7

10
n20,

and the corollary follows.

4.3 The expected value for the Condition Number

In this subsection, we obtain upper bounds for the expected value of the generalized
condition number from the probability distributions above, and we prove Corollary 44,
which is a technical version of Corollary 5 at the Introduction. We will use the following
simple result, which may be a well–known fact in Probability Theory.

Lemma 43 Let X be a positive real valued random variable such that for every positive
real number t > 0

Prob[X > t] < ct−α,

where Prob[·] holds for Probability, and c > 0, α > 1 are some positive constants. Then,
the following inequality holds:

E[X] ≤ c
1
α

α

α− 1
.

Proof.– We use the following equality, which is a well–known fact from Probability Theory.

E[X] =
∫ ∞

0
Prob[X > t] dt,

Then, observe that for every positive real number s > 0,

E[X] =
∫ ∞

0
Prob[X > t] dt ≤ s + c

∫ ∞

s
t−α dt = s + c

s1−α

α− 1
.

Let s := c
1
α , and the lemma follows.

Corollary 44 The expected value of κn−1
D in the space Σn−1 satisfies:

EΣn−1 [κn−1
D ] ≤ c1 n10/3,

where c1 := 6
5

(
7
10

)1/6 ≤ 1.14 is this positive constant. Moreover, the expected value of
κn−1

D in the whole space IP(Mn(C)) satistifes

EMn(C)[κ
n−1
D ] ≤ c2 n5/2,

where c2 := 2 e
7

1
61/8 ≤ 0.621 is this positive constant.
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Proof.– From Corollary 29, we know that

νdim(Σn−1)[A ∈ Σn−1 : κn−1
D (A) > 1

ε ]
νdim(Σn−1)[Σn−1]

≤ 7
10

(n10/3ε)6.

Hence, for every positive real number t > 0, the probability that a randomly chosen
singular matrix A ∈ Σn−1 satisfies κn−1

D (A) > t is at most

νdim(Σn−1)[A ∈ Σn−1 : κn−1
D (A) > 1

1/t ]

νdim(Σn−1)[Σn−1]
≤ 7

10
n20 1

t6
.

The first estimation of the corollary follows from Lemma 43 above. As for the second
one, from Corollary 40 we know that the probability that a randomly chosen matrix
A ∈ IP(Mn(C)) satisfies κn−1

D (A) > t is at most

νn2−1[A ∈ IP(Mn(C)) : κr
D(A) > 1

1/t ]

νn2−1[IP(Mn(C))]
≤ 1

6

[
e n5/2

4

]8
1
t8

.

The corollary follows from Lemma 43.

4.4 Some other applications.

Corollary 45 Let 1 < n ∈ N be a natural number, and let SIMn(C) ⊆ Mn(C) be the
set of symmetric matrices of size n. Then IP(SIMn(C)) is a complex projective space of
dimension n(n+1)

2 − 1. Moreover, the following inequality holds:

νn2+n
2

−1
[A ∈ IP(SIMn(C)) : κn

D(A) > 1
ε ]

νn2+n
2

−1
[IP(SIMn(C))]

≤ 2
[
e

(
n2 + n

2
− 1

)√
n ε

]2

.

Proof.– From Theorem 39, the following equality holds:

νn2+n
2

−1
[A ∈ IP(SIMn(C)) : κn

D(A) > 1
ε ]

νn2+n
2

−1
[IP(SIMn(C))]

=
νn2+n

2
−1

[A ∈ IP(SIMn(C)) : dIP (A, Σn−1) < ε]

νn2+n
2

−1
[IP(SIMn(C))]

.

Observe that this is not enough to achieve the proof of the corollary. We prove the following
formula:

νn2+n
2

−1
[A ∈ IP(SIMn(C)) : dIP (A, Σn−1) < ε]

νn2+n
2

−1
[IP(SIMn(C))]

=

νn2+n
2

−1
[A ∈ IP(SIMn(C)) : dIP (A, Σn−1 ∩ IP(SIMn(C))) < ε]

νn2+n
2

−1
[IP(SIMn(C))]

. (16)

First, observe that it suffices to prove equality (16) for the set of symmetric matrices such
that the have all the singular values distinct and non–zero. In fact, the complementary of
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this set is a zero-measure subset of IP(SIMn(C)) and does not affect to the estimates on
the volume.
Let A ∈ IP(SIMn(C)) be a symmetric matrix. Let A = UDV ∗ be its SVD, and suppose
that the singular values of A, σ1, . . . , σn, are all distinct and non–zero. Suppose A =
U1DV ∗

1 , A = U2DV ∗
2 are two SVDs of A. The following equalities hold:

U1DV ∗
1 = U2DV ∗

2 , U1D
2V ∗

1 = U2D
2V ∗

2 .

Given any matrix A′ ∈ IP(Mn(C)), and given two natural numbers 1 ≤ i, j ≤ n, we denote
by (A′)ij the corresponding entry of the matrix A′. Then, the following equalities hold:

(U∗
2 U1)ij = (V ∗

2 V1)ij
σi

σj
, (U∗

2 U1)ij = (V ∗
2 V1)ij

σ2
i

σ2
j

, i, j = 1 . . . n.

From the fact that σ1, . . . , σn are all distinct and non–zero, we deduce that

(U∗
2 U1)ij = 0 if i 6= j.

So, U∗
2 U1 is a diagonal matrix, and the same can be said of V ∗

1 V2. Now, let D′ =
Diag(σ1, . . . , σn−1, 0) be the matrix obtained by replacing the last element of D by 0.
As we have seen in the proof of Theorem 39, the following equality holds:

dIP (A,Σn−1) = dIP (A,UD′V ∗).

So, to prove equation (16) we must check that UD′V ∗ ∈ IP(SIMn(C)). From the fact
that A is symmetric, we deduce that:

UDV ∗ = (V ∗)tD(U)t.

This implies that V tU and V ∗(U∗)t are diagonal matrices, and they commute with D
and D′. Moreover, V ∗(U∗)t = U∗(V ∗)t and V tUV ∗(U∗)t = V tUU∗(V ∗)t = Idn. As a
consequence, the following chain of equalities holds:

UD′V ∗ = (V ∗)tV tUD′V ∗(U∗)tU t = (V ∗)tD′V tUV ∗(U∗)tU t = (V ∗)tD′U t.

This proves that UD′V ∗ ∈ IP(SIMn(C)) and equation (16) follows. From Proposition
26 we deduce the bound for the right hand term of equation (16), provided that Σn−1 ∩
IP(SIMn(C)) is a projective subvariety of IP(SIMn(C)) of codimension 1 and degree
bounded by the Bézout Inequality:

deg(Σn−1 ∩ IP(SIMn(C)) ≤ deg(Σn−1) = n.

Corollary 46 Let Bij(C) ⊆Mn1×n2(C) be the set of matrices A of the following shape:

A =
(

A1 0
0 A2

)
,
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where A1 ∈Mi×j(C),A2 ∈M(n1−i)×(n2−j)(C). That is,

Bij(C) ≡Mij(C)⊕M(n1−i)×(n2−j)(C)

can be identified with the direct sum of Mij(C) and M(n1−i)×(n2−j)(C). Then IP(Bij(C))
is a complex projective space of dimension ij + (n1 − i)(n2 − j) − 1, and the following
inequality holds:

νij+(n1−i)(n2−j)−1[A ∈ IP(Bij(C)) : κn2
D (A) > 1

ε ]
νij+(n1−i)(n2−j)−1[IP(Bij(C))]

≤

≤ 2
[
e(ij + (n1 − i)(n2 − j)− 1)

n1 − n2 + 1
√

n2 ε

]2(n1−n2+1)

.

Proof.– From Theorem 39, the following equality holds:

νij+(n1−i)(n2−j)−1[A ∈ IP(Bij(C)) : κn2
D (A) > 1

ε ]
νij+(n1−i)(n2−j)−1[IP(Bij(C))]

=

=
νij+(n1−i)(n2−j)−1[A ∈ IP(Bij(C)) : dIP (A, Σn2−1) < ε]

νij+(n1−i)(n2−j)−1[IP(Bij(C))]
.

Observe that this is not enough to achieve the proof of the corollary. We prove the following
formula:

νij+(n1−i)(n2−j)−1[A ∈ IP(Bij(C)) : dIP (A, Σn2−1) < ε]
νij+(n1−i)(n2−j)−1[IP(Bij(C))]

=

νij+(n1−i)(n2−j)−1[A ∈ IP(Bij(C)) : dIP (A, Σn2−1 ∩ IP(Bij(C))) < ε]
νij+(n1−i)(n2−j)−1[IP(Bij(C))]

. (17)

In fact, let A ∈ IP(Bij(C)). Let A′ ∈ Σn2−1 be a singular matrix such that dIP (A, Σn2−1) =
dIP (A,A′). From the expression of A′ (see Theorem 39) it is obvious that A′ ∈ IP(Bij(C))
and equation (17) follows. Now, from Proposition 26 we obtain a bound for the right
hand term in equation (17), provided that Σn2−1 ∩ IP(Bij(C)) is a projective subvariety of
IP(Bij(C)) of codimension n1 − n2 + 1 and degree bounded by the Bézout Inequality:

deg(Σn2−1 ∩ IP(Bij(C))) ≤ deg(Σn2−1) ≤ nn1−n2+1
2 .

We obtain the following inequality:

νij+(n1−i)(n2−j)−1[A ∈ IP(Bij(C)) : dIP (A, Σn2−1 ∩ IP(Bij(C))) < ε]
νij+(n1−i)(n2−j)−1[IP(Bij(C))]

≤

2
[
e(ij + (n1 − i)(n2 − j)− 1)

n1 − n2 + 1
√

n2 ε

]2(n1−n2+1)

.

The reader may observe that Corollaries in this Section are particular cases of the more
general statement that follows:
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Theorem 47 Let r be a positive integer number, 2 ≤ r ≤ n2. Let C ⊆ IP(Mn1×n2(C))
be an equi–dimensional algebraic variety of dimension m. Suppose that there exists an
equi–dimensional algebraic variety C′ ⊆ IP(Mn1×n2(C)) of dimension m′ < m such that
for every projective matrix A ∈ C the following property holds:

dIP (A, Σr−1) = dIP (A, C′).

Then, the following inequality holds:

νm[{A ∈ C : κr
D > ε−1}]

νm[C] ≤ C(n1n2 − 1, m,m′) deg(C′)ε2(m−m′),

where C(n1n2 − 1, m,m′) is the constant defined in Section 3.

Proof.– From Theorem 39, the following equality holds:

νm[{A ∈ C : κr
D > ε−1}]

νm[C] =
νm[{A ∈ C : dIP (A, Σr−1) < ε}]

νm[C] .

Thus,
νm[{A ∈ C : κr

D > ε−1}]
νm[C] =

νm[{A ∈ C : dIP (A, C′) < ε}]
νm[C] ,

and the claim follows from Theorem 18.
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