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Abstract

These pages summarize some results on the efficiency of polynomial equation solving.
We focus on semantic algorithms, i.e., algorithms whose running time depends on
some intrinsic/semantic invariant associated with the input data. Both computer
algebra and numerical analysis algorithms are discussed. We show a probabilistic and
positive answer to Smale’s 17th problem. Estimates of the probability distribution of
the condition number of singular complex matrices are also exhibited.

1.1 Introduction

These pages summarize some results on upper and lower complexity bounds in Elim-
ination Theory. They are a revision of the program stated in Pardo (1995).

We focus on Efficient Polynomial Equation Solving. This is one of the challenges in
the recent history of Computational Mathematics. Two main frameworks in scientific
computing deal with this problem. Following different approaches, symbolic/algebraic
computing and numerical analysis developed their own techniques for solving polyno-
mial equations. We survey statements of both approaches. New results are contained
in Sections 1.4 and 1.5.

Multivariate Polynomial Equation Solving is a central topic both in Computational
Mathematics and Computational Algebraic Geometry (Elimination Theory in nine-
teenth century terminology). Its origin goes back to Sturm, Hermite, Cayley, and
Sylvester, among others. Elimination Theory consists of the preparation of input
data (polynomial equations and inequalities) to answer questions involving quanti-
fiers. This approach also underlies Kronecker (1882), Hilbert (1890) and further
developments in Algebraic Geometry. A central problem in Elimination Theory is
the following:

Problem 1 (Hilbert’s Nullstellensatz) Design an efficient algorithm that performs
the following task:
Given a system of multivariate polynomial equations

f1, . . . , fs ∈ C[X1, . . . , Xn],

decide whether the following algebraic variety is empty or not:

V (f1, . . . , fs) := {x ∈ Cn : fi(x) = 0, 1 ≤ i ≤ s}.
Here the term efficient refers to computational complexity. In the words of Traub &
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Werschultz (1998): “computational complexity is a measure of the intrinsic computa-
tional resources required to solve a mathematical problem”. Computational resources
are measured in terms of a computational model or computational device that per-
forms the corresponding algorithm that solves the problem. Intrinsic here means that
we measure resources required by the problem and not the concrete algorithm. Hence,
computational complexity is the design and analysis of an optimal algorithm (in terms
of computational resources) that solves a mathematical problem.

The notion of computational resource requirements is found in the mathematical
literature for many years, although not always in a explicit form. For instance, we
cite Galois who explicitly described computational requirements in his Mémoire sur la
Résolubilité des Équations par Radicaux. Galois wrote: “En un mot, les calculs sont
impracticables”. Galois had developed an algorithm that decides whether a univariate
polynomial equation is solvable by radicals, but he realized that the computational
complexity required by his procedure is excessive. The phrase thus means that he
declined to perform calculations. In fact, he had discovered a central subject in
computational complexity: Intractability.

In Galois’ time, neither the notion of algorithm nor a complexity measure had been
established. This relevant step in mathematics history was done circa 1933. The
works of Gödel, Church and Turing established the notion of algorithm which in later
years lead to the existence of computers. We note that Turing’s work and his machine
concept of algorithm also became the standard pattern for computational complexity.
In these pages, we shall measure computational resources in terms of Turing machines
as much as is possible.

Computational resources are measured as functions of the input length. The input
length is the time we need to write down the data. The (running) time function is the
function that relates input length and running time under a concrete computational
model.

Intractability is one of the frustrating aspects of computational complexity studies.
A mathematical problem is intractable if the computational resources required to
solve it are so excessive that there is no hope of solving the problem in practice.
Observe that intractability is independent of the algorithm we design. For example,
mathematical problems whose running time is at least exponential in the input length
are naturally intractable. These are called exponential problems and there is no hope
of solving them in any real or future computer. The reason is that this exponential
time requirement is intrinsic to the problem and not to the concrete algorithm or
computer.

Tractable problems are those mathematical problems whose time function is bounded
by a polynomial of the input length. Between tractability and intractability there is
a wide range of problems for which nobody knows whether they are tractable or not.
We call them the Boundary of Intractability (cf. Garey & Johnson (1979)). Hilbert’s
Nullstellensatz lies in this boundary. This simply means that no one has yet designed
a tractable algorithm that solves Hilbert’s Nullstellensatz, and it also means that no
one has yet proved that this problem is intractable. That is, it is not known whether
there is an algorithm that solves HN in running time which depends polynomially
on the number of variables.

There are several strategies for studying the computational complexity of Hilbert’s
Nullstellensatz. We classify them in two main groups: syntactical and semantical.
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Although these pages are mainly concerned with semantical strategies, we shall sketch
some of the syntactical achievements in the study of HN.

Syntactical strategies are characterized by the fact that polynomials are considered
as lists of coefficients (dense encoding) in certain vector spaces. They are then treated
as vectors and linear algebra methods are applied to answer questions (mainly those
involving quantifiers).

Historically, the first syntactical algorithm for HN goes back to Hilbert and his
student Hermann (cf. Hermann (1926)). Hilbert and Hermann reduced HN to the
consistency of a system of linear equations.

Hilbert’s Nullstellensatz (Hilbert (1890)) states that given a list of polynomials
f1, . . . , fs ∈ C[X1, . . . , Xn] of degree at most d, the complex algebraic variety they
define V (f1, . . . , fs) ⊆ Cn is empty if an only if there are polynomials g1, . . . , gs ∈
C[X1, . . . , Xn] such that the following equality holds:

1 = g1f1 + · · ·+ gsfs. (1.1)

Identities such as (1.1) are called Bézout Identities.
From Hermann’s work, we know that there is a function D(d, n) which depends only

on the number of variables and the maximum of the degrees, such that the following
equivalence holds:

The variety V (f1, . . . , fs) ⊆ Cn is empty if and only if there exist polynomials
g1, . . . , gs in C[X1, . . . , Xn] of degree at most D(d, n) satisfying identity (1.1).

Let us observe that Hermann’s bound D(d, n) reduces HN to the consistency ques-
tion of a system of linear equations. The unknowns are the coefficients of the (possibly
existing) polynomials g1, . . . , gs occurring in (1.1). The linear equations are deter-
mined by linear functions in the coefficients of the input polynomials f1, . . . , fs. This
approach reduces HN to the problem of deciding consistency of the linear system
given by (1.1) involving

s

(
D(d, n) + n

n

)

variables and equations. Its running time is obviously polynomial in this quantity.
Hence, sharp upper bounds for the function D(d, n) also imply sharp upper complexity
bounds for this approach to solving HN. Studies on sharp upper bounds for D(d, n)
are called Effective Nullstellensätze. We cite Brownawell (1987), Caniglia, Galligo & J.
Heintz (1988), Kollár (1988), Berenstein & Yger (1991, 1991a), Krick & Pardo (1996),
Hägele, Morais, Pardo & M. Sombra (2000), Krick, Pardo & Sombra (2001) and
their references. The known bounds for D(d, n) can be summarized by the following
inequalities:

dn−1 ≤ D(d, n) ≤ dn.

Thus, this approach is neither efficient not applicable since the time complexity is of
order (

dn + n

n

)
≈ dn2

.

For example, deciding consistency of a system of cubic polynomial equations in 20
variables by this method requires deciding consistency of a system of more than 3400

linear equations in a similar number of variables. This is intractable in any actual or
future computer.

In Hägele, Morais, Pardo & Sombra (2000) a simply exponential time algorithm
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(time of order dn) to compute Bézout identities was shown, although the technique
used in this paper is not syntactical but semantical.

A second syntactical strategy to deal with HN is due to rewriting techniques. The
most used rewriting method is that of standard/Gröbner basis algorithms. Since the
works Hironaka (1964) and Buchberger (1965), a huge list of references has been pro-
duced (cf. for instance Becker & Weispfenning (1993), Cox, Little & O’Shea (1997),
Mora (2003), Vasconcelos (1998) and references therein). Most of these references
discuss algorithms that compute Gröbner bases of an ideal. This strategy has also
been fruitful in terms of implementations. Gröbner basis algorithmics is a standard
primitive implemented in most computer algebra packages (Maple, Magma or Math-
ematica, for example). Most efficient implementations are due to Faugère (the FGb

series). This approach has a serious drawback in terms of computational complexity.
Since Mayr & Meyer (1982), we know that computing with Gröbner bases is expo-
nential space complete and this is even worse than the running time of methods based
on Effective Nullstellensätze. Computing with Gröbner bases involving more than 15
variables is not yet available. Thus, purely syntactical Gröbner bases techniques do
not seem to be the best methods of dealing with HN.

A third syntactical strategy uses the underlying concepts of Structural Complexity.
Namely, problems are classified into complexity classes and the study of the com-
plexity of a problem consists in locating the appropriate class where this problem is
complete. In Blum, Shub & Smale (1989), the authors proved that HN is complete in
the class NPC of non–deterministic polynomial time under the abstract model of com-
plex Turing machines (cf. also Blum, Cucker, Shub & Smale (1998)). Other authors
studied the complexity of HN within the more realistic Turing machine framework.
In Koiran (1996) (see also Rojas (2001, 2003)) the author proved that HN belongs
to the complexity class PH (polynomial hierarchy).

Nevertheless, all these syntactical strategies seem to forget that we are dealing with
geometric objects (algebraic varieties) and regular mappings (polynomials viewed as
functions and not as mere lists of coefficients). Algebraic varieties and regular map-
pings are mathematical objects rich in terms of semantic invariants. They have been
studied for years as an attempt to describe their topologic, geometric and arithmetic
properties. These studies have generated a large number of semantic invariants that
must be related to computational complexity. This idea of relating semantical invari-
ants to complexity is not completely new. In fact, semantical invariants of geometric
objects have been used to show lower complexity bounds for computational problems
(see, for example, Montaña, Morais & Pardo (1996) and references therein). The
converse problem was to design an algorithm that solves HN in time which depends
polynomially on some semantical invariants of the input list of multivariate polynomi-
als. This was achieved by the TERA experience. This TERA experience was more a
current of thought than a research project that was active during the nineties. Some
of its achievements will be described in Section 1.2.

Somewhere between syntactical and semantical strategies, we may find “sparse”
elimination techniques as in Sturmfels (1996) and references therein. However, we do
not discuss sparse elimination here.

The rest of the chapter is structured as follows. In Section 1.2 we present an
overview of some of the achievements of the TERA experience. In Section 1.3 we dis-
cuss an exponential lower time bound for universal algorithms in Elimination Theory.
In Section 1.4 we show a positive answer to Smale’s 17th Problem. Finally, in Sec-
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tion 1.5 we show sharp upper bounds for the probability distribution of the condition
number of singular matrices.

1.2 Semantic Algorithms

In the middle nineties, the notion of semantic algorithms in Elimination Theory was
introduced. Two works initiated this new generation of algorithms. In Pardo (1995),
the foundations of a research program were established, whereas Giusti, Heintz,
Morais & Pardo (1995) exhibited the first example of a semantical algorithm for
Elimination Theory. The program of Pardo (1995) was achieved in the series of pa-
pers Giusti, Heintz, Morais, Morgenstern & Pardo (1998), Giusti, Hägele, Heintz,
Montaña, Morais & Pardo (1997), Giusti, Heintz, Morais & Pardo (1997). This sec-
tion is devoted to briefly sketch some of these achievements.

First of all, we reformulate Hilbert’s Nullstellensatz in the following form.

Problem 2 Design an efficient algorithm that performs the following task:
Given a list of polynomials f1, . . . , fs, g ∈ C[X1, . . . , Xn] of degree at most d, decide
whether the polynomial g vanishes at some point of the algebraic variety V (f1, . . . , fs) ⊆
Cn.

This is the usual formulation of elimination polynomials (like resultants and dis-
criminants) in classical Elimination Theory. This is also the usual formulation of
NP–complete problems (cf. Heintz & Morgenstern (1993) or Pardo (1995) and ref-
erences therein). Note that all NP–complete problems are particular instances of
Problem 2 above.

In this formulation, the role played by g and the list of f1, . . . , fs seems to be
different.

From a list of polynomials like f1, . . . , fs we want to compute some information
concerning the variety V := V (f1, . . . , fs) of its common zeros. The information we
compute is expected to be used to answer further questions involving the variety
V . This information is commonly called a solution of the input list of polynomials
f1, . . . , fs. For instance, in Problem 2, a solution of f1, . . . , fs should be used to
decide whether a new polynomial g vanishes at some point in V . The way we choose
to represent this information in a computer may be called the encoding of the solution
variety V .

Obviously, different questions will condition the way we represent the information
on the variety V in a computer. Hence, different notions of solution lead to different
kinds of algorithms and different encodings of algebraic varieties. In Section 1.4 we
recall the Shub–Smale notion of solution (approximate zeros) whose potentiality is
still unexplored.

The proposal in Pardo (1995) consists in the design and analysis of a semantic
algorithm that performs the following task:

From an input list f1, . . . , fs, the algorithm outputs a description of the solution
variety V (f1, . . . , fs).

This algorithm must satisfy two main properties:

• Its running time should be bounded by some intrinsic/semantic quantity that de-
pends on the input list.
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• Its output must contain sufficient information to answer any kind of elimination
question like the one described in Problem 2.

These two properties lead to a notion of solution that we briefly sketch here. It is
called Kronecker’s encoding of an affine algebraic variety (cf. Kronecker (1882)).

Let f1, . . . , fi ∈ C[X1, . . . , Xn] be a sequence of polynomials defining a radical ideal
(f1, . . . , fi) of codimension i. Let V := V (f1, . . . , fi) ⊆ Cn be the complex algebraic
variety of dimension n − i given by its common zeros. A Kronecker’s encoding of V

is a birational isomorphism of V with some complex algebraic hypersurface in some
affine complex space of dimension n− i + 1.

Technically, this is is expressed as follows. Firstly, let us assume that the variables
X1, . . . , Xn are in Noether position with respect to the variety V . Namely, we assume
that the following is an integral ring extension:

C[X1, . . . , Xn−i] ↪→ C[X1, . . . , Xn]/(f1, . . . , fi).

Let u := λn−i+1Xn−i+1 + · · ·+ λnXn ∈ Q[X1, . . . , Xn] be a linear form in the depen-
dent variables {Xn−i+1, . . . , Xn}. A Noether’s normalization and the linear mapping
u define a linear projection:

U : Cn −→ Cn−i+1 : (x1, . . . , xn) 7−→ (x1, . . . , xn−i, u(x1, . . . , xn)) .

Let U |V : V −→ Cn−i+1 be the restriction of the projection U to the variety V .
The image set of the projection U |V is a complex hypersurface Hu in Cn−i+1. Let
us denote by χu ∈ C[X1, . . . , Xn−i, T ] the minimal equation of Hu. The polynomial
χu is called the elimination polynomial of u with respect to V .

The linear form u is called a primitive element if and only if the projection U |V
defines a birational isomorphism of V with Hu.

A Kronecker solution of the system of polynomial equations f1 = 0, . . . , fi = 0
consists of a description of the Noether normalization, the primitive element u, the
hypersurface Hu and a description of the inverse of the birational isomorphism, i.e.,
a description of (U |V )−1. Formally, this list of items can be given as follows:

• The list of variables in Noether position X1, . . . , Xn (which includes a description
of the dimension of V ). It is just a regular matrix that defines a linear change of
coordinates that puts the variables in Noether position.

• The primitive element u := λn−i+1Xn−i+1 + · · ·+ λnXn given by its coefficients in
Z (or any other computable subfield of C).

• The minimal equation χu of the hypersurface Hu.
• A description of (U |V )−1. This description can be given by the following list of

polynomials:

– A non–zero polynomial ρ ∈ C[X1, . . . , Xn−i].
– A list of polynomials vj ∈ C[X1, . . . , Xn−i, T ], n− i + 1 ≤ j ≤ n.

These polynomials must satisfy the equality:

(U |V )−1(x, t) =
(
x1, . . . , xn−i, ρ

−1(x)vn−i+1(x, t), . . . , ρ−1(x)vn(x, t)
)
,

for all x := (x1, . . . , xn−i) ∈ Cn−i, t ∈ C, such that (x, t) ∈ Hu, ρ(x) 6= 0.

In 1882, Kronecker conceived an iterative procedure for solving multivariate sys-
tems of equations F := [f1, . . . , fn] defining zero–dimensional complex varieties. Kro-
necker’s idea can be sketched in the following terms:
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First, the procedure starts with system [f1] and it “solves” the equidimensional
variety of codimension one V (f1) ⊆ Cn. Then the procedure runs iteratively: From a
Kronecker encoding of V (f1, . . . , fi), the procedure “eliminates” the polynomial fi+1

to obtain a Kronecker encoding of the “next” variety V (f1, . . . , fi+1). Proceed until
you reach i = n. This iterative procedure has two main drawbacks, which can be
explained in the following terms:

• First of all, the space problem arising with the encoding of the intermediate polyno-
mials. The polynomials χu, ρ and vj are polynomials of high degree (eventually of
degree di) involving n− i+1 variables. Thus, to compute with them, the procedure
has to handle all their coefficients, which amounts to

(
di + n− i + 1

n− i + 1

)
.

For example, for i := n/2 the procedure must save more than dn2/4 coefficients.
Handling such polynomials also requires a time complexity of similar order. This
does not seem to be more efficient than the original treatment based on the Effective
Nullstellensätze (cf. Section 1.1).

• Secondly, Kronecker’s iterative procedure introduces a nesting of interpolation pro-
cedures. This nesting is demanded by the iterative process. Every time the proce-
dure computes a new set of variables in Noether position, the procedure makes a
recursive call of previously computed objects. This increases the time complexity
function to dO(n2).

The procedure was therefore forgotten by contemporary mathematicians and hardly
mentioned in the literature of Algebraic Geometry. Macaulay quotes Kronecker’s pro-
cedure in Macaulay (1916) and so does König (1903). But both of them thought that
this procedure would require excessive running time to be efficient, and so it was pro-
gressively forgotten. Traces of this procedure can be found spread over the Algebraic
Geometry literature without giving the required reference to it. For example, Kro-
necker’s notion of solution was used in Zariski (1995) to define a notion of dimension
for algebraic varieties, claiming that it was also used in the same form by Severi and
others.

In Giusti, Heintz, Morais & Pardo (1995) and Pardo (1995), Kronecker’s approach
for solving was rediscovered without previous knowledge of this ancestor. These two
works were able to overcome the first drawback (space problem of representation) of
the previous methods. The technical trick was the use of a data structure coming
from semi–numerical modeling: straight–line programs. This idea of representing
polynomials by programs evaluating them goes back to previous work of the same
research group (such as Giusti, Heintz (1991, 1993) or Krick & Pardo (1996), see also
the references given in Pardo (1995)).

To overcome the second drawback (nesting), the authors introduced a method based
on non–archimedean Newton’s operator. The approximate zeros in the correspond-
ing non–archimedean basin of attraction were called Lifting Fibers in Giusti, Hägele,
Heintz, Morais, Montaña & Pardo (1997) solving the problem of nesting of interpo-
lation procedures by Hensel’s Lemma (also called the Implicit Mapping Theorem).

Unfortunately, Giusti, Hägele, Heintz, Morais, Montaña & Pardo (1997) introduced
(for the Lifting Fibers) running time requirements which depend on the heights of the
intermediate varieties in the sense of Bost, Gillet & Soulé (1994) or Philippon (1991,
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1994, 1995). This drawback was finally overcome in Giusti, Heintz, Morais & Pardo
(1997), where integer numbers were represented by straight–line programs and the
following result was finally established:

Theorem 1 (Giusti, Heintz, Morais & Pardo (1997)) There exists a bounded error
probability Turing machine M which performs the following task: Given a system of
multivariate polynomial equations F := (f1, . . . , fn), satisfying the following properties

• deg(fi) ≤ d and ht(fi) ≤ h for 1 ≤ i ≤ n (h is the bit length of the coefficients),
• the ideals (f1, . . . , fi) are radical ideals of codimension i in the ring Q[X1, . . . , Xn]

for 1 ≤ i ≤ n− 1,
• the variety V (f1, . . . , fn) ⊆ Cn is a zero–dimensional complex algebraic variety,

then the machine M outputs a Kronecker solution of the variety V (f1, . . . , fn). The
running time of the machine M is polynomial in the quantities

δ(F ), n, h, d, L,

where δ(F ) is the maximum of the degrees of the intermediate varieties (in the sense
of Heintz (1983)), namely

δ(F ) := max{deg(V (f1, . . . , fi)) : 1 ≤ i ≤ n− 1},
and L is the input length in any natural encoding of multivariate polynomials.

It must be said that the coefficients of the polynomials involved in a Kronecker
solution of the variety V (f1, . . . , fn) are given by straight–line programs. However,
the complexity estimates for the Turing machine M are independent of the height.

The quantity δ(F ) becomes a kind of condition number for symbolic methods to
solve systems of multivariate polynomial equations by Kronecker’s deformation tech-
nique.

After Giusti, Heintz, Morais, & Pardo (1997), several new authors got into the
TERA experience, with several technical improvements, mainly on the exponents
occurring in the polynomial upper time bound quoted in Theorem 1. Among them we
can cite Giusti & Schost (1999), Lecerf (2001), Heintz, Matera & Weissbein (2001),
for instance. This dependence on a semantic invariant was also translated to the
problem of computing real solutions of real polynomial equations in the series of
papers Bank, Giusti, Heintz & Mbakop (1997,2001), Bank, Giusti, Heintz & Pardo
(2004, 2005). The algorithm was successfully implemented by Lecerf and Salvy. This
implementation, involving some technical variations, was presented in Giusti, Lecerf
& Salvy (2001).

Despite the expected good behavior in practical applications, the package Kronecker
was not sufficiently efficient to deal with a reasonable number of variables. Hence, a
deeper revision of the original goals was needed. Firstly, the reader should observe
that the geometric degree of any input system δ(F ) is generically equal to its worst
case value (the Bézout number D :=

∏n
i=1 deg(fi)). Secondly, this Bézout number is

exponential in the number of variables and so is its running time on average. Thus,
Kronecker’s solving can only be efficient for a few particular instances (when δ(F )
is “small”). Up to now, we have not found a good class of natural problems with
“small” geometric degree δ(F ).
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1.3 Universal Solving

TERA experience and the results of the package Kronecker lead to two central ques-
tions:

• Is Bézout’s number D a barrier for the complexity of polynomial equations solvers?.
• In case of a positive answer, then explain the meaning of this barrier.

An attempt to answer these two questions was the notion of Universal Algorithms
and the results shown in Heintz, Matera, Pardo & Wachenchauzer (1998), Pardo
(2000), and Castro, Giusti, Heintz, Matera & Pardo (2003). Roughly speaking, a
polynomial equation solver is universal if its output contains sufficient information to
answer all elimination questions concerning the solution variety. All known algorithms
(either syntactical or semantical) in Elimination Theory are universal. Formalizing
this idea requires some additional terminology.

Another feature of semantic algorithms is that they can be adapted to any par-
ticular data structure used to represent input polynomials. Data structures of input
polynomials are typically defined by a regular morphism from some space of parame-
ters to some space of input data. This can be formalized as follows.

Let Pd ⊆ C[X1, . . . , Xn] be the vector space of all complex polynomial of degree at
most d. For a list of degrees (d) := (d1, . . . , dn), let P(d) be the Cartesian product

P(d) :=
n∏

i=1

Pdi .

The vector space of dense input encoding P(d) represents the class of systems of
multivariate polynomials F := [f1, . . . , fn] ∈ P(d). We denote by V (F ) ⊆ Cn the set
of its common zeros, if any. Namely,

V (F ) := {x ∈ Cn : fi(x) = 0, 1 ≤ i ≤ n}.
For every constructible subset W ⊆ Cm, a data structure for input systems and
parameters in W is a regular mapping

Φ : W ⊆ Cm −→ P(d).

The mapping Φ associates to every parameter α ∈ W a system of multivariate poly-
nomial equations Fα ∈ P(d). The image set Im(Φ) is the particular class of systems
we want to solve and the varieties V (Fα) ⊆ Cn are the solution varieties. The con-
structible set W is called the source space and its dimension dim(W ) ≤ m is called
the source dimension. In standard applications, the dimension m of the source space
is much smaller than the dimension N of P(d).

A polynomial equation solver adapted to the unirational family Φ takes as input a
system Fα in Im(Φ) and outputs some encoding of the solution variety V (Fα) ⊆ Cn.
The encoding of V (Fα) is written as a point in some affine space CM . Once again,
the dimension M is usually much greater than the source dimension.

For example, the semantic algorithm described in Section 1.2 associates to every
α ∈ W a Kronecker description of V (Fα). Namely, we represent V (Fα) by the list of
coefficients of all polynomials occurring in a Kronecker description of V (Fα). This can
be done in some affine space CM , where M is a quantity polynomial in the number
of variables and linear in some quantity δ(Φ) given as the maximum of the geometric
degrees of input systems in Im(Φ). Namely,

δ(Φ) := {deg(V (Fα)) : α ∈ W}.
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Generically, δ(Φ) equals the Bézout number D :=
∏n

i=1 di and, hence, it is exponential
in the number of variables n. A similar phenomenon can be observed using either
Cayley–Chow encoding or Macaulay’s encoding of equidimensional algebraic varieties.

This yields the model described in Castro, Giusti, Heintz, Matera & Pardo (2003)
that we briefly sketch. In the sequel, a unirational family of elimination problems is
a regular morphism

ε : W ⊆ Cm −→ CM .

The space CM is called the target space, a point y ∈ Im ε ⊆ CM is called a target
point (also a semantical object), and the dimension M of the target space is called
the target dimension. In the previous notation, for every α ∈ W , ε(α) is the encoding
of the solution variety V (Fα), where Fα ∈ Im(Φ) ⊆ P(d).

Given a unirational family of elimination problems ε, a mathematical question con-
cerning target points y ∈ Im ε ⊆ CM is simply a transformation of the target space
in a neighborhood of (Im ε, y). Namely, a transformation is the germ of a mapping

θ : (CM , y) −→ (C`, q).

The space C` is called the space of answers, and its dimension ` is called the dimension
of the space of answers. Usual mathematical questions concern spaces of answers
of small dimension (with respect to the target dimension). For example, decisional
questions are transformations of the semantical object into some unidimensional space
of answers, i.e., transformations of the form

θ : (CM , y) −→ (C, q).

We claim that the goal of Elimination Theory is the design of algorithms that answer
questions concerning target points of unirational families of polynomials.

As the target dimension is usually too big, efficient elimination procedures evaluate
an alternative mapping:

µ : W ⊆ Cm −→ Cs.

We call µ a black–box. It is usually evaluated by an algorithm whose particular form
will not be discussed here.

A versal black–box associated with a unirational family of elimination problems
ε : W −→ CM is a mapping µ : W −→ Cs such that the following property holds:
For every source point α ∈ W and every question θ : (CM , ε(α)) −→ (C`, z) there
is a germ of a mapping ρ : (Cs, µ(α)) −→ (C`, z) such that the following diagram
commutes:

(W,α) −→ε (Im ε, ε(α)) −→θ (C`, z)

µ ↘ ↗ ρ

(Im µ, µ(α))

For every source point α, the point µ(α) ∈ Cs is called the output encoding of the
target ε(α). The number s of coordinates of µ(α) is called the output length.

Proposition 2 For every unirational family of elimination problems ε : W −→ CM

and a black–box µ : W −→ Cs, the following properties are equivalent:
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(i) µ is a versal black–box associated with ε.
(ii) For every source point α ∈ W there is a mapping germ ρα : (Cs, µ(α)) −→

(CM , ε(α)) such that the following diagram commutes.

(W,α) −→ε (Im ε, ε(α))

µ ↘ ↑ ρα

(Im µ, µ(α))

The germ ρα is called the interpolation procedure of the versal black–box µ at α.

Let ε : W −→ CM be a unirational family of elimination problems and let µ :
W −→ Cs be some versal black–box associated with ε. We say that µ is certified if
there is a mapping

ϕ : Im ε −→ Im µ,

such that µ = ϕ ◦ ε.

Definition 3 Let ε : W −→ CM be a unirational family of elimination problems. A
universal black–box associated with ε is a versal and certified black–box µ : W −→ Cs

such that the following properties hold :

(i) The black–box µ is holomorphic.
(ii) For every source point α ∈ W the interpolation procedure ρα of µ is the germ

of a holomorphic mapping.

Definition 4 A polynomial equation solver is called universal if for every unirational
family of elimination problems ε : W −→ CM the procedure generates a universal
black–box µ : W −→ Cs associated with ε.

Theorem 5 There is a sequence
(
εn : Wn ⊆ Cm(n) −→ CM(n)

)
n∈N of unirational

families of polynomials such that for every n ∈ N the following holds:

(i) The input length is linear in n. Namely, m(n) = O(n).
(ii) The degree of the input space Wn and that of the regular mapping εn are also

linear in n.
(iii) There is an explicit description of the input space Wn of length linear in n.
(iv) The target dimension M(n) is exponential in n.
(v) For every n ∈ N and every universal black–box µn : Wn −→ Csn associated

with εn the output length sn is exponential in the source dimension, i.e.,

sn ≥ 2n.

This technical statement can also be stated in the following terms.

Corollary 6 (Castro, Giusti, Heintz, Matera & Pardo (2003)) Every universal poly-
nomial equation solver requires exponential running time. In particular, the procedure
described in Section 1.2 above is essentially optimal as universal polynomial equation
solver.
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As shown in Castro, Giusti, Heintz, Matera & Pardo (2003), we can always asso-
ciate to every unirational family of elimination problems, a certified black–box whose
output length is linear in the source dimension. Namely, the smoothness condition
on ρα is a necessary condition for Theorem 5 to hold. However, non–smooth exact
interpolation procedures are difficult to figure out.

It is also possible to define the notion of universal solver in a numerical analysis
context. For example, the algorithms implemented by Verschelde and collaborators
(cf. Verschelde (2000) and references therein) are universal polynomial solvers. A
universal numerical analysis solver takes as input a list of multivariate polynomial
equations F ∈ P(d) and outputs approximations for all zeros ζ ∈ V (F ). Since the
average number of zeros equals the Bézout number D, it is immediate that universal
numerical solvers also require exponential running time.

Corollary 6 must not be understood as a negative result. It is asking for a new
generation of algorithms: Non universal polynomial equations solvers. The output
of a non universal solver will contain only partial information about the variety of
solutions. This simple idea also leads to a long series of new problems and questions.
The obvious and first is nevertheless the most difficult to answer: Which questions
can be answered with the information provided by a non universal algorithm? Much
more experience with non universal solvers is still required before facing this question.

An example of a symbolic, semantic and non universal polynomial equation solver
was given in San Mart́ın & Pardo (2004). However, the worst case complexity of this
algorithm is also exponential in the number of variables and, hence, intractable.

The search for non universal solvers naturally leads to numerical analysis polyno-
mial system solvers.

1.4 Shub & Smale Approximate Zero Theory: Bézout 51
2

In the first half of the nineties, Shub and Smale introduced a seminal conception of the
foundations of numerical analysis. They focused on a theory of numerical polynomial
equation solvers in the series of papers Shub & Smale (1993, 1993a, 1993c, 1994,
1996). Other authors also treated this approach as Blum, Cucker, Shub & Smale
(1998), Dedieu (2001b, 2003), Kim (1988, 1989), Malajovich (1994), Malajovich &
Rojas (2002), Yakoubsohn (1995) and references therein.

Shub and Smale’s theory on approximate zeros provides an answer to the barrier
question stated in Section 1.3. The new results of this section are taken from the still
unpublished manuscript Beltrán & Pardo (2005).

As in Shub & Smale (1994), the input space is the space of systems of multivariate
homogeneous polynomials with dense encoding and fixed degree list. Namely, for
every positive integer d ∈ N, let Hd ⊆ C[X0, . . . , Xn] be the vector space of all
homogeneous polynomials of degree d. For a list of degrees (d) := (d1, . . . , dn) ∈ Nn,
let H(d) be the set of all systems F := [f1, . . . , fn] of homogeneous polynomials of
respective degrees deg(fi) = di, 1 ≤ i ≤ n. In other words, H(d) :=

∏n
i=1 Hdi .

We denote by N + 1 the complex dimension of the vector space H(d). Note that
N + 1 is the input length for dense encoding of multivariate polynomials. For every
system F ∈ H(d), we also denote by V (F ) the projective algebraic variety of its
common zeros. Namely,

V (F ) := {x ∈ IPn(C) : fi(x) = 0, 1 ≤ i ≤ n}.
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Note that with this notation V (F ) is always a non–empty projective algebraic variety.
In Beltrán & Pardo (2005), the following statement is proven. It represents a

positive answer to Problem 17th of Smale (2000).

Theorem 7 There is a bounded error probabilistic numerical analysis procedure that
solves most systems of multivariate polynomial equations with running time polyno-
mial in

n,N, d.

The probability that a system F ∈ H(d) is solved by this procedure is greater than

1− 1
N

.

In this statement the term “solves” means the “algorithm outputs non universal
information” about the variety of solutions, whereas the term “most” means “with
high probability of success”. The precise meaning of this theorem requires some
additional technical notions.

A non universal numerical analysis solver takes as input a system F ∈ H(d) and
outputs local information on some (mostly just one) of the zeros ζ ∈ V (F ). The
local information (close to a zero) we compute is the information provided by an
approximate zero z ∈ IPn(C) of F associated with some zero ζ ∈ V (F ) (in the sense
of Shub & Smale (1993) or Shub (1993)).

For every input system F ∈ H(d), let NF be the projective Newton operator as
introduced in Shub (1993). According to Shub & Smale (1993a), an approximate
zero z ∈ IPn(C) of a system F ∈ H(d) with associated zero ζ ∈ V (F ) ⊆ IPn(C) is
a projective point such that the sequence of iterates (Nk

F (z))k∈N is well–defined and
converges to the actual zero ζ ∈ V (F ) at a speed which is doubly exponential in the
number of iterations. In this sense, the approximate zero z is rich in local information
about the zero ζ ∈ V (F ). In Castro, Hägele, Morais & Pardo (2001), the authors
also observed that approximate zeros with rational coordinates contain not only local
information about the associated zero, but also algebraic information. But we will
not discuss these aspects here.

These basic notions stated, a non universal numerical analysis solver is an algorithm
that has the following input/output structure:

Input: A system of homogeneous polynomial equations F ∈ H(d).

Output: An approximate zero z ∈ IPn(C) of F associated with some zero ζ ∈ V (F ).

Such kinds of algorithms are not conceived for solving all input systems but a large
subclass of them. In principle, singular systems are not intended to be solved by our
procedure. This corresponds to a further (and more delicate) analysis.

Let Σ ⊆ H(d) be the class of systems F such that V (F ) contains a singular zero. We
call Σ the discriminant variety. These pages are mainly concerned with procedures
that solve systems without singular zeros (i.e., systems F ∈ H(d) \ Σ).

Our main algorithmic scheme is Newton’s Homotopic Deformation in the projective
space (as described in Shub & Smale (1996)): Given F,G ∈ H(d) \Σ, we consider the
“segment” of systems “between” F and G,

Γ := {Ft := (1− t)G + tF, t ∈ [0, 1]}.
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If Γ ∩ Σ = ∅, there are non–intersecting and smooth curves of equations–solutions
associated with this segment:

Ci(Γ) := {(Ft, ζt) : ζt ∈ V (Ft), t ∈ [0, 1]}, 1 ≤ i ≤ D :=
n∏

i=1

di.

Then, Newton’s operator may be used to follow closely one of these curves Ci(Γ) in
the incidence variety. This procedure computes some approximate zero z1 associated
with some zero of F (i.e., t = 1) starting at some approximate zero z0 associated
with G (i.e., from t = 0). The following definition formalizes this strategy based on a
Newton Homotopic Deformation Technique.

Definition 8 A Newton’s Homotopic Deformation scheme (NHD for short) with
initial data (G, z0) ∈ H(d) × IPn(C) and resource function ϕ : H(d) × R+ −→ R+ is
an algorithmic scheme based on the following strategy:

Input: F ∈ H(d), ε ∈ R+.

• Perform ϕ(F, ε) “homotopic steps” following the segment (1 − t)G + tF , t ∈
[0, 1], starting at (G, z0), where z0 is an approximate zero of G associated with
some zero ζ0 ∈ V (G).

Output:

either failure, or
an approximate zero z1 ∈ IPn(C) of F .

An algorithm following NHD scheme is an algorithm that constructs a polygonal
P with ϕ(F, ε) vertices. The initial vertex of P is the point (G, z0) and its final
vertex is the point (F, z1) for some z1 ∈ IPn(C). The output of the algorithm is
the value z1 ∈ IPn(C). The polygonal is constructed by “homotopic steps” (path
following methods) that go from one vertex to the next. Hence, ϕ(F, ε) is the number
of homotopic steps performed by the algorithm. Different subroutines have been
designed to perform each one of these “homotopic steps”. One of them is projective
Newton’s operator as described in Shub & Smale (1993), Shub (1993), Malajovich
(1994).

The positive real number ε is currently used both to control the number of steps
(through the function ϕ(F, ε)) and the probability of failure (i.e., the probability that
a given input F ∈ H(d) is not solved in ϕ(F, ε) steps with initial pair (G, z0)).

Initial pairs with optimal tradeoff between number of steps and probability of failure
are wanted. The following notion is an attempt to fix what this means.

Definition 9 Let ε > 0 be a positive real number. We say that an initial pair
(G, z0) ∈ H(d) × IPn(C) is ε–efficient for NHD scheme if there is an algorithm based
on NHD scheme with initial pair (G, z0) such that the following properties hold:

(i) The resource function (i.e., the number of steps) ϕ(F, ε) is bounded by a poly-
nomial in the quantities ε−1, n, N, d, where d := max{di : 1 ≤ i ≤ n}.

(ii) The probability of “failure” (i.e., the probability that a system is not solved) is
at most ε.
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Observe that a pair (G, z0) ∈ H(d) × IPn(C) may be ε–efficient for some positive
real number ε > 0 and not ε′–efficient for ε′ < ε.

Moreover, the main outcome in Shub & Smale (1994) proves that for every positive
real number ε > 0, there is at least one ε–efficient initial pair (Gε, ζε) ∈ H(d)×IPn(C).
This statement is an absolute breakthrough regarding the efficiency of numerical
analysis polynomial equation solving. It leads to the following procedure based on
NHD scheme:

Input: F ∈ H(d), ε ∈ R+.

• Compute (Gε, ζε) (the ε–efficient initial pair whose existence is guaranteed by Shub
& Smale (1994)).

• Perform a polynomial (in ε−1, n,N, d) number of homotopic steps following the seg-
ment (1− t)G + tF , t ∈ [0, 1], starting at (Gε, ζε).

Output:
either failure, or
an approximate zero z ∈ IPn(C) of F .

The procedure seems to give an answer since it may compute approximate zeros
for most systems of homogeneous polynomial equations. Here, most means with
probability greater than 1− ε.

However, it has three main drawbacks. First of all, Shub & Smale (1994) prove the
existence of some ε−efficient initial pair, but they give no hint about how to compute
such a pair (Gε, ζε). Note that if there is no method to compute (Gε, ζε), then the
previous scheme is not properly an algorithm (you cannot “write” (Gε, ζε) and then
you cannot start computing). Shub & Smale (1994) used the term “quasi–algorithm”
to explain the result they obtained, whereas Problem 17th in Smale (2000) asks for
a “uniform algorithm”. In a broad sense, this scheme is close to an “oracle machine”
where the initial pair (Gε, ζε) is given by some undefinable oracle. Moreover, the lack
of hints on ε–efficient initial pairs leads both to “Smale’s Conjecture” (as in Shub &
Smale (1994)) and to Smale’s 17th problem.

A second drawback is the dependence of (Gε, ζε) on the value ε.
Thirdly, the reader should observe that the initial pair (Gε, ζε) must be solved

before we can perform any computation. Namely, ζε must be an approximate zero
of Gε. In fact, Shub & Smale (1994) proved the existence of such (Gε, ζε) assuming
that ζε is a true zero of Gε (i.e., ζε ∈ V (Gε)). This means that we not only need to
start at some approximate zero of Gε but it seems that we need to start at a true and
exact zero of this initial system.

Thus, any algorithm based on this version of NHD requires some “a priori” tasks
not all of them simple:
First, you have to detect some system of equations Gε such that some of its zeros ζε

yields an ε−efficient initial pair (Gε, ζε). Secondly, you need to “solve” the system
Gε in order to compute the “exact” solution ζε.

As “exact” solutions do not seem a good choice, we must proceed in the opposite
manner. We must start at some complex point ζε ∈ IPn(C), given a priori. And
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then, we must prove that there is a system Gε vanishing at ζε such that (Gε, ζε) is
an ε−efficient initial pair. The existence of such a kind of system Gε for any given
ζε ∈ IPn(C) easily follows from the arguments in Shub & Smale (1994). But, once
again, no hint on how to find Gε from ζε seems to be known.

In Beltrán & Pardo (2005) we exhibit a solution to these drawbacks. We found
a probabilistic approach and, hence, we can give an efficient uniform (i.e. true)
algorithm that solves most systems of multivariate polynomial equations. This is
achieved using the following notation.

Definition 10 A class G ⊆ H(d) × IPn(C) is called a correct test class (also questor
set) for efficient initial pairs if for every ε > 0 the probability that a randomly chosen
pair (G, ζ) ∈ G is ε–efficient is greater than

1− (nNd)O(1)ε,

where O(1) denotes some fixed constant independent of ε, d and n.

Note the analogy between these classes of efficient initial systems and the classes of
“correct test sequences” (also “questor sets”) for polynomial zero tests (as in Heintz
& Schnorr (1982), Krick & Pardo (1996) or Castro, Giusti, Heintz, Matera & Pardo
(2003)). The following is shown in Beltrán & Pardo (2005).

Theorem 11 For every degree list (d) = (d1, . . . , dn) there is a questor set G(d) for
efficient initial pairs that solves most of the systems in H(d) in time which depends
polynomially on the input length N of the dense encoding of multivariate polynomials.

The existence of a questor set for initial pairs G(d) ⊆ H(d) × IPn(C) yields another
variation (of a probabilistic nature) on the algorithms based on NHD schemes. First
of all, note that the class G(d) does not depend on the positive real number ε > 0
under consideration. Thus, we can define the following NHD scheme based on some
fixed questor set G(d).

Input: F ∈ H(d), ε ∈ R+.

• Guess at random (G, ζ) ∈ G(d).
• Perform a polynomial (in ε−1, n,N, d) number of homotopic steps following the seg-

ment (1− t)G + tF , t ∈ [0, 1], starting at (G, ζ).

Output:
either failure, or
an approximate zero z ∈ IPn(C) of F .

Observe that the questor set G(d) is independent of the value ε under consideration.
However, the existence of such a questor set does not imply the existence of an
algorithm. In fact, a simple existential statement as Theorem 11 will not be better
than the main outcome in Shub & Smale (1994).

In Beltrán & Pardo (2005), we exhibit an algorithmically tractable subset G(d)

which is proven to be a questor set for efficient initial pairs. This rather technical
class can be defined as follows:
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Let ∆ be the Kostlan matrix as defined in Shub & Smale (1993a). Using this
matrix, Shub & Smale (1993a) define a Hermitian product 〈·, ·〉∆ on H(d) which is
invariant under certain natural action of the unitary group Un+1 on H(d). We denote
by ||·||∆ the norm onH(d) defined by 〈·, ·〉∆. This Hermitian product 〈·, ·〉∆ also defines
a complex Riemannian structure on the complex projective space IP(H(d)). This
complex Riemannian structure on IP(H(d)) induces a volume form dν∆ on IP(H(d))
and hence a measure on this manifold. The measure on IP(H(d)) also induces a
probability on this complex Riemannian manifold. Moreover, for every subset A ⊆
IPn(C) the probability ν∆[A] induced by dν∆ agrees with the Gaussian measure of
its projecting cone Ã ⊆ H(d). In the sequel, volumes and probabilities in H(d) and
IP(H(d)) always refers to these probabilities and measures defined by 〈·, ·〉∆.

Let us now fix a projective point e0 := (1 : 0 : · · · : 0) ∈ IPn(C). Let L0 ⊆ H(d) be
the class of systems of homogeneous polynomial equations given by the property:
A system F := [`1, . . . , `n] ∈ H(d) belongs to L0 if and only if for every i, 1 ≤ i ≤ n,
there is a linear mapping λi : Cn −→ C such that the following equality holds:

`i := Xdi−1
0 λi(X1, . . . , Xn).

Let V0 ⊆ H(d) be the class of all homogeneous systems F ∈ H(d) that vanish at e0.
Namely,

V0 := {F ∈ H(d) : e0 ∈ V (F )}.
Note that L0 is a vector subspace of V0.

Next, let L⊥0 be the orthogonal complement of L0 in V0 with respect to Kostlan’s
metric 〈·, ·〉∆. Note that L⊥0 is the class of all systems F ∈ H(d) that vanishes at e0

and such that its derivative DF (e0) also vanishes at e0. Namely, it is the class of all
systems of polynomial equations of order at least 2 at e0.

Let Y be the following convex affine set, obtained as the product of closed balls:

Y := [0, 1]×B1(L⊥0 )×B1(Mn×(n+1)(C)) ⊆ R× CN+1,

where B1(L⊥0 ) is the closed ball of radius one in L⊥0 with respect to the canonical
Hermitian metric and B1(Mn×(n+1)(C)) is the closed ball of radius one in the space
of n × (n + 1) complex matrices with respect to the standard Frobenius norm. We
assume Y is endowed with the product of the respective Riemannian structures and
the corresponding measures and probabilities.

Let τ ∈ R be the real number given by

τ :=

√(
n2 + n

N

)
.

Now, let us fix any mapping φ : Mn×(n+1)(C) −→ Un+1 such that for every matrix
M ∈ Mn×(n+1)(C) of maximal rank, φ associates a unitary matrix φ(M) ∈ Un+1

verifying Mφ(M)e0 = 0. Namely, φ(M) transforms e0 into a vector in the kernel
Ker(M) of M . Our statements below are independent of the chosen mapping φ that
satisfies this property.

Next, let us denote by e⊥0 the orthogonal complement of the affine point (1, 0, . . . , 0) ∈
Cn+1 with respect to the standard Hermitian metric in Cn+1. Note that we may
identify e⊥0 with the tangent space Te0IPn(C) to the complex manifold IPn(C) at
e0 ∈ IPn(C).
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For every matrix M ∈ Mn×(n+1)(C) of maximal rank, we may define a linear
isomorphism `M := Mφ(M) : e⊥0 −→ Cn.

Let us define a mapping ψ0 : Mn×(n+1)(C) −→ L0 in the following terms. For
every matrix M ∈Mn×(n+1)(C), we associate the system of homogeneous polynomial
equations ψ0(M) ∈ L0 given by the equality:

ψ0(M) := [Xd1−1
0 d

1/2
1 λ1(X1, . . . , Xn), . . . , Xdn−1

0 d1/2
n λn(X1, . . . , Xn)] ∈ L0,

where `M := [λ1, . . . , λn] : e⊥0 −→ Cn is the linear mapping defined by the matrix
Mφ(M).

Define a mapping G(d) : Y −→ V0 in the following terms. For every (t, h, M) ∈ Y ,
let G(d)(t, h, M) ∈ V0 be the system of homogeneous polynomial equations given by
the identity:

G(d)(t, h,M) :=
(
1− τ2t

1
n2+n

)1/2 ∆−1h

||h||2 + τt
1

2n2+2n ψ0

(
M

||M ||F

)
∈ V0.

Finally, let G(d) be the class defined by the identity:

G(d) := Im(G(d))× {e0} ⊆ H(d) × IPn(C). (1.2)

Note that G(d) is included in the incidence variety and that all systems in Im(G(d))
share a common zero e0. Hence initial pairs in (G, z) ∈ G(d) always use the same
exact zero z = e0. In particular, they are all solved by construction.

We assume that the set G(d) is endowed with the pull–back probability distribution
obtained from Y via G(d). Namely, in order to choose a random point in G(d), we
choose a random point y ∈ Y , and we compute (G(d)(y), e0) ∈ G(d).

The following statement has been shown in Beltrán & Pardo (2005).

Theorem 12 (Main) With the above notation, the class G(d) defined by identity
(1.2) is a questor set for efficient initial pairs in H(d).

More precisely, for every positive real number ε > 0, the probability that a randomly
chosen data (G, e0) ∈ G(d) is ε–efficient is greater than

1− ε.

Additionally, for these ε–efficient pairs (G, e0) ∈ G(d), the probability that a ran-
domly chosen input F ∈ H(d) is solved by NHD with initial data (G, e0) performing
O(n5N2d4ε−2) steps is at least

1− ε.

As usual, the existence of questor sets immediately yields a probabilistic algorithm.
This is Theorem 7 above, which is an immediate consequence of Theorem 12. The
following corollary shows how this statement applies.

Corollary 13 There is a bounded error probability algorithm that solves most homo-
geneous systems of cubic equations (namely inputs are in H(3)) in time of order

O(n13ε−2),

with probability greater than 1− ε.
Taking ε = 1

n4 for instance, this probabilistic algorithm solves a cubic homogeneous
system in running time at most O(n21) with probability greater than 1− 1

n4 .
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However, randomly choosing a pair (G, e0) ∈ G(d) is not exactly what a com-
puter can perform. We need a discrete class of ε−efficient initial systems. This is
achieved by the following argument (that follows those in Castro, San Mart́ın & Pardo
(2002,2003)).

Observe that Y ⊆ R × CN+1 may be seen to be a real semi–algebraic set under
the identification R× CN+1 ≡ R2N+3. Let H ≥ 0 be a positive integer number. Let
Z2N+3 ⊆ R2N+3 be the lattice consisting of the integer points in R2N+3. Let Y H be
the set of points defined as follows:

Y H := Y ∩ Z2N+3[
1
H

],

where Z2N+3[ 1
H ] is the lattice given by the equality:

Z2N+3[
1
H

] := { z

H
: z ∈ Z2N+3}.

Observe that (4N +6)(log2 H +1) is a bound for the number of binary digits required
to write any point y ∈ Y H in a computer.

For any positive real number H > 0, we denote by GH
(d) ⊆ G(d) the finite set of

points given by the equality:

GH
(d) := {(G(d)(y), e0) : y ∈ Y H}.

We consider GH
(d) endowed with the pull–back probability distribution obtained

from Y H via G(d). Namely, in order to choose a random point (g, e0) ∈ GH
(d), we

choose a random point (uniform distribution) y ∈ Y H and we compute the point
(G(d)(y), e0) ∈ G(d). Then, the following statement also holds.

Theorem 14 (Beltrán & Pardo (2005)) There exists a universal constant C > 0 such
that for every two positive real numbers ε > 0,H > 0 satisfying

log2 H ≥ CnN3 log2 d + 2 log2 ε−1,

the following properties hold.

• The probability (uniform distribution) that a randomly chosen data (G, e0) ∈
GH

(d) is ε–efficient is greater than

1− 2ε.

• For ε−efficient initial pairs (G, e0) ∈ GH
(d), the probability that a randomly

chosen input F ∈ H(d) is solved by NHD with initial data (G, e0) performing
O(n5N2d4ε−2) steps is at least

1− ε.

Theorem 12 and its consequences represent a small step forward in the theory in-
troduced by Shub and Smale. It simply shows the existence of a true, although prob-
abilistic, algorithm that computes partial information of solution varieties for most
homogeneous systems of polynomial equations in time which depends polynomially
on the input length.

However, things are not as optimistic as they appear. First of all, the algorithm
we propose here is probabilistic and, hence, “uniform” as demanded in Smale (2000).
Obviously, a deterministic version is also desirable. Nevertheless, we consider this
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a minor drawback that time and some investment of scientific effort will probably
overcome.

The second drawback is more important. The algorithm, its efficiency and its
probability of success depends upon the generic (dense) encoding of input polynomials.
Namely, it is based on the full space H(d) of input systems. This seems to be an
overly mathematical working hypothesis. Note that the aim of such kind of result
is essentially that of explaining why computational numerical analysis methods run
efficiently in real life computing, even when there is no well–founded reason proving
their efficiency.

In real life computing, problems modeled by polynomial equations have some struc-
ture and are a subset of the generic class of polynomials in dense encoding. Namely,
real life problems provide inputs that belong to some particular subclasses of poly-
nomial data (as unirational families of input systems given by regular mappings
Φ : W ⊆ Cm −→ H(d)).

Theorem 12 states that G(d) is a questor set of initial pairs for generic input data.
However, it does not mean that F is also a questor set for input systems F in a
unirational family of data like Im(Φ). As we claimed in Section 1.3, source dimension
is usually much smaller than the dimension N+1 of the space of input systems. Hence,
Im(Φ) is commonly a set of measure zero and it may be unfortunately contained in
the class of systems for which G(d) does not apply. Hence the question is whether this
algorithmic scheme (or anything inspired by these ideas) can be adapted to particular
classes of input data.

In order to deal with this open question, we need to reconsider most of the studies
done by Shub and Smale on the generic case H(d), this time applied to special subsets
Im(Φ) of H(d).

Theorem 12 owes much of its strength to the good behavior of the probability
distribution of a condition number µnorm in the full space of generic inputs H(d).
This is the main semantic invariant involved in the complexity of numerical analysis
polynomial equation solvers (as remarked in Shub & Smale (1993)).

Any answer to the above adaptability question requires a preliminary study on
the behavior of the probability distribution of the condition number for non–linear
systems when restricted to submanifolds, subvarieties and particular subclasses of the
generic space H(d).

In the next section we illustrate some of the main difficulties that may arise in such
a study. We deal with the adaptability question of a simpler problem. We study the
probability distribution of the condition number associated with the class of singular
matrices. It contains some of the main results of Beltrán & Pardo (2004a, 2004b).

1.5 The Distribution of the Condition Number of Singular Complex
Matrices

Condition numbers in linear algebra were introduced in Turing (1948). They were
also studied in Goldstine & von Neumann (1947) and Wilkinson (1965). Variations
of these condition numbers may be found in the literature of numerical linear algebra
(cf. Demmel (1988), Golub & van Loan (1996), Higham (2002), Trefethen & Bau
(1997) and references therein).

A relevant breakthrough was the study of the probability distribution of these
condition numbers. Works as Smale (1985) and, mainly, Edelman (1988, 1992) showed
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the exact values of the probability distribution of the condition number of dense
complex matrices.

From a computational point of view, these statements can be translated into the
following terms. Let P be a numerical analysis procedure whose space of input data is
the space of arbitrary square complex matrices Mn(C). Then, Edelman’s statements
mean that the probability that a randomly chosen dense matrix in Mn(C) is a well–
conditioned input for P is high.

Sometimes, however, we deal with procedures P whose input space is a proper sub-
set C ⊆ Mn(C). Additionally such procedures with particular data lead to particular
condition numbers κC adapted both for the procedure P and the input space C. Edel-
man’s and Smale’s results do not apply with these constraints. In Beltrán & Pardo
(2004a, 2004b) we introduced a new technique to study the probability distribution
of condition numbers κC . Namely, we introduce a technique to exhibit upper bound
estimates for the quantity

vol[{A ∈ C : κC(A) > ε−1}]
vol[C] , (1.3)

where ε > 0 is a positive real number, and vol[·] is some suitable measure on the space
C of acceptable inputs for P.

As an example of how our technique applies, let C := Σn−1 ⊆ Mn(C) be the
class of all singular complex matrices. In Kahan (2000) and Stewart & Sun (1990), a
condition number for singular matrices A ∈ C is considered. This condition number
measures the precision required to perform kernel computations. For every singular
matrix A ∈ Σn−1 of corank 1, the condition number κn−1

D (A) ∈ R is defined by the
identity

κn−1
D (A) := ‖A‖F ‖A†‖2,

where ‖A‖F is the Frobenius norm of the matrix A, A† is the Moore–Penrose pseudo–
inverse of A and ‖A†‖2 is the norm of A† as a linear operator.

As Σn−1 is a complex homogeneous hypersurface in Mn(C) (i.e., a cone of complex
codimension 1), it is endowed with a natural volume vol induced by the 2(n2 −
1)−dimensional Hausdorff measure of its intersection with the unit disk. In Beltrán
& Pardo (2004b), we prove the following statement.

Theorem 15 With the same notation and assumptions as above, the following in-
equality holds:

vol[A ∈ Σn−1 : κn−1
D (A) > ε−1]

vol[Σn−1]
≤ 18n20ε6,

This statement is (almost) immediate consequences of a wider class of results that we
state below.

First of all, most condition numbers are by nature projective functions. For exam-
ple, the classical condition number κ of numerical linear algebra is naturally defined
as a function on the complex projective space IP(Mn(C)) defined by the complex
vector space Mn(C). Namely, we may see κ as a function

κ : IP(Mn(C)) −→ R+ ∪∞.

Secondly, statements like the Schmidt–Mirsky–Eckart–Young Theorem (cf. Schmidt
(1907), Eckart & Young (1936), Mirsky (1963)) imply that Smale’s and Edelman’s
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estimates are, in fact, estimates of the volume of a tube about a concrete projective
algebraic variety in IP(Mn(C)).

In Beltrán & Pardo (2004b), we prove a general upper bound for the volume of a
tube about any (possibly singular) complex projective algebraic variety (see Theorem
16 below).

Estimates on volumes of tubes is a classic topic that began with Weyl’s Tube
Formula for tubes in the affine space (cf. Weyl (1939)). Formulae for the volumes of
some tubes about analytic submanifolds of complex projective spaces are due to Gray
(2004) and references therein. However, Gray’s results do not apply even in Smale’s
and Edelman’s case. Nor does it to particular classes C, as above. Firstly, Gray’s
statements are only valid for smooth submanifolds and not for singular varieties (as,
for instance, Σn−1). Secondly, Gray’s theorems are only valid for tubes of small
enough radius (depending on intrinsic features of the manifold under consideration)
which may become dramatically small in the presence of singularities. These two
drawbacks motivated us to search for a general statement that may be stated as
follows.

Let dνn be the volume form associated with the complex Riemannian structure of
IPn(C). Let V ⊆ IPn(C) be any subset of the complex projective space and let ε > 0
be a positive real number. We define the tube of radius ε about V in IPn(C) as the
subset Vε ⊆ IPn(C) given by the identity:

Vε := {x ∈ IPn(C) : dIP (x, V ) < ε},
where dIP (x, y) := sin dR(x, y) and dR : IPn(C)2 −→ R is the Fubini–Study distance.

Theorem 16 Let V ⊆ IPn(C) be a (possibly singular) equidimensional complex alge-
braic variety of (complex) codimension r in IPn(C). Let 0 < ε ≤ 1 be a positive real
number. Then, the following inequality holds

νn[Vε]
νn[IPn(C)]

≤ 2 deg(V )
(e n ε

r

)2r

,

where deg(V ) is the degree of V .

This theorem can be applied to Edelman’s conditions to obtain the estimate:

vol[{A ∈Mn(C) : κD(A) > ε−1}]
vol[Mn(C)]

≤ 2e2n5ε2,

where κD(A) := ‖A‖F ‖A−1‖2, and vol is the standard Gaussian measure in Cn2
. We

also prove that the constants on the right–hand side of the inequality in Theorem 16
are essentially optimal.

The reader will observe that our bound is less sharp than Edelman’s or Smale’s
bounds, although it is a particular instance of a more general statement.

Next, observe that neither Smale’s, Edelman’s results nor Theorem 16 exhibit upper
bounds on the probability distribution described in equation (1.3). In particular, it
does not apply to prove Theorem 15. In order to deal with this kind of estimate,
we need an upper bound for the volume of the intersection of an extrinsic tube with
a proper subvariety. This is our main result from Beltrán & Pardo (2004b) and is
contained in the following statement.

Theorem 17 Let V, V ′ ⊆ IPn(C) be two projective equidimensional algebraic varieties



Non Universal Polynomial Equation Solving 23

of respective dimensions m > m′ ≥ 1. Let 0 < ε ≤ 1 be a positive real number. With
the same notation as in Theorem 16, the following inequality holds:

νm[V ′
ε ∩ V ]

νm[V ]
≤ c deg(V ′)n

(
n

m′

)2 [
e

n−m′

m−m′ ε

]2(m−m′)

,

where c ≤ 4e1/3π, νm is the 2m−dimensional natural measure in the algebraic variety
V , and deg(V ′) is the degree of V ′.

Now, observe that the projective point defined by a corank 1 matrix A ∈ Σn−1 ⊆
IP(Mn(C)) satisfies:

κn−1
d (A) :=

1
dIP (A, Σn−2)

,

where Σn−2 ⊆ IP(Mn(C)) is the projective algebraic variety of all complex matrices
of corank at least 2, dIP (A, Σn−2) := sindR(A,Σn−2), and dR is the Fubini–Study
distance in the complex projective space IP(Mn(C)).

Hence, Theorem 15 becomes an immediate consequence of Theorem 17. In Beltrán
& pardo (2004b), other examples of applications of Theorem 17 are shown, includ-
ing the stratification by corank of the space of complex matrices Mn(C) and the
corresponding condition number.

This is just an example on how research on the adaptability question (discussed in
Section 1.4) can be initiated. It is, however, far from being an appropriate treatment
for the adaptability question both in linear algebra or in the non–linear case. Future
advances in this direction are required.
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Gonzalez–Vega, Birkhäuser Verlag, Basel.

T. Krick, L.M. Pardo and M. Sombra (2001), ‘Sharp estimates for the Arithmetic
Nullstellensatz’, Duke Math. Journal 109, 521–598.
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