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Abstract—In this paper, we propose a test for checking the
feasibility of linear interference alignment (IA) for multiple-input
multiple-output (MIMO) channels with constant coefficients for
any number of users, antennas and streams per user. We consider
the compact complex manifold formed by those channels, pre-
coders and decoders that satisfy the polynomial IA equations (the
so-called solution variety), and study its projection onto the input
space formed by the interference channels. When the derivative of
this projection is surjective, namely when the tangent space of the
solution variety is projected into the whole tangent space of the
inputs space, the linear alignment problem is feasible; otherwise
is infeasible. Building on these results, a general feasibility test,
which amounts to check whether a given matrix is full-rank or
not, is proposed.

I. INTRODUCTION

It has been recently shown that to achieve the maximum
spatial degrees of freedom (DoF) of the K-user multiple-input
multiple-output (MIMO) interference channel, the interference
from other transmitters must be aligned at each receiver
in a lower-dimensional subspace. This is the basic idea of
the interference alignment (IA) technique, which was first
proposed in [1], [2] and has received a lot of attention since
then.

In this paper, we restrict our attention to alignment schemes
in signal vector space (i.e., schemes that apply linear pre-
coding and decoding), and address the feasibility of linear
IA for MIMO interference networks with constant channel
coefficients, which remains as an open problem in its full
generality. The first work to study this problem was [3],
where the solvability of the IA polynomial equations was
analyzed based on classic results in algebraic geometry like
Bezout’s and Bernstein’s theorems. By counting the number of
equations and variables involved in any subset of zero-forcing
alignment equations, Yetis et al. introduced in [3] the definition
of a proper system. Connections between proper and feasible
systems were established only for the single-beam case in
which each user transmits only one stream of data, whereas
for the multibeam case the equivalence between proper and
feasible systems does not longer hold.

In [4] the feasibility of IA was studied by interpreting
the alignment process as a joint transmit-receive zero-forcing
scheme in which each interfering stream can be suppressed
at either the transmitter or the receiver sacrificing one degree

of freedom. The proposed feasibility test, however, provides
only necessary conditions and is combinatorial in nature since
must check all possible ways to suppress interfering streams
at both sides of the link and for all users.

More recent work on the feasibility of IA has been presented
in [5] and [6]. Specifically, [5] studies the dimensions of
the algebraic varieties involved in the alignment problem
(input, output and solution variety), and proves a sufficient
and necessary condition of feasibility for the particular case
of symmetric square MIMO interference channels, where all
transmitters and receivers have the same number of antennas,
all users transmit the same number of streams and there are
at least three interfering users (K ≥ 3). For the general case
with arbitrary system parameters, only a necessary condition is
proved in [5]. Similar algebraic tools are used in [6] to prove
general bounds on the tuple of DoF that are achievable through
linear interference alignment. Furthermore, for the particular
case of symmetric systems where the number of transmit and
receive antennas is divisible by the number of streams the
bound is tight and can be achieved through IA.

In this paper we propose a polynomial-time complexity test
of feasibility for the linear alignment problem. The main idea
is to consider the input space (projective space of MIMO
interference channels) and the solution variety (channels, pre-
coders and decoders satisfying the IA polynomial equations)
as smooth compact manifolds and to study the linear mapping
between the tangent spaces of both smooth manifolds given
by the first projection. It the mapping is surjective, which
amounts to check whether a given matrix is full-rank, the
linear alignment is feasible; otherwise is infeasible. We show
that the test is consistent with all known DoF outer bounds
for the interference channel (e.g., [7], [8], [9], [10], [11]).
Furthermore, the proposed feasibility test can be used to obtain
the total DoF for any K-user MIMO interference channel
simply by checking the feasibility of all possible DoF tuples.

II. PROBLEM STATEMENT

We consider in this paper the K-user MIMO interference
channel with transmitter j having Mj ≥ 1 antennas and
receiver j having Nj ≥ 1 antennas. We assume without
loss of generality that each user wishes to send dj ≥
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1 streams or messages1. We adhere to the notation used
in [3] and denote this asymmetric interference channel as∏K

k=1 (Mk ×Nk, dk) = (M1 ×N1, d1) · · · (MK ×NK , dK).
The symmetric case in which all users transmit d streams
and are equipped with M transmit and N receive antennas
is denoted as (M ×N, d)K . In the square symmetric case all
users have the same number of antennas M = N .

The MIMO channel from transmitter l to receiver k is
denoted as Hkl and assumed to be flat-fading and constant
over time. Each Hkl is an Nk×Ml complex matrix with inde-
pendent entries drawn from a continuous distribution (channels
generated in this way are generic). For the sake of simplicity,
we will consider only the fully connected interference channel
where each user receives interference from the rest of K − 1
transmitters, and where each transmitter interferes to all the
K−1 unintended receivers. However, the results in this paper
can be easily extended to partially connected networks.

User j encodes its message using an Mj × dj precoding
matrix Vj and the received signal is given by

yj = HjjVjxj +
∑
i 6=j

HjiVixi + nj , (1)

where xj is the dj × 1 transmitted signal and nj is the
zero mean unit variance circularly symmetric additive white
Gaussian noise vector. The first term in (1) is the desired
signal, while the second term represents the interference space.
The receiver j applies a linear decoder Uj of dimensions
Nj × dj , i.e.,

UT
j yj = UT

j HjjVjxj +
∑
i 6=j

UT
j HjiVixi + UT

j nj , (2)

where superscript T denotes transpose.
The interference alignment (IA) problem consist in finding

the precoders and decoders, Vj and Uj , in such a way that
the interfering signals at each receiver fall into a reduced-
dimensional subspace and the receivers can then extract the
projection of the desired signal that lies in the interference-
free subspace. To this end, it is required that the polynomial
equations

UT
k HklVl = 0, k 6= l, (3)

are satisfied, while the signal subspace for each user must
be linearly independent of the interference subspace and must
have dimension dk, that is

rank(UT
k HkkVk) = dk, ∀ k ∈ {1, . . . ,K}. (4)

Taking (4) into account, we assume in the sequel that for
any feasible IA strategy the number of streams transmitted by
each user satisfies the point-to-point bound given by

1 ≤ dk ≤ min{Nk,Mk}, ∀ k ∈ {1, . . . ,K}. (5)

1If a user has dk = 0, it can be removed from the interference channel.

A. Feasibility of IA
In this paper we are interested in studying the follow-

ing feasibility problem: For a given interference network,∏K
k=1 (Nk ×Mk, dk), to decide whether there exists a linear

alignment solution for generic interference MIMO channels
Hkl. In that case, we say that the problem is generically
feasible, or simply feasible.

To formally state the feasibility problem, let us consider the
following diagram

V
π1 ↙ ↘ π2
H S

(6)

where
H =

∏
k 6=l

P(MNk×Ml
(C)) (7)

is the input space composed by the Cartesian product of all
interference MIMO channels (here, P(MNk×Ml

(C) denotes
the projective space of complex-valued Nk ×Ml matrices),

S = Gd1,N1
× · · · ×GdK ,Nk

×Gd1,M1
× · · · ×GdK ,MK

is the output space formed by the precoder and decoder
Grassmannians (Ga,b denotes the Grassmannian formed by
the linear subspaces of complex dimension a in Cb, with
0 ≤ a ≤ b); and

V = {(H,U, V ) ∈ H × S : (3) holds}

is the so–called solution variety. Note that we are denoting by
H the collection of all matrices Hkl, and, similarly, U and V
denote the set of Uj and Vj , 1 ≤ j ≤ K, respectively. Defined
in this way, H, S and V are all compact and smooth manifolds
[13]. Specifically, the set V is given by certain polynomial
equations, linear in each of the H,U, V and therefore is an
algebraic subvariety of the product space H× S .

Note that, given H ∈ H, the set π−11 (H) is a copy of the
set of U, V such that (3) holds, that is the solution set of
the linear interference alignment problem. On the other hand,
given (U, V ) ∈ S , the set π−12 (U, V ) is a copy of the set of
H ∈ H such that (3) holds. The feasibility question studied
in this paper can then be restated more formally as follows,

Problem 1: Is π−11 (H) 6= ∅ for a generic H?

III. MAIN RESULT

The following theorem solves the question posed in Problem
1 and, as a by product, provides a simple feasibility test.

Theorem 1: Problem 1 is feasible iff for almost every
choice of Hkl, and for any choice of Uk, Vl satisfying (3),
the linear mapping, θ, defined by

(U̇1, . . . , U̇K , V̇1, . . . , V̇K) 7→
{
U̇T
k HklVl + UT

k HklV̇l

}
(8)

is surjective, i.e., it has maximal rank equal to
∑

k 6=l dkdl.

Here,
(
U̇1, . . . , U̇K , V̇1, . . . , V̇K

)
denotes a set of matrices of

dimensions Nk × dk or Ml × dl depending on whether U̇k

or V̇l is considered, which are affine representations of the
components of a vector in the tangent space of V .
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A. Proof sketch and mathematical insights

A detailed proof of the claim in Theorem 1 can be found
in [13]. Here, due to space limitations, we only provide a
sketch of the proof along with a more descriptive explanation
that help readers to develop a clear understanding of our main
result. It is not difficult to see that V is not only an algebraic set
but also a compact complex manifold, whose dimension can
be easily computed from the fact that its constituent equations
are, when regarded as affine equations, independent. One can
also (trivially) compute the dimension of H and S. If dimV <
dimH, then the projection π1(V) cannot cover most of H. It
turns out that this is indeed the case that the problem is not
proper as defined in [3]. Let us center our attention in the
proper case: we have dimV ≥ dimH, but it can still happen
that π1(V) is only a zero–measure set of H. The reader can
have in mind a vertical line projecting into a horizontal line:
both sets have the same dimension but the projection of the
vertical line is just a point, thus a zero measure subset of
the horizontal line. Mathematically, this is identified by the
fact that for every element of V , the derivative of π1 is not
surjective, namely it does not project the tangent space of V
onto the whole tangent space of H, just on a vector subspace.
Now, the tangent space of V is easy to describe: it is the set
of tangent vectors (Ḣ, U̇ , V̇ ) such that

U̇T
k HklVl + UT

k ḢklVl + UT
k HklV̇l = 0, k 6= l.

Because Uk and Vl are full–rank, the fact that the derivative
of π1 is surjective is then equivalent to the mapping (8) being
surjective (this is not a completely obvious fact, see [13] for a
proof.) Thus, checking the rank of θ detects if the projection
from V onto H has a surjective derivative at some chosen
point. Now, standard tools from differential topology2 and
algebraic geometry prove that:
• either θ is almost everywhere surjective, in which case

the problem is feasible or
• θ is nowhere surjective, in which case the problem is

infeasible.
This is the main idea behind the proof of our Theorem 1.
Note that choosing at random some (H,U, V ) ∈ V and
checking if the associated linear mapping (8) is surjective
permits to decide if the IA problem is feasible or not. If the test
answers “feasible” then the problem is feasible. If it answers
“infeasible” then, unless we were extremely unlucky and
chose (H,U, V ) in a certain zero–measure set, the problem
is infeasible (and thus our answer is correct). In practice, one
can repeat the test a few times to discard that possibility.

IV. FEASIBILITY TEST

As indicated by Theorem 1, the proposed feasibility test has
to perform two tasks:

1) To choose an arbitrary set (Hkl, Uk, Vl) such that (3)
holds: we call this the inverse IA problem.

2Remarkably, a theorem by Ehresmann [12] that strongly uses the fact that
V is compact and that the base field is C and not R.

2) To check whether the matrix B (in any basis) defining
the linear mapping (8) satisfies det(BB∗) 6= 0, which
means that the mapping θ is surjective.

Now, we detail both stages of the proposed IA feasibility test.

A. Solving the inverse IA problem

The inverse IA problem consists of, given arbitrary (ran-
dom) realizations of Uk, Vl, finding a set of MIMO channels
such that (3) holds. Since this problem is linear in the entries
of the MIMO channels, it amounts to solving the following
set of linear systems of equations

Akl vec(Hkl) = 0, k 6= l, (9)

where vec(Hkl) is a vectorized version of the MIMO channel
matrix Hkl, and Akl is an dkdl × NkMl matrix obtained as
the transpose of the Kronecker product of Vl and Uk, that is

Akl = (Vl ⊗ Uk)
T , k 6= l. (10)

For example, for the 3-user interference channel, the inverse
IA problem reduces to solving the following linear systems of
equations

(Vl ⊗ Uk)
T vec(Hkl) = 0, (11)

where (k, l) ∈ {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

B. Checking the rank of the linear mapping θ

The solution of the inverse IA problem obtained in the
previous stage, provide us with a generic choice of Uk, Vl and
Hkl satisfying (3). For this particular element of the solution
variety, the linear mapping θ given by (8) can be written in
matrix form as

Bw, (12)

where w = vec([U̇1, . . . , U̇K , V̇1, . . . , V̇K ]) and B is a block
matrix with K(K − 1) row partitions (as many blocks as
interfering links) and 2K column partitions (as many blocks
as precoding and decoding matrices). Checking the feasibility
of IA then reduces to check whether the matrix B is full rank
or not. The vectorization of the mapping (8) shows that B is
composed of two main kinds of blocks, B(U)

kl and B(V )
kl , i.e.

vec(U̇T
k HklVl + UT

k HklV̇l) =

(Idl
⊗ UT

k Hkl)︸ ︷︷ ︸
B

(U)
kl

vec(V̇l) + (V T
l H

T
kl ⊗ Idk

)KNk,dk︸ ︷︷ ︸
B

(V )
kl

vec(U̇k),

(13)

where In denotes the n × n identity matrix and Km,n is
the mn × mn commutation matrix which is defined as the
matrix that transforms the vectorized form of an m×n matrix
into the vectorized form of its transpose. Block B

(U)
kl has

dimensions dldk×dlMl, whereas block B(V )
kl is dldk×dkNk.

For a given tuple (k, l), B(U)
kl and B

(V )
kl are placed in the

row partition that corresponds to the interfering link indicated
by the tuple (k, l). However, B(U)

kl is placed in the l + K-
th column partition, whereas B(V )

kl occupies the k-th column
partition. The rest of blocks are occupied by null matrices
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with all entries being zero. The dimensions of B are therefore∑
k 6=l dkdl ×

∑K
j=1(Mj +Nj)dj .

Once B has been built, the last step is to check if its rank is
maximum, that is, rank(B) =

∑
k 6=l dkdl. A simple method

consists of generating a random element b in C
∑

k 6=l dkdl ,
computing the least squares solution of Bw = b and checking
if ‖Bw − b‖ is small enough, say smaller than or equal to
10−8. With high probability in the choice of b this test will
determine if θ is a surjective mapping.

Notice that B has the same structure as the incidence
matrix of the network connectivity graph. Taking again the
3-user interference channel as an example, B is constructed
as follows

B
(V )
12 0 0 0 B

(U)
12 0

B
(V )
13 0 0 0 0 B

(U)
13

0 B
(V )
21 0 B

(U)
21 0 0

0 B
(V )
23 0 0 0 B

(U)
23

0 0 B
(V )
31 B

(U)
31 0 0

0 0 B
(V )
32 0 B

(U)
32 0


where the blocks B(U)

kl and B(V )
kl are given by (13).

Remark 1: The above test has been presented in floating
point arithmetic and is thus sensitive to floating point errors.
Although it is robust enough for every example that we have
tried, it is straightforward to design a version which works
in exact arithmetic, as shown in [13]. Furthermore, regarding
the complexity of the proposed test, it can be shown that the
problem of deciding if a given system is generically infeasible
is in the BPP (Bounded-error Probabilistic Polynomial time)
complexity class.

Remark 2: Some complexity analysis have recently ap-
peared in the literature suggesting that to check the feasibility
of IA problems is NP-hard [14]. However, there is a crucial
difference between the problem considered in [14] and the one
considered in this paper. Informally stated, the key difference
is that [14] studies the alignment problem for a particular real-
ization of the interference channels, Hkl, whereas we consider
the feasibility of IA for generic channels (e.g., channels with
i.i.d. entries drawn from any continuous distribution). Notice
also that even if the generic feasibility problem can be solved
in polynomial time, finding the actual precoders and decoders
that align the interference subspaces for a particular channel
realization can still be NP-hard, as proved in [14], [15].

Remark 3: If the problem is feasible for a given stream
distribution, (d1, . . . , dK), this DoF tuple is achievable by
linear IA. Therefore, by solving the feasibility problem it
would be possible to obtain the maximum total DoF for
any interference channel simply by exhaustive search over all
possible DoF tuples that satisfy the existing outer bounds.

V. DISCUSSION AND EXAMPLES

A. Congruence with existing feasibility results and DoF
bounds

The feasibility problem is first considered in [3], where a
system is classified as proper if and only if the number of

independent variables in every set of equations in (3) is at
least as large as the number of equations in that set. This result
assumes the polynomial equations involved in the problem are
generic. However, for multibeam scenarios this assumption
does not hold, and a correspondence between proper and
feasible systems cannot be established. Conversely, improper
systems are infeasible, as proved in [5] and [6]. Our test
is congruent with these results since improperness implies∑K

j=1(Mj + Nj)dj <
∑

k 6=l dkdl and, hence, rank(B) <∑
k 6=l dkdl.
Additionally, for the K-user symmetric channel, denoted as

(M × N, d)K , proper systems are feasible if M = N [5] or
both M and N are divisible by d [6]. Recent results in [9],
[10] and [11] give necessary and sufficient conditions for the
feasibility of the 3-user symmetric scenario, (M×N, d)3. For
all these particular settings, the proposed test is in agreement
with known results.

In those scenarios where none of the previous feasibility
results apply, we have to rely on DoF outer bounds for
establishing the infeasibility of a proper system. For instance,
it is well known that for a point-to-point MIMO channel,
(Mk × Nk, dk), (5) has to be verified. In addition, for any
2-user pair in the network, (Mk ×Nk, dk)(Ml ×Nl, dl), the
following outer bound must be satisfied [7],

dk + dl ≤ min {Ml +Mk, Nl +Nk,max{Nk,Ml},max{Nl,Mk}} .
(14)

For the symmetric K-user interference channel (with uneven
stream distribution among the users),

∏K
k=1 (M ×N, dk), the

following outer bound, proved in [8], can be applied∑
k dk ≤ Kmin (M,N) I (K ≤ R) +Kmax(M,N)

R+1 I (K > R) ,
(15)

where R =
⌊
max(M,N)
min(M,N)

⌋
and I (·) represents the indicator

function.
The proposed test is also consistent with all these outer

bounds. In fact, the test is proven to answer infeasible when
(5) is not satisfied, cf. [13]. Proving that the violation of other,
more complicated, bounds like (14) and (15) also results in
matrix B being rank-deficient will be considered in a future
work.

B. Some representative examples

Now, let us discuss the results provided by our feasibility
test in some representative examples3.

Example 1: First, consider the symmetric (5 × 11, 4)3 in-
terference network, which is classified as proper according to
[3]. According to [9] and [11] this scenario is infeasible which
is also in agreement with our test. Thus, the maximum total
number of DoF for this network cannot be larger than 11 as
implied also by the outer bound in (15). By shutting off one
beam of the first user, the system (5×11, 3)(5×11, 4)2 could,
in principle, be feasible because it satisfies the mentioned outer

3The reader is invited to test the feasibility of an arbitrary alignment
problem at http://www.gtas.dicom.unican.es/IAtest.
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bound. Our test shows that this system is actually feasible and,
thus, the outer bound (15) is tight for this particular scenario.

Example 2: Now, consider the 3-user system
∏3

j=1(7 ×
13, dj) where the stream distribution among users is not
specified. The results in [9], [11] show that the system is
infeasible if 5 streams per user are transmitted. Our test
indicates that the (7 × 13, 5)3 system is infeasible whereas
the system (7× 13, 4)(7× 13, 5)2 is feasible, which allows us
to claim that the maximum total DoF for this network is 14.

Example 3: Consider the scenarios (15× 5, 4)4 and (24×
6, 5)5 which are the simplest non-trivial scenarios for 4 and
5 users, respectively, that are proper but infeasible. Both
scenarios violate the outer bound (15) which establishes that
the total DoF cannot exceed 15 and 24, respectively. In fact,
the proposed test shows that (15 × 5, 3)(15 × 5, 4)3 and
(24 × 6, 4)(24 × 6, 5)4 are feasible systems and, then, (15)
is tight for these particular scenarios.

Example 4: The (4×4, 2)(5×3, 2)(6×2, 2) network, which
was studied in [4], satisfies the 2-user outer bound (14) for all
2-user pairs in the network. No other existing results apply to
asymmetric systems like this one. However, the test proposed
in this paper answers infeasible.

Example 5: A final interesting example is the (2×2, 1)(5×
5, 2)2(8 × 8, 4) system, which is feasible according to the
proposed test. This system has been built by taking the
symmetric (5× 5, 2)4 system, which is known to be feasible,
and transferring 6 antennas from the first to the fourth user.
It must be noticed that while the total amount of antennas for
both systems remains constant, the redistribution of antennas
has allowed to achieve one DoF more in the asymmetric
network. This example gives new evidence for the conjecture
settled in [4], which asserts that for a given total number of
DoF, dtot =

∑
k dk, there exist feasible asymmetric MIMO

interference systems (that is, with unequal antenna and stream
distribution among the links) such that the total number of
antennas,

∑
k(Mk + Nk), is less than number of antennas

of the smallest symmetric system (Mk = M , Nk = N , and
dk = dtot/K) that can achieve dtot.

Let us finally point out that, in all cases in which our
feasibility test was positive, we were able to find an IA
using the iterative interference leakage minimization algorithm
proposed in [16]4.

VI. CONCLUSIONS

This paper gives a test to check the feasibility of linear
interference alignment in arbitrary K-user MIMO interference
channels. The test is a direct consequence of a powerful result
which states that the linear alignment problem is generically
feasible iff the algebraic dimension of the solution variety
is larger than or equal to the dimension of the input space
and the linear mapping between the tangent spaces of both
smooth manifolds given by the first projection is surjective.
In practice, our test reduces to check whether a given matrix

4Notice, however, that alternating minimization algorithms cannot guarantee
convergence to a global minimum, so they cannot be used as feasibility tests.

is full rank or not. The test neither requires any assumption
(apart from the genericity of the MIMO channels), nor re-
lies on any information-theoretic bound for the interference
channel. However, it always provides answers which are in
agreement with all the existing outer bounds and the most
recent feasibility results.
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