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Abstract—In this paper, we consider the feasibility of linear
interference alignment (IA) for multiple-input multiple-output
(MIMO) channels with constant coefficients for any number of
users, antennas and streams per user; and propose a polynomial-
time test for this problem. Combining algebraic geometry tech-
niques with differential topology ones, we first prove a result that
generalizes those previously published on this topic. Specifically,
we consider the input set (complex projective space of MIMO
interference channels), the output set (precoder and decoder
Grassmannians) and the solution set (channels, decoders and
precoders satisfying the IA polynomial equations), not only as
algebraic sets but also as smooth compact manifolds. Using this
mathematical framework, we prove that the linear alignment
problem is feasible when the algebraic dimension of the solution
variety is larger than or equal to the dimension of the input
space and the linear mapping between the tangent spaces of
both smooth manifolds given by the first projection is generically
surjective. If that mapping is not surjective, then the solution
variety projects into the input space in a singular way and the
projection is a zero-measure set. This result naturally yields a
simple feasibility test, which amounts to checking the rank of a
matrix. We also provide an exact arithmetic version of the test,
which proves that testing the feasibility of IA for generic MIMO
channels belongs to the bounded-error probabilistic polynomial
(BPP) complexity class.

Index Terms—Interference alignment, MIMO interference
channel, polynomial equations, algebraic geometry, differential
topology.

I. INTRODUCTION

THE degrees of freedom (DoF) of a wireless interfer-

ence network represent the number of non-interfering

data streams that can be simultaneously transmitted over

the network. Recently, it has been shown that to achieve

the maximum DoF of the K-user multiple-input multiple-

output (MIMO) interference channel, the interference from

other transmitters must be aligned at each receiver in a

lower-dimensional subspace [1]. This is the basic idea of the

interference alignment (IA) technique which first originated

out of the study of the degrees of freedom of the 2-user X
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channel [2], [3], shortly afterwards was extended to the K-user

interference channel [4], and has received a lot of attention

since then.
In this paper we consider the alignment problem for the

K-user MIMO interference channel with constant channel

coefficients. Also, we restrict our attention to IA schemes that

apply linear decoders and precoders without channel or symbol

extensions, which means that the MIMO channel matrices

have no particular structure (e.g., diagonal or block diagonal)1.

For this setting, when all transmitters and receivers have the

same number of antennas, the ratio of total DoF to the single

user DoF is upper bounded by 2, whereas this ratio increases

to K/2 for frequency- or time-varying channels when the

channel extensions are i.i.d. and exponentially long in K
[4], [8]. However, requiring channels to have an unbounded

number of extensions can be a limiting factor in practice and,

consequently, alignment in signal space with constant MIMO

interference channels has been the preferred option for recent

experimental studies on IA [9], [10], [11].
In this paper, we address the feasibility of linear IA for

MIMO interference networks with constant channel coeffi-

cients and no symbol extensions. Our focus is the single chan-

nel use IA feasibility problem, which has recently received a

lot of attention, and results herein do not apply if multiple

channel uses are considered. This problem amounts to solving

a set of polynomial equations and some partial results can be

found in [8], [12], [13]. The first work to study this problem

was [8], where the solvability of the IA polynomial equations

was analyzed using classic results in algebraic geometry like

Bezout’s and Bernstein’s theorems. By counting the number

of equations and variables involved in any subset of zero-

forcing alignment equations, Yetis et al. introduced in [8] the

definition of a proper system. Connections between proper and

feasible systems were established only for the single-beam

case in which each user transmits only one stream of data.

When more than one data stream is transmitted, the genericity

of the polynomial coefficients is destroyed and the equivalence

between proper and feasible systems does not longer hold.

Some information theoretic outer bounds, e.g., [14] and [15],

can be included in the properness definition to further close

the gap between proper and feasible systems, but the precise

connection between both concepts still remains unclear.
In [16], the feasibility of IA was studied by interpreting

the alignment process as a joint transmit-receive zero-forcing

scheme in which each interfering stream can be suppressed

1We do not consider in this paper interference alignment schemes on the
signal scale which are based on the properties of rationals and irrationals [5],
[6], [7].
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at either the transmitter or the receiver sacrificing one degree

of freedom. The proposed feasibility test, however, provides

only necessary conditions and is combinatorial in nature since

it requires to check all possible ways to suppress interfering

streams at both sides of the link and for all users.

More recent work on the feasibility of IA has been presented

in [12] and [13]. Specifically, [12] studies the dimensions

of the algebraic varieties involved in the alignment problem

(input, output and solution variety), and proves a sufficient

and necessary condition of feasibility for the particular case

of symmetric square MIMO interference channels, where all

transmitters and receivers have the same number of antennas,

all users transmit the same number of streams and there are

at least three interfering users (K ≥ 3). For the general case

with arbitrary system parameters, only a necessary condition is

proved in [12]. Similar algebraic tools are used in [13] to prove

general bounds on the tuple of DoF that are achievable through

linear interference alignment. Furthermore, for the particular

case of symmetric systems where the number of transmit and

receive antennas is divisible by the number of streams the

bound is tight and can be achieved through IA.

In this work, we first prove a slight generalization of the

results in [12] and [13] that fully characterizes the feasibility

of linear interference alignment for MIMO channels with

constant coefficients and no symbols extension in arbitrary

settings (for any number of users, antennas and streams per

user, and non necessarily fully-connected networks). To derive

this result, we combine algebraic geometry techniques with

differential topology ones and consider the three sets involved

in the problem (i.e., the input set formed by the Cartesian

product of complex projective matrices, H, the output set

formed by the Cartesian product of precoder and decoder

Grassmannians, S , and the solution variety formed by tuples

of channels, decoders and precoders satisfying the alignment

equations, V), not only as algebraic sets but also as smooth

compact manifolds. Viewing the channels, the decoders and

precoders, and the solution variety as compact manifolds, some

important results stand out from the study of their tangent

spaces. In words, we prove that the linear alignment problem

is feasible when the algebraic dimension of V is larger than or

equal to the dimension of H and the linear mapping between

the tangent spaces of both smooth manifolds given by the first

projection is surjective. If the mapping between the tangent

spaces of V and H is not surjective, then the whole set V
projects into H in a singular way and the projection is a zero-

measure set. This situation explains those systems that are

proper, but infeasible.

This result enables us to derive the main contribution of

this paper, which is a simple feasibility test that amounts to

checking the rank of a certain matrix. We provide floating-

point and exact arithmetic versions of the test, as well as a

detailed complexity analysis which proves that the problem of

deciding infeasibility for generic MIMO channels belongs to

the bounded-error probabilistic polynomial-time (BPP) com-

plexity class in the Turing Machine model of computation.

Using the proposed test we were able to study the feasibility

of systems with a large number of antennas and users and,

from the general trends observed, to put forward a conjecture

on the number of linear DoF of symmetric M × N MIMO

interference channels. Also, the proposed feasibility test can

also be used to obtain the total DoF for any arbitrary K-user

MIMO interference channel without resorting to the existing

inner and outer information-theoretic bounds. Some work

along this line has recently been discussed in [17].
The paper is organized as follows. In Section II, the system

model is introduced and the IA feasibility problem is formally

stated. In Section III we present a result that characterizes

the feasibility of linear interference alignment for MIMO

channels with constant coefficients in arbitrary settings. The

proposed feasibility test, which essentially consists of checking

whether a certain matrix is rank-deficient or not, is presented

in Section IV. In this section we also present floating-point

and exact arithmetic versions of the test, and prove that the

later describes a BPP Turing machine. In Section V, we prove

the main theorems of the paper. In Section VI, we vali-

date our feasibility test in several symmetric and asymmetric

interference channels showing that its results are consistent

with other previously known results. Additionally, we use

our test to establish a conjecture on the DoF of the K-user

symmetric interference channel. Finally, the main conclusions

are summarized in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System model
We consider in this paper the K-user MIMO interference

channel with transmitter j having Mj ≥ 1 antennas and

receiver j having Nj ≥ 1 antennas. Each user j wishes to

send dj ≥ 0 streams or messages. We adhere to the notation

used in [8] and denote this asymmetric interference channel as∏K
k=1 (Mk ×Nk, dk) = (M1 ×N1, d1) · · · (MK ×NK , dK).

The symmetric case in which each user transmits d streams

and is equipped with M transmit and N receive antennas is

denoted as (M ×N, d)
K

. In the square symmetric case all

users have the same number of antennas M = N .
The MIMO channel from transmitter l to receiver k is

denoted as Hkl and assumed to be flat-fading and constant

over time. Each Hkl is an Nk × Ml complex matrix (i.e.,

Hkl ∈ C
Nk×Ml ). All channels are independent of each

other and their entries are also independently drawn from a

continuous distribution (channels generated in this way are

said to be generic). We let Φ ⊆ {1, . . . ,K} × {1, . . . ,K}
be the (nonempty) subset of indexes (k, l), k �= l such that

Hkl is nonzero, therefore we assume that Hkl is defined for

(k, l) ∈ Φ. Note that if Φ = {(k, l) : k �= l}, then the

interference channel is fully connected, otherwise the channel

is partially connected, which can be due to path loss or

shadowing [18]. Both scenarios are covered by the results in

this paper. We will denote by �(Φ) the number of elements in

the (finite) set Φ (i.e., the non-zero interference links).
User j encodes its message using an Mj × dj precoding

matrix Vj and the received signal is given by

yj = HjjVjxj +
∑
i �=j

HjiVixi + nj , 1 ≤ j ≤ K (1)

where xj is the dj × 1 transmitted signal and nj is the

zero mean unit variance circularly symmetric additive white
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Gaussian noise vector. The first term in (1) is the desired

signal, while the second term represents the interference space.

The receiver j applies a linear decoder Uj of dimensions

Nj × dj , i.e.,

UT
j yj = UT

j HjjVjxj+
∑
i �=j

UT
j HjiVixi+UT

j nj , 1 ≤ j ≤ K,

(2)

where superscript T denotes transpose.

B. Problem statement

The interference alignment (IA) problem consists in finding

the decoders and precoders, Vj and Uj , in such a way that

the interfering signals at each receiver fall into a reduced-

dimensional subspace and the receivers can then extract the

projection of the desired signal that lies in the interference-

free subspace. To this end it is required that the polynomial

equations

UT
k HklVl = 0, (k, l) ∈ Φ, (3)

are satisfied, while the signal subspace for each user must

be linearly independent of the interference subspace and must

have dimension dk, that is

rank(UT
k HkkVk) = dk, ∀ k ∈ {1, . . . ,K}. (4)

We recall that all matrices Hkl (including direct link matrices,

Hkk) are generic, that is, their entries are drawn from a

continuous probability distribution and are independent of

each other (independence among different links also holds).

Consequently, (4) is satisfied almost surely. Thus, we will

consider that solving the linear IA feasibility problem amounts

to solve the polynomial equations in (3) only.

In this paper we are interested in studying the relationship

between dj ,Mj , Nj ,K such that the linear alignment problem

is feasible. For example, we may want to know: for given K
and dj , which collections of Mj , Nj make the problem feasible

(for every possible choice of the matrices Hkl), or for given

K and Mj , Nj , which are the greatest values for dj that can

be achieved? In the later case, the tuple (d1, . . . , dK) defines

the maximum degrees of freedom (DoF) of the system, that

is the maximum number of independent data streams that can

be transmitted without interference in the channel.

It is well-known that the number of streams transmitted by

all users must satisfy the point-to-point bounds

1 ≤ dj ≤ min(Nj ,Mj), ∀ j ∈ {1, . . . ,K}. (5)

Note that we can exclude the case that some dj = 0 without

loosing generality, because it amounts to removing all pairs

containing the index j from Φ. From a mathematical point of

view, in the general (not necessarily fully connected) case, the

natural substitute of (5) is the following:

1 ≤ dk ≤ Nk, 1 ≤ dl ≤ Ml, ∀(k, l) ∈ Φ. (6)

We want to state absolutely general results, which leads us to

consider the two following sets:

ΦR = {k ∈ {1, . . . ,K} : ∃ l ∈ {1, . . . ,K}, (k, l) ∈ Φ},
ΦT = {l ∈ {1, . . . ,K} : ∃ k ∈ {1, . . . ,K}, (k, l) ∈ Φ}.

Note that ΦR (ΦT ) is the first (second) projection of the set

Φ. In words, ΦR indicates the set of receivers which suffer

interference from at least one transmitter, whereas ΦT contains

the set of transmitters which provoke interference to at least

one receiver. Then, (6) is equivalent to

1 ≤ dk ≤ Nk, ∀ k ∈ ΦR, 1 ≤ dl ≤ Ml, ∀ l ∈ ΦT .
(7)

Equations (5) and (7) are equivalent if each user interferes at

least one user and it is interfered by at least one user, that is

if ΦR = ΦT = {1, . . . ,K}. In particular, they are equivalent

in the fully–connected case. Note also that if l �∈ ΦT then the

precoder Vl does not appear in the equations (3) and plays no

role in the problem, thus it consists of free variables. We deem

that it is more appropriate not to consider these free variables

as part of the problem. Hence, if for example we say that the

problem has finitely many solutions we mean that the number

of solutions of the non-free variables is finite (although, if

there is some l �∈ ΦT , there will be infinitely many ways to

choose Vl). The same can be said if k �∈ ΦR for some k.

Additionally, note that if user l transmits all possible streams

according to its point-to-point bound, dl = Ml (which implies

that Ml ≤ Nl); then, it is not possible for user k �= l,
with (k, l) ∈ Φ, to also reach its point-to-point bound with

equality and thus receive dk = Nk desired streams (with

Nk ≤ Mk). This stems from the fact that receiver k has to

leave at least a one-dimensional subspace for the interference,

otherwise the desired signal subspace would not be free of

interference. In other words, the two users of an interference

link cannot reach their point-to-point bounds simultaneously.

Formally, this condition can be stated as the following set of

necessary conditions

NkMl > dkdl, ∀(k, l) ∈ Φ, (8)

which complement the direct link conditions in (7). To derive

our results we only assume that both (7) and (8) hold.

There are other necessary conditions for feasibility that

involve two or more users. Specifically, in [14] it was proved

that for the 2-user MIMO interference channel consisting of

users k and l, if (k, l) ∈ Φ and (l, k) ∈ Φ, the DoF satisfy

dk + dl ≤ min (Ml +Mk, Nl +Nk,

max(Nk,Ml),max(Nl,Mk)) . (9)

For the symmetric K-user MIMO interference channel2, the

following outer bound for the total number of DoF was proved

in [15]

d1 + · · ·+ dK ≤ Kmin(M,N) I (K ≤ R)

+K
max (M,N)

R+ 1
I (K > R) , (10)

where I (·) represents the indicator function and R =
	max (M,N) /min (M,N)
.

Our techniques for proving the main results will come from

algebraic geometry and differential topology. Our arguments

2Let us remind again that we are only considering the DoF achievable with
linear alignment schemes and without symbol extensions. When lattice-based
alignment schemes are used, the DoF of interference channels with real and
constant coefficients have been studied in [5], [6], [7].
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are sometimes similar to those in [12], [13], with the difference

that not only the algebraic nature of the objects is used, but

also their smooth manifold structures, as well as the key

property of compactness. We are greatly inspired by Shub

and Smale’s construction for polynomial system solving, see

[19] or [20]. Some basic knowledge of smooth manifolds

is assumed. More advanced results on differential topology

that will also be used during the derivations are relegated to

Appendix A.

To formally state the IA feasibility problem, it is convenient

to first define three tuples: H , U and V . H denotes the

collection of all Hkl, (k, l) ∈ Φ and, similarly, U and V
denote the collection of Uk, k ∈ ΦR and Vl, l ∈ ΦT ,

respectively. Even though for the system model described

in (1) and (2) we have used the symbols Hkl, Uk and Vl

for complex matrices, in the following we will show that

to solve the problem is more convenient to let them live in

different spaces that take into account the invariances of (3).

If (H,U, V ) satisfies (3) then we can multiply each matrix Hkl

in H by a nonzero complex number and (3) will still hold.

Thus, it makes sense to consider our matrices as elements of

the projective space of matrices, i.e., we can think of Hkl

as a whole line in C
Nk×Ml . Similarly, we can think of each

Uk (equiv. Vl) as a subspace spanned by the columns of a

Nk × dk (equiv. Ml × dl) matrix. From a mathematical point

of view, this consideration permits us to use projective spaces

and Grassmannians (which are both compact spaces) instead

of non-compact affine spaces.

Thus, we consider the projective space of complex channel

matrices, P(CNk×Ml), and the Grassmannians3 formed by the

decoders and precoders. With some abuse of notation we will

refer to their elements as Hkl and Uk, Vl, respectively. More

formally, given �(Φ) elements

Hkl ∈ P(CNk×Ml), (k, l) ∈ Φ,

to solve the IA problem one would like to find a collection of

subspaces

Uk ∈ Gdk,Nk
, k ∈ ΦR, Vl ∈ Gdl,Ml

, l ∈ ΦT

such that the polynomial equations (3) are satisfied. The

(generic) IA feasibility problem consists on deciding whether,

given K,Mj , Nj , dj and Φ, all or almost all choices of Hkl

will admit such Uk, Vl. We have already pointed out that the

IA equations given by (3) hold or do not hold independently

of the particular chosen affine representatives of (H,U, V ).
As in [12], the proof of our main theorems will follow from

the study of the set {(H,U, V ) : (3) holds}. More precisely,

consider the following diagram

V
π1 ↙ ↘ π2

H S
(11)

where

H =
∏

(k,l)∈Φ

P(CNk×Ml)

3For integers 1 ≤ a ≤ b we denote as Ga,b the Grassmannian formed by

the linear subspaces of (complex) dimension a in Cb.

is the input space of interference MIMO channels (here,
∏

holds for Cartesian product),

S =

( ∏
k∈ΦR

Gdk,Nk

)
×
( ∏

l∈ΦT

Gdl,Ml

)
.

is the output space of decoders and precoders (i.e. the set

where the possible outputs exist) and

V = {(H,U, V ) ∈ H × S : (3) holds}

is the so–called solution variety. V is given by certain polyno-

mial equations, linear in each of the Hkl, Uk, Vl and therefore

is an algebraic subvariety of the product space H× S .

Note that, given H ∈ H, the set π−1
1 (H) is a copy of the

set of U, V such that (3) holds, that is the solution set of

the linear interference alignment problem. On the other hand,

given (U, V ) ∈ S , the set π−1
2 (U, V ) is a copy of the set of

H ∈ H such that (3) holds. The feasibility question can then

be restated as, is π−1
1 (H) �= ∅ for a generic H?

III. CHARACTERIZING THE FEASIBILITY OF LINEAR IA

In this section we present a theorem that characterizes the

feasibility of linear interference alignment for MIMO channels

with constant coefficients for any number of users, antennas

and streams per user. This characterization will allow us to

provide a polynomial-complexity test of feasibility for this

problem which will be detailed in Section IV.

First, let us fix dj ,Mj , Nj and Φ satisfying (7) and (8) and

define s ∈ Z such that

s =

( ∑
k∈ΦR

Nkdk − d2k

)
+

(∑
l∈ΦT

Mldl − d2l

)
−

∑
(k,l)∈Φ

dkdl

(12)

which accounts for the difference between the number of vari-

ables and the number of equations in the system of polynomial

equations (3), as first studied in [8]. In [12, Theorem 2] and

[13, Theorem 1], it has been proved that if s < 0 then, for

every choice of Hkl out of a zero–measure subset, the system

of polynomial equations (3) has no solution and, therefore,

the IA problem is infeasible. On the other hand, when s ≥ 0,

which is the scenario of interest for this paper, the IA problem

can be either feasible or infeasible. The situation remains equal

in the partially connected case.

Remark 1: In [8], systems were classified as either proper
or improper. A system was deemed proper if and only if

for every subset of equations in (3), the number of variables

is at least equal to the number of equations in that subset.

This evaluation may be computationally demanding with the

additional limitation that properness is necessary [12], [13] but

not sufficient for a system to be feasible. For that reason, in

this paper we will follow a simpler convention that classifies

a system as proper when s ≥ 0, which only considers the

total set of equations. Our reasoning to define s is based on

dimensionality counting arguments whose proof is similar to

the ones presented in [12, Lemma 7] and which we have

omitted herein to avoid repetitions.
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When s ≥ 0 the following result suggests a practical test to

distinguish if, for a choice of dj ,Mj , Nj ,Φ, the corresponding

linear IA problem is feasible or infeasible.

Theorem 1: Fix dj ,Mj , Nj and Φ satisfying (7) and (8).

Let s be defined by (12) and assume that s ≥ 0. Then, the

following two cases appear

1) for every choice of Hkl out of a zero–measure subset,

the system (3) has no solution and, therefore, the IA

problem is infeasible; or

2) for every choice of Hkl there exists at least one solution

to (3) and for every choice of Hkl out of a zero–measure

set the set of solutions of (3) is a smooth complex alge-

braic submanifold; therefore, the IA problem is feasible.

In this situation, the following claims are equivalent:

a) The system (3) has solution for every choice of

Hkl.

b) For almost every choice of Hkl, and for any choice

of Uk, Vl satisfying (3), the linear mapping

θ :
∏

k∈ΦR

C
Nk×dk ×

∏
l∈ΦT

C
Ml×dl →

∏
(k,l)∈Φ

C
dk×dl

({U̇k}k∈ΦR
, {V̇l}l∈ΦT

) �→
{
U̇T
k HklVl+

UT
k HklV̇l

}
(k,l)∈Φ

(13)

is surjective (i.e. it has maximal rank, equal to∑
(k,l)∈Φ dkdl). Here, we note that some affine

representatives Hkl, Uk, Vl have been taken.

c) There exist a Hkl and a choice of Uk, Vl satisfying

(3), such that the linear mapping (13) is surjective.

A. Geometrical insight behind Theorem 1

A clear understanding of Theorem 1 comes from consider-

ing the solution variety already defined as

V = {(H,U, V ) : (3) holds}.

Consider the projection π1 into the first coordinate H . Then, an

instance H has a solution if and only if π−1
1 (H) is nonempty.

It turns out that both the set H of inputs H and the set V
are smooth manifolds. The case s < 0 will correspond to the

dimension of V being smaller than that of H, which intuitively

implies that the projection of V cannot cover the greatest part

of H. The case s ≥ 0 will correspond to the dimension of V
being greater than or equal to that of H. A naive approach

should then tell us that the projection of V will cover “at

least a good portion” (i.e. an open subset) of H. Indeed,

the algebraic nature of our sets and classical results from

differential topology imply that if an open set of H is reached

by the projection, then the whole H is. This will be the case

of item 2) of Theorem 1. But there is another, counterintuitive

thing that can happen: if the whole set V projects into H in a

singular way (more precisely, if every point of V is a critical
point of π1, namely the tangent space above does not cover

the tangent space below), it will still happen that the image of

V is a zero–measure subset of H, which will produce the case

1) of Theorem 1. Geometrically, the reader may imagine V as

a vertical line and H as a horizontal line: the projection of V
into H is just a point, thus a zero–measure set, although both

manifolds have the same dimension. This setting looks such

a particular situation that it is hard to imagine it happening

in real–life examples, but indeed it does happen for many

choices of Mj , Nj , dj ,K that are in case 1). The good news

is that the particular case that all of V projects into H in a

singular way, can be easily detected by linear algebra routines

involving the mapping (13) which is related to the derivative

of this projection. This analysis will produce the feasibility

test proposed in this paper.

B. Extensions and discussion of related results

Let us point out that the model we have used for our

derivations, i.e. diagram (11), is similar to that used in [12,

Section 2]. The only difference is that in our case we let

channels live in the projective space of matrices which is a

compact space instead of the non-compact affine space used

in [12]. The arguments that lead to the proof that a system is

infeasible when s < 0 are based on the dimensionality of the

solution variety [12, Lemmas 7, 8].

The fact that either almost every Hkl admits a solution or

almost every Hkl does not admit a solution, was essentially

proved in [12] and [13]. The constructions of the Zariski

cotangent space in [12], the Jacobian computation in [13]

and the matrix in [21] are strongly related to that of the

mapping (13). One difference is that the derivation of (13)

does not require any particularization or partitioning of the

factors appearing in the alignment equations (3), as done

in [12] and [13], respectively. Instead, it has been derived

(independently of the chosen representatives) as a mapping

between tangent spaces, which endows our approach with the

simple geometrical interpretation provided in Section III-A.

Furthermore, despite the obvious connections with [12] and

[13], the tools and mathematical framework used in this paper

allowed us to prove that, when the system is feasible and s =
0, then the number of IA solutions is finite and constant for

almost all channel realizations. This is formally stated in the

following lemma.

Lemma 1: For almost every H , the solution set in case 2)

of Theorem 1 is a smooth complex algebraic submanifold of

dimension s. If s = 0, then there is a constant C ≥ 1 such that

for every choice of Hkl out of a proper algebraic subvariety

(thus, for every choice out of a zero measure set) the system

(3) has exactly C alignment solutions.

Proof: See Section V.

A practical consequence of Lemma 1 is that affine alignment

solutions (when finite) are grouped in C orbits of equivalent

solutions spanning the same subspace. This fact is automati-

cally captured by the way we have modeled the output space S
that considers precoders and decoders as Grassmannians and

therefore enables us to see those orbits as C isolated solutions.

Remark 2: As pointed out in Section II-B, if some k0
satisfies k0 �∈ ΦR or some l0 satisfies l0 �∈ ΦT , then any

solution ({Uk}k∈ΦR
, {Vl}l∈ΦT

) can be complemented with

any choice of Uk0
and Vl0 and still be a solution of (3), just

because the variables Uk0
and Vl0 do not appear in (3). When
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we say that the number of solutions is a finite number C,

we are not counting these infinitely many possible choices for

Uk0 and Vl0 . We trust that this convention is clear and natural

enough to avoid confusion.

IV. PROPOSED FEASIBILITY TEST

A. A floating-point arithmetic test of feasibility

We now construct a test for checking whether a given choice

of dj ,Mj , Nj ,Φ defines a feasible alignment problem or not.

To develop this test, we first have to choose a point Hkl, Uk, Vl

such that (3) holds. An arbitrary set of channels, decoders and

precoders satisfying the IA equations (3) can be obtained very

easily by solving what we call the inverse IA problem; that is,

given a set of arbitrary (e.g. random) decoders and precoders,

Uk, Vl, find a set of MIMO channels such that (3) holds. This

is totally different from (and much easier to solve than) the

original IA problem, which is given channel matrices Hkl, find

elements Uk, Vl that solve (3). Since the polynomial equations

(3) are linear in Hkl the inverse IA problem is completely

solved by the following Lemma.

Lemma 2: Fix any choice of dj ,Mj , Nj ,Φ satisfying (7)

and (8), and let (U, V ) ∈ S be any element. Then, the set

π−1
2 (U, V ) = {H ∈ H : (H,U, V ) solve (3) } ⊆ H

is a nonempty product of projective vector subspaces and a

smooth submanifold of H of complex dimension equal to⎛
⎝ ∑

(k,l)∈Φ

NkMl − dkdl

⎞
⎠− �(Φ).

In particular, this quantity is greater than or equal to 0.

Proof: See Appendix B.

Lemma 2 shows that we may fix our U and V to be the

ones of our choice and there always exists H forming a valid

element (H,U, V ) ∈ V . If, for that choice, the linear mapping

defined in (13) is surjective, then the alignment problem is

generically feasible by item (2.c) of Theorem 1. If for generic

H that mapping is not surjective the alignment problem is not

generically feasible, namely it can be solved just for a zero–

measure set of Hkl. The proposed feasibility test then has to

perform two tasks:

1) Find an arbitrary Hkl, Uk, Vl such that (3) holds. We

will detail later a simple choice for these elements.

2) To check whether the matrix Ψ (in any basis) defining

the linear mapping (13) satisfies det(ΨΨ∗) �= 0 (which

is equivalent to mapping θ defined in (13) being surjec-

tive) or not.

Now, we detail the two stages of the proposed IA feasibility

test.

1) Finding an arbitrary IA solution: The first stage requires

finding arbitrary Uk, Vl and their corresponding MIMO chan-

nels Hkl such that (3) holds. Lemma 2 allows us to choose

any Uk and Vl of our choice. Thus, we will consider precoders

and decoders given by

Vl =

(
Idl

0(Ml−dl)×dl

)
, Uk =

(
Idk

0(Nk−dk)×dk

)
, (14)

and MIMO channels with the following structure

Hkl =

(
0dk×dl

Akl

Bkl Ckl

)
, (15)

which trivially satisfy UT
k HklVl = 0 and therefore belong to

the solution variety. We claim that essentially all the useful

information about V can be obtained from the subset of V
consisting on triples (Hkl, Uk, Vl) of the form (14) and (15).

The reason is that given any other element (H ′
kl, U

′
k, V

′
l ) ∈ V ,

one can easily find sets of orthogonal matrices Pk and Ql

satisfying

Uk = PkU
′
k, Vl = QlV

′
l ,

and

0 = U ′T
kH

′
klV

′
l = UT

k (P ∗
k )

T
H ′

klQ
∗
l Vl,

where the superscript ∗ denotes Hermitian. That is, the trans-

formed channels Hkl = (P ∗
k )

T
H ′

klQ
∗
l have the form (15), and

the transformed precoders Vl and decoders Uk have the form

(14).

2) Checking the rank of the linear mapping θ: For a

particular element of the solution variety chosen as in (14)

and (15), the linear mapping θ reduces to

θ : ({U̇k}k∈ΦR
, {V̇l}l∈ΦT

) �→
{
U̇T
k Bkl +AklV̇l

}
(k,l)∈Φ

,

(16)

where U̇k, V̇l have dimensions (Nk − dk) × dk and (Ml −
dl) × dl, respectively. The mapping θ can also be written in

matrix form as

Ψw, (17)

where w is a column vector of dimension
∑

k∈ΦR
(Nk −

dk)dk +
∑

l∈ΦT
(Ml − dl)dl, built by stacking all columns of

{U̇T
k }k∈ΦR

and {V̇ T
l }Tl∈ΦT

, and Ψ is a block matrix with �(Φ)
row partitions (as many blocks as interfering links) and 2K
column partitions (as many blocks as precoding and decoding

matrices). Checking the feasibility of IA then reduces to check

whether matrix Ψ is full rank or not. Vectorization of the

mapping (16) reveals that Ψ is composed of two main kinds

of blocks, Ψ
(A)
kl and Ψ

(B)
kl , i.e.

vec(U̇T
k Bkl +AklV̇l) =

Ψ
(A)
kl︷ ︸︸ ︷

(Akl ⊗ Idk
)K(Nk−dk),dk

vec(U̇k)

+ (Idl
⊗BT

kl)︸ ︷︷ ︸
Ψ

(B)
kl

vec(V̇l),

(18)

where ⊗ denotes Kronecker product and Km,n is the mn ×
mn commutation matrix which is defined as the matrix that

transforms the vectorized form of an m × n matrix into the

vectorized form of its transpose. Block Ψ
(B)
kl has dimensions

dldk×dl(Ml−dl), whereas block Ψ
(A)
kl is dldk×dk(Nk−dk).

For a given tuple (k, l), Ψ
(B)
kl and Ψ

(A)
kl are placed in the row

partition that corresponds to the interfering link indicated by

the tuple (k, l). Ψ
(B)
kl is placed in the l+K-th column partition,

whereas Ψ
(A)
kl occupies the k-th column partition. The rest of



7

blocks are occupied by null matrices. The dimensions of Ψ
are therefore∑

(k,l)∈Φ

dkdl ×
∑
k∈ΦR

(Nk − dk)dk +
∑
l∈ΦT

(Ml − dl)dl,

whereas its structure is exactly the same as the incidence

matrix of the network connectivity graph. Remarkably, in

the particular case of s = 0, Ψ is a square matrix of size∑
(k,l)∈Φ dkdl.
Taking the 3-user interference channel as an example, Ψ is

given as in (19), where the blocks Ψ
(B)
kl and Ψ

(A)
kl are given

by (18).

Once Ψ has been built, the last step is to check whether

the mapping is surjective and, consequently, the interference

alignment problem is feasible. This amounts to check if the

rank of Ψ is maximum, that is, equal to
∑

(k,l)∈Φ dkdl. A

simple method consists of generating a random element b ∈
C

∑
(k,l)∈Φ dkdl , computing the least squares solution of Ψw =

b and checking if ‖Ψw−b‖ is below a given threshold μ. With

a high probability in the choice of b this test will determine

if θ is a surjective mapping.

At this point, two questions regarding the practical imple-

mentation of this method may arise. The first one is related

to the scalability of the proposed method. It is obvious that

both the computational and storage requirements grow with the

number of antennas, streams and users in the system. However,

matrix Ψ presents two characteristics which limit, to some

extent, these requirements.

• First, Ψ is a very sparse matrix with only
∑

(l,k)∈Φ(Nk−
dk)dldk +

∑
(k,l)∈Φ(Ml − dl)dkdl non-zero entries, thus

limiting both the computational and the storage require-

ments. Sparsity can be exploited by computing the least

squares solution of Ψw = b from the sparse QR factor-

ization of Ψ, for which efficient algorithms exist [22].

• Recall also that the matrix-vector product Ψw is com-

pletely characterized by the entries of submatrices Akl

and Bkl in (15). Black box iterative algorithms [23]

are able to solve the least squares problem by solely

performing matrix-vector products, i.e. computing the

linear transformation defined by the matrix Ψ. The main

consequence of this is that Ψ does not even need to

be explicitly constructed thus reducing even further the

storage requirements.

These considerations allowed us to evaluate the feasibility of

systems whose resulting Ψ is of dimensions up to 40000 ×
40000. As a rule of thumb, we could say that symmetric

systems with a product Kd up to 200 are computable. As an

example, we were able to check that the system (86×139, 25)8

is feasible. This operating range allowed us to extensively

verify the feasibility of a wide variety of scenarios and even

establish a new conjecture regarding the DoF of symmetric

interference channels which is described in detail in Section

VI.

The second question refers to the reliability of the numerical

results. Floating-point algorithms are always prone to round-

off errors, hence, determining something as simple as the

rank of a matrix may not be that easy, especially for very

large systems. The choice of the threshold μ determines in

the end to which extent our results are reliable. To eliminate

this ambiguity, in Section IV-B we present a Turing machine,

exact arithmetic, version of the proposed test and prove that

checking the IA feasibility belongs to the complexity class of

bounded-error probabilistic polynomial time (BPP) problems.

From a practical point of view, however, the floating point

version of the test described in this section was found to

provide always robust and consistent results when the entries

in Akl, Bkl and w were drawn from a complex normal

distribution with zero mean and unit variance, and the decision

threshold was set to μ = 10−3.

B. Exact arithmetic test and complexity analysis

The test explained after our Theorem 1 has been pro-

grammed in floating point arithmetic, and it is thus sensitive

to floating point errors. Although it is robust enough for many

examples, a Turing machine version of this test (that is, a test

working in exact arithmetic) is in order. Consider the following

algorithm.

1) For k ∈ ΦR and l ∈ ΦT , consider Hkl as in (15). Let

Ckl = 0 for all k, l and let the entries of Akl and Bkl be

chosen (i.i.d uniformly) as a+
√
−1b where 0 ≤ a, b <

h, a, b ∈ Z, and

h = 8
∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk.

Note thus that the entries of Akl, Bkl are complex

numbers whose real and imaginary parts are integers

of bounded size, chosen at random.

2) Check, using exact linear algebra procedures (such as the

ones available in libraries IML [24] or LinBox [25]), if

the mapping (16) is surjective. Then,

• if the mapping is surjective, answer feasible,

• otherwise, answer infeasible.

The following is our second main result.

Theorem 2: The algorithm above is a Bounded Error Prob-

ability procedure (thus, describes a BPP Turing machine)

whose running time is polynomial in the input parameters

dj ,Mj , Nj , �(Φ):

• if the given parameters define a unfeasible alignment

problem, answers unfeasible.

• if the given parameters define a feasible alignment prob-

lem, with high probability the algorithm answers feasible,

but there is a probability (in the choice of the coefficients

of Akl, Bkl) of at most 1/4 that the algorithm answers

unfeasible.

Proof: See Section V. Here is an outline of the idea of

the proof: if the scenario is feasible, then for every choice

of Hkl out of some zero measure set Z , the mapping (16) is

surjective. Of course, it could happen that every choice of Hkl

with integer, “small” entries is in Z . But, for that to happen,

Z must have a complicated topology (think for example in

a line that touches all points in the xy–plane with integer

coordinates bounded by some h > 0: the line must have quite

a complicated shape). But, the shape of Z is actually very

simple because it is given by a set of multilinear equations of

small degree. Thus, Z cannot contain too many integer points,
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Column partition
Interfering

link

Row

partition
1 2 3 4 5 6

(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
(3, 2)

1
2
3
4
5
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ
(A)
12 0 0 0 Ψ

(B)
12 0

Ψ
(A)
13 0 0 0 0 Ψ

(B)
13

0 Ψ
(A)
21 0 Ψ

(B)
21 0 0

0 Ψ
(A)
23 0 0 0 Ψ

(B)
23

0 0 Ψ
(A)
31 Ψ

(B)
31 0 0

0 0 Ψ
(A)
32 0 Ψ

(B)
32 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

and as a consequence for “most” integer points, the mapping

in (16) must be surjective.
Note that this kind of algorithm (with a bounded error prob-

ability just in one direction) is very common in mathematics

(the most famous example is Miller–Rabin test for primality

[26], [27]). The use is very simple: if on a given input the

algorithm answers feasible then the alignment is feasible. If

the test is run k times and its answer is unfeasible for all k
tries, then we can conclude that the alignment is unfeasible

unless an extremely unlikely event (probability at most 1/4k)

happened. The upper bound 1/4 on the error probability in

the one–try test can be changed to any ε < 1 by choosing a

different value of h, but according to the previous discussion,

the specific value is irrelevant.
Technically, Theorem 2 asserts that the problem of deciding

if a given choice of dj ,Mj , Nj ,Φ is generically infeasible

is in the complexity class BPP (bounded-error probabilistic

polynomial time).
Remark 3: Some complexity analysis have recently ap-

peared in the literature claiming that to check the feasibility of

IA problems is strongly NP-hard [28], [29]. However, there is

a crucial difference between the problem considered in [28],

[29] and that considered in this paper. The problem in [28]

can be restated informally as follows:
Problem 1: Given dj , Mj and Nj , decide whether there

exists a linear alignment solution for a given set of interference

MIMO channels Hkl.
However, we are considering in this paper a different feasibil-

ity problem:
Problem 2: Given dj , Mj and Nj (and a connectivity graph

or matrix Φ), decide whether there exists a linear alignment

solution for generic interference MIMO channels Hkl.
While Problem 1 is NP-hard, we have just shown that Problem

2 can be solved in polynomial time. The complexity of

Problem 1 is due to the fact the authors in [28], [29] consider

a given realization of Hkl. In fact, to check whether this

channel realization admits a solution, can indeed be NP-

hard. However, by restricting the problem to generic MIMO

channels, e.g., channels with independent entries drawn from

continuous distributions, the IA feasibility problem becomes

much easier. Note also that even if checking the feasibility of

IA can be done with polynomial complexity, finding the actual

decoders and precoders that align the interference subspaces

can still be NP-hard when K is large, as proved in [28].
Remark 4: The IA feasibility problem considered in this

paper, that is, determining if a given stream distribution

(d1, . . . , dK) can be generically achieved with linear IA is

tightly related to that of finding the maximum total DoF (or the

tuple achieving the maximum sum DoF,
∑K

k=1 dk). Although

we have shown that the former belongs to the BPP class, the

complexity of the latter remains uncharacterized. Based on the

proposed test, we have recently presented an algorithm [17] to

compute the maximum DoF in arbitrary networks. Its working

principle is performing an ordered search inside the region of

potential feasible tuples (those which satisfy existing necessary

conditions) until a feasible tuple is found. Unfortunately, for

an arbitrary system, the accurate determination of this region

may be a computationally demanding task. A problem of

similar complexity is that of checking the necessary feasibility

conditions in [12, Theorem 2] or [13, Theorem 1], which

involve an exponential number of constraints.

V. PROOF OF MAIN RESULTS

In what follows we provide a rigorous proof of our results.

Most preliminary details of the proof are relegated to appen-

dices.

A. Dimensions of the algebraic manifolds involved in the
problem

In this subsection we recall the dimensions of the algebraic

sets involved in the problem. Similar results have appeared in

[8], [12] and [13]; therefore and to keep the paper concise,

their proofs are omitted. For the interested reader the proofs

can be deduced following the mentioned references [8], [12],

[13] with a basic knowledge of algebraic geometry tools such

as those described in [30] and [31].

Lemma 3: Both H and S are complex manifolds, and

dimC H =
∑

(k,l)∈Φ

(NkMl − 1),

dimC S =
∑
k∈ΦR

dk(Nk − dk) +
∑
l∈ΦT

dl(Ml − dl).

Lemma 4: The set V is a complex smooth submanifold of

H× S and its complex dimension is

dimC V =

⎛
⎝ ∑

(k,l)∈Φ

NkMl − dkdl

⎞
⎠+

( ∑
k∈ΦR

Nkdk − d2k

)

+

(∑
l∈ΦT

Mldl − d2l

)
− �(Φ).
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B. The critical points and values of π1

We now study the sets of critical points and values of π1.

Lemma 5: Let (H,U, V ) ∈ V be fixed and let θ be

the mapping defined in (13). Then, θ is surjective or not,

independently of the chosen representatives of (H,U, V ).
Proof: See Appendix C.

Proposition 1: Let (H,U, V ) ∈ V . Then, (H,U, V ) is a

regular point of π1 if and only if the mapping θ defined in

(13) is surjective.

Proof: See Appendix D.

Proposition 2: The set Σ′ ⊆ V of critical points of π1 is an

algebraic subvariety of V . The set Σ ⊆ H of critical values of

π1 is a proper (i.e. different from the total) algebraic subvariety

of H.

Proof: See Appendix E.

Corollary 1: H \ Σ is a connected set.

Proof: From Proposition 2, the set Σ is a complex proper

algebraic subvariety, therefore it has real codimension 2 and

removing it does not disconnect the space H.

Corollary 2: Assume that Σ′ is a proper algebraic subvariety

of V (equivalently, π1 : V→H has at least one regular point).

Then, we are in the case 2) of our Theorem 1, that is for

every H ∈ H the set π−1
1 (H) is nonempty, and for H �∈ Σ

it is a smooth complex manifold of dimension s. Indeed, the

restriction V \ π−1
1 (Σ)

π1→H \ Σ is a fiber bundle.

Proof: From Corollary 1, the set H \ Σ of non-critical

values of π1 is a connected set. Moreover, we have:

• V \ π−1
1 (Σ) is not empty by assumption,

• π1 |V\π−1
1 (Σ) is a submersion (because we have removed

the set of critical points), and

• it is proper: let A ⊆ H\Σ ⊆ H be a compact set. Then,

A is closed as a subset of H and from the continuity of

π1, so is A′ = π−1
1 (A) ⊆ V . Now, A′ is a closed subset

of the compact set V and hence A′ is compact.

Ehresmann’s Theorem then implies that π |V\π−1
1 (Σ) is a fiber

bundle, and in particular it is surjective. This proves that

π−1
1 (H) �= ∅ for every H ∈ H\Σ, and the Preimage Theorem

implies that π−1
1 (H) is a smooth submanifold of complex

codimension equal to dimC H, thus of complex dimension

equal to dimC V − dimC H = s. Now, let H ∈ Σ and let

Hi, i ≥ 1 be a sequence of elements in H \ Σ such that

limi �→∞ Hi = H . Let (H∞, U∞, V∞) be an accumulation

point of (Hi, Ui, Vi) ∈ V , which exists because V is compact.

Then, by continuity of π1 we have that π1(H∞, U∞, V∞) =
H , that is H∞ = H and (H,U∞, V∞) ∈ V . Thus, π−1

1 (H) �=
∅ and we conclude that for every choice of Hkl there exists

at least one solution to (3) as claimed.

C. Proof of Theorem 1

Recall from Lemma 3 that the complex dimension of H is

dimC(H) =
∑

(k,l)∈Φ

(NkMl − 1) =
∑

(k,l)∈Φ

NkMl − �(Φ).

From this and from Lemma 4, defining s as in (12) we have

s = dimC V − dimC H.

Assume that dimC(H) ≤ dimC(V) (equivalently, s ≥ 0).

There are two cases:

1) if Σ′ = V then every point of V is a critical point of

π1 and hence every element of π1(V) is a critical value

of π1. On the other hand, from Proposition 2, Σ is a

proper algebraic subset of H, thus a zero measure set of

H. This means that π−1(H) = ∅ for every H out of the

zero–measure set Σ, thus we are in case 1) of Theorem

1.

2) otherwise, Σ′ is a proper subset of V , and from Corollary

2 we are in case 2) of Theorem 1.

We now prove each of the following implications:

a)⇒b): assume that π−1
1 (H) �= ∅ for every H ∈ H . From

Sard’s theorem, for almost every H ∈ H, π1 is

a submersion at every point in π−1
1 (H) and from

Proposition 1 the mapping (13) defines a surjective

linear mapping.

b)⇒c): trivial.

c)⇒a): from Proposition 1, π1 has a regular point, and

from Corollary 2, a) holds.

This finishes the proof.

Finally, the proof of Lemma 1 stating when a feasible IA

problem has a finite number of solutions is as follows: assume

that s = 0, or equivalently dimC(H) = dimC(V), and that we

are still in case 2(b) of Theorem 1. Then, from Corollary 3

(see Appendix A) all the elements in H \ Σ have the same

(finite) number, say C, of preimages by π1. This proves the

assertion of Lemma 1.

Remark 5: It is important for our analysis that the input and

output spaces are defined over the complex numbers, not over

the reals. Indeed, a key property in proving our main results

is that the critical points and values of π1 are algebraic sets.

In the complex case this means they have (real) codimension

2 and hence do not disconnect their ambient spaces. In the

real case, these sets may have real codimension 1 and they

may thus disconnect their ambient spaces. More specifically,

Corollary 1 may fail to hold in the real case. As a consequence,

one cannot apply Ehresman’s Theorem and a more delicate

analysis would be required in this case.

D. Proof of Theorem 2

Assume that parameters dj ,Mj , Nj ,Φ are chosen such

that the associated MIMO scenario is feasible. First, let us

remind from Section IV-A1 that we may choose Uk and Vl as

those in (14), and the MIMO channels as in (15) which, for

convenience, we show again:

Hkl =

(
0dk×dl

Akl

Bkl Ckl

)
, (k, l) ∈ Φ.

Now, let h ≥ 1 be an integer number and let those matrices

have coefficients of the form

a

h
+
√
−1

b

h
, (20)

with denominator h and numerators a, b in [0, h) ∩ Z. As

the system is generically feasible, for most choices of these

matrices Akl, Bkl, Ckl, we will have (H,U, V ) �∈ Σ, that is
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the linear mapping in (16) will be surjective. Moreover, the

mapping in (16) is independent of the entries Ckl, so we can

simply say that for most choices of Akl, Bkl the mapping

will be surjective. The merit of Theorem 2 is to quantify

this “for most”, which we do following the arguments in [20,

Sec. 17.4], which in turn are inspired by a celebrated result

by Milnor bounding the number of connected components of

semi–algebraic sets. We start by studying the set

Z = {(Akl, Bkl) ∈ [0, 1)2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk :

the linear mapping in (16) is not surjective}.

Note that we consider Z as a subset of

[0, 1)2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk , that is a real set, by

considering the real and complex parts of each entry of each

Akl and Bkl as a real number in [0, 1).
Lemma 6: Let κ(Z) be the maximum number of connected

components (intervals) of Z∩L where L is some line parallel

to some axis. Then,

κ(Z) ≤ 1.

Proof: Let L be a line parallel to some axis. That is, L
is the set of all (Akl, Bkl), (k, l) ∈ Φ, such that all entries of

Akl and Bkl are fixed save for one of them (the real or the

complex part of some entry, call it λ, of some Akl or some

Bkl). The set Z ∩ L is defined by rank(θ) <
∑

(k,l)∈Φ dkdl,
equivalently it is given by

p(λ) =
∑
J

| det(M)|2 = 0,

where J runs over all the possible minors of maximal size

contained in the matrix of mapping (16) and det(M) are those

minors. This is thus one real, non–negative equation of degree

at most 2 in λ. There are several possibilities:

• Case p(λ) = 0: the set Z ∩ L = L has one connected

component.

• Case p(λ) �= 0 for all λ ∈ [0, 1): the set Z ∩ L = ∅ has

zero connected components.

• Case p(λ) has a finite number of zeros in [0, 1): As p(λ)
is non–negative of degree 2, it has at most one isolated

zero. Thus, in this case Z ∩ L consists of one point and

thus has one connected component.

In any case, Z ∩ L has at most 1 connected component.

Lemma 7: For any h ≥ 1, the cardinal of the set of values of

Akl and Bkl with entries of the form a
h+

√
−1 b

h , 0 ≤ a, b < h
such that the mapping in (16) with Ckl = 0 is not surjective

is at most

Ph =

⎛
⎝ 2

h

∑
(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk

⎞
⎠Qh,

where Qh is the total number of Akl, Bkl with such entries,

that is

Qh = h2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk

Proof: From [20, Th. 3, p. 327] (note the difference in

the notation: our h is 1/h in [20]), we know that

|Ph − vol(Z)Qh| ≤
D

h
κ(Z)Qh,

where vol(Z) = 0 is the volume (Lebesgue measure) of the

proper algebraic variety Z , and D is the (real) dimension of

the set of (Akl, Bkl), which is equal to D = 2
∑

(k,l)∈Φ(Nk−
dk)dl + (Ml − dl)dk. The lemma follows from Lemma 6.

We now prove Theorem 2. Let Akl, Bkl be chosen at random

with i.i.d. entries of the form a+
√
−1b, a, b ∈ Z, 0 ≤ a, b < h.

Then, the mapping in (16) is surjective if and only if the same

mapping but with entries a
h +

√
−1 b

h is surjective, because we

are only multiplying each Akl and Bkl by h−1. From Lemma

7, the probability that the linear mapping (16) is not surjective

is at most

Ph

Qh
=

2

h

∑
(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk.

By choosing

h = 8
∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk,

we guarantee that with probability at least 3/4 the answer

of the algorithm is feasible. As already mentioned, one can

repeat the test k times to get the probability of having a wrong

answer decreasing as 1/4k. Note that the integers defining the

mapping (13) are of bit length bounded above by 1+log2 h, a

quantity which is logarithmic in �(Φ) and dj ,Mj , Nj . Hence,

the exact arithmetic test can be carried out in time which is

polynomial in the same quantities.

VI. DISCUSSION AND COMPUTER SIMULATIONS

A. Some results for arbitrary interference channels

In this subsection, we first show that the proposed feasibility

test provides consistent results in agreement with those found

in the literature. Moreover, we also discuss scenarios for which

the existing DoF outer bounds are not tight. The feasibility test

has been evaluated on a vast amount of scenarios, including

those covered in [12] and [13], and since its results have

always been consistent with all previously known results, here

we only show a selection of the most representative cases.

Some additional examples can be found in [32].4

Example 1: First, consider the simple (3 × 3, 2)2 system,

which has been already studied in [8]. Although this system

is proper, it is infeasible since it does not satisfy the 2-user

outer bound given by (9). Our test also shows that this system

is infeasible.

Example 2: Consider the 3-user system
∏3

j=1(7 × 13, dj)
where the stream distribution among users is not specified. The

outer bound (10) establishes that total number of DoF cannot

exceed 19.5 in this network, whereas the properness condition

in [8] guarantees that the system is infeasible if more than 5
DoF per user are transmitted (i.e. a total of 15 DoF). However,

the results in [33], [34] provide an even tighter bound which

shows that the system is infeasible if 5 streams per user are

transmitted. Our test indicates that the (7× 13, 5)3 system is

infeasible whereas the system (7×13, 4)(7×13, 5)2 is feasible,

4The reader is invited to test the feasibility of an arbitrary alignment
problem at http://gtas.unican.es/IAtest where the Matlab source code for the
floating point test is also provided.
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which allows us to claim that the maximum total DoF for this

network is 14.

Example 3: The (4×4, 2)(5×3, 2)(6×2, 2) system, which

was studied in [16], satisfies (9) for all 2-user pairs and

satisfies all known outer bounds. The proposed test establishes

that this system is infeasible.

Example 4: A controversial example can also be found

in [16]: the (3 × 4, 2)(1 × 3, 1)(10 × 4, 2) system. The test

proposed in [16] indicates that this system is feasible, while

our test establishes that it is infeasible. In our view, the test

in [16] gives only necessary (but not sufficient) conditions

for feasibility. As our analysis has shown, it is not possible

to solve the feasibility problem just by counting variables in

all subsets of IA equations, a much more subtle analysis is

needed. Similar examples are the (4× 8, 3)3 and (5× 11, 4)3

networks, which are infeasible according to our test (moreover

they violate the outer bound (10)) while the test in [16] states

they are feasible. We also have numerical evidence that this

system is infeasible since iterative algorithms such as [35] [36]

have not been able to find a solution for this scenario5.

Example 5: Now, let us consider the (3×4, 2)(1×3, 1)(10×
4, 2) system studied in [8]. It is proper but infeasible, since

it violates the 2-user cooperative outer bound (it is equivalent

to the (4× 7, 3)(10× 4, 2) network). Our test also shows that

the system is infeasible.

Example 6: Consider the (2 × 2, 1)3(3 × 5, 1) system

also studied in [8]. Checking the properness of this scenario

involves checking the properness of all the possible subsets of

equations. It can be found that the subset of equations which

is obtained by shutting down the fourth receiver is improper,

therefore the system is infeasible. Our test provides the same

result.

Example 7: A final interesting example is the (2×2, 1)(5×
5, 2)2(8 × 8, 4) system, which is feasible according to the

proposed test. This system has been built by taking the

symmetric (5× 5, 2)4 system, which is known to be feasible,

and transferring 6 antennas from the first user to the fourth.

It must noticed that while the total amount of antennas in

the network remains constant, the redistribution of antennas

has allowed to achieve a total of 9 DoF instead of the 8
DoF achieved in the symmetric case. This example gives new

evidence for the conjecture settled in [16], which asserts that

for a given total number of DoF, dtot =
∑

k dk, there exist

feasible asymmetric MIMO interference systems (that is, with

unequal antenna and stream distribution among the links) such

that the total number of antennas,
∑

k(Mk + Nk), is less

than number of antennas of the smallest symmetric system

(Mk = M , Nk = N , and dk = dtot/K that can achieve dtot.

Let us finally point out that, in all cases in which our

feasibility test was positive, we were able to find an IA solution

using the iterative interference leakage minimization algorithm

proposed in [35] [36].

5Notice, however, that alternating minimization algorithms cannot guarantee
convergence to a global minimum, so it cannot be used as a feasibility test.

B. On the DoF of symmetric M × N MIMO interference
channels

We have previously shown that the proposed test is in

agreement with known results, including those which refer

to fully asymmetric systems. Additionally, by using the afore-

mentioned test it is possible to extensively verify conjectures,

disprove them or provide additional insights on how the DoF

for general interference channels should behave. One such

example is the number of linear DoF of the symmetric K-

user M × N MIMO interference channel, (M × N, d)K ,

which is unknown for K ≥ 4. For convenience, we use

the concept of spatially-normalized degrees of freedom, d�,

introduced in [37]. When d� is an integer, we have an exact

DoF characterization. In general it will be a rational number

and the actual DoF without spatial extensions can be obtained

from it as d = 	d�
. To understand the concept of spatially-

normalized DoF, let us express d� in its rational form p/q.

Then, scaling the number of antennas by q, we have a

qM × qN MIMO interference channel, for which the value

d� = p is achievable.

We must point out that for the particular case of K = 3
the linear DoF have been recently obtained [33], [37]. In

particular, the DoF characterization comprises a piece-wise

linear mapping with infinitely many linear intervals over the

range of the parameter γ = M/N where M ≤ N is assumed

w.l.o.g. Specifically, the linear DoF are depicted in Fig. 1 and

are described by the following expression:

d� =

{
p

2p−1M, γ′(p) ≤ M
N ≤ γ(p)

p
2p+1N, γ(p) ≤ M

N ≤ γ′(p+ 1)
p ∈ Z

+,

(21)

where γ′(p) = p−1
p and γ(p) = 2p−1

2p+1 .

When K ≥ 4 the exact number of linear DoF is unknown.

However, from an information theoretic perspective, and not

being restricted to any particular alignment scheme, the DoF

have been almost completely characterized by Jafar et al. [38]

as

dIT =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M, 0 ≤ M
N < 1

K
N
K , 1

K ≤ M
N ≤ 1

K−1
(K−1)M

K , 1
K−1 ≤ M

N ≤ K
K2−K−1

(K−1)N
K2−K−1 ,

K
K2−K−1 ≤ M

N ≤ K−1
K(K−2)

MN
M+N , K−2

K2−3K+1 ≤ M
N ≤ 1,

(22)

but they are still unknown in the excluded interval, i.e. M
N ∈(

K−1
K(K−2) ,

K−1
K2−3K+1

)
, where they are believed to be MN

M+N as

conjectured in [38]. Obviously, the information theoretic DoF

is a, sometimes tight, upper bound of the linear DoF without

symbol extensions but the extent to which they differ remains

unclear.

In order to shed some light on this issue we have extensively

executed our test for all the scenarios with M,N ∈ [1, 100]
and K ≥ 3. Our results show two different operating

regimes depending on whether MN
M+N ≥ M+N

K+1 or not. In

other words, the regime of operation depends on whether

the ratio γ = M/N is above or below a threshold value

λ = 1/2
(
K − 1−

√
(K − 1)2 − 4

)
. As an example, Fig. 2



12

γ (fix N)
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7

γ
γ+1 (d = MN

M+N )

γ+1
K+1 (d = M+N

K+1 )

λ = 1

Piecewise linear DoF

Fig. 1. Linear degrees of freedom for the 3-user interference channel as proved in [37]: d�/N as a function of γ = M/N . This figure is included to illustrate
the analogy with the results for K ≥ 4 depicted in Fig. 2.
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8
21

11
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4
11
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γ′(p) =

21
55

29
76

11
29

8
21

Fig. 2. Conjectured linear degrees of freedom for the 4-user interference channel: d�/N as a function of γ = M/N . Similar figures are obtained for all K.



13

shows the linear DoF values per user normalized by N versus

the ratio γ = M/N for K = 4. Now, we describe the DoF

behaviour for these two regimes in detail for general K.

1) Regime 1 (Piecewise linear DoF), γ ≤ λ:

a) We have verified that the linear DoF are given

by (22) when 0 ≤ γ ≤ (K−1)
K(K−2) which confirms

that in this case the information theoretic DoF can

be achieved by linear alignment without symbol

extensions.

b) More interestingly, when
(K−1)

K(K−2) < γ ≤ λ we

have been able to find several counterexamples that

exceed the conjectured value of MN
M+N , which was

believed to be the information theoretic DoF value.

As examples, we enumerate the following feasible

systems (11 × 29, 8)4, (44 × 117, 32)4, (19 ×
71, 15)5 and (29 × 139, 24)6, which clearly ex-

ceed the conjectured DoF per user: 7.975, 31.975,

14.989 and 23.994, respectively. In addition, all

systems in this interval seem to follow the same

piecewise linear DoF trend described before for

the 0 ≤ γ ≤ (K−1)
K(K−2) region and for the 3-user

interference channel. More precisely, the spatially

normalized DoF can be written analogously to (21)

as:

d� =

{
γ(p)+1

γ(p)(K+1)M, γ′(p) ≤ M
N ≤ γ(p)

γ(p)+1
K+1 N, γ(p) ≤ M

N ≤ γ′(p+ 1)
p ∈ Z

+.

(23)

where

γ(p) =

(p−1)∑
k=−(p−1)

λk

p∑
k=−p

λk

and γ′(p) = λ

p−2∑
k=0

λ2k

p−1∑
k=0

λ2k

.

(24)

Intuitively, γ(p) gives the values of M/N for

which there are no antenna redundancies at ei-

ther side of the link whereas γ′(p) gives those

for which there is maximum redundancy6. Both

functions get asymptotically closer as p increases

since limp→∞ γ(p) = limp→∞ γ′(p) = λ. Specific

details on the reasoning leading to (23) are rele-

gated to Appendix F.

It is worth pointing out that (23) generalizes (21) and is

also consistent with the information theoretic bound in

(22). In fact, for the 3-user channel, λ takes its maximum

value, i.e. λ = 1 meaning that the entire γ range,

γ ∈ (0, 1], is covered by this piecewise linear regime

as shown in Fig. 1. For K > 3, the value of λ is strictly

lower than 1, approaching to 0 as K tends to infinity.

2) Regime 2 (Properness-limited DoF), γ ≥ λ: For γ values

above the threshold we have observed that the linear DoF

6If λ �= 1 (i.e. K �= 3) both functions can be simplified: γ(p) =

λ 1−λ2p−1

1−λ2p+1 and γ′(p) = λ 1−λ2p−2

1−λ2p .

are always given by

d� =
M +N

K + 1
. (25)

This means the system is limited by the properness

criterion and no proper but infeasible scenarios have

been found in this regime.

To sum up, our numerical results lead us to conjecture that

the linear DoF of the symmetric K-user interference channel

(K ≥ 3) are completely characterized by these two regimes

thus generalizing the existing results for the 3-user channel.

Formally, it can be written as follows.

Conjecture 1: For the K-user (K ≥ 3) M × N MIMO

interference channel, the spatially-normalized DoF value per

user achievable with linear IA and without time/frequency

symbol extensions is given by:

d� =

{
(23), M

N ≤ λ
(25), M

N ≥ λ
, (26)

where λ = 1/2
(
K − 1−

√
(K − 1)2 − 4

)
.

It is worth mentioning that during the review process of

this paper we have been aware of an independent related

work by Liu and Yang [39] on the degrees of freedom of

the symmetric MIMO interference broadcast channel. Their

results for the piecewise-limited regime (MN ≤ λ), although

obtained by totally different means, are in perfect agreement

with ours. Furthermore, their results when M
N ≥ λ are based

on the test proposed herein and lead them to conjecture, as

in (26), that the properness condition is indeed necessary and

sufficient in this regime. This fact still remains unproved.

VII. CONCLUSIONS

This paper gives some new results on the feasibility of inter-

ference alignment on the signal space for the K-user MIMO

channel with constant coefficients. We use the fact that the

input, output and solution variety sets for the IA problem are

smooth compact algebraic manifolds. Of particular importance

and interest is the study of the projection of the solution variety

into its first coordinate and the analysis of their tangent spaces.

We prove that for an arbitrary MIMO interference channel IA

is feasible iff the algebraic dimension of the solution variety

is larger than or equal to the dimension of the input space and
the linear mapping between the tangent spaces of both smooth

manifolds given by the first projection is generically surjective,

and we provide a simple linear algebra routine, with running

time polynomial in the input parameters dj ,Mj , Nj , �(Φ), to

decide if the scenario is feasible. The matrix representing

this linear mapping can be easily obtained and the feasibility

of IA amounts to checking whether this matrix is full rank

or not. Proper but infeasible systems correspond to cases in

which the dimension of the solution variety coincides with the

dimension of the input space, but the mapping is not surjective,

that is, the solution variety is mapped to a zero-measure

set of MIMO interference channels. We have evaluated our

feasibility test on many examples, some of them served to

corroborate known results, others showed the non-tightness of
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existing DoF outer bounds for this setting or provided evidence

on the advantages of unequal antennas and stream distribution

for DoF maximization. Additionally, an extensive execution

of our test on symmetric scenarios allowed us to establish

a conjecture on the DoF of the K-user interference channel

which generalizes already known results for K = 3.

APPENDIX A

REVIEW OF SOME RESULTS FROM ALGEBRAIC GEOMETRY

AND DIFFERENTIAL TOPOLOGY

A key point of our analysis is a subtle use of the notion of

compactness of spaces. We introduce this fundamental mathe-

matical concept in the following lines. Recall that a topological

space X is just a set where a collection τ ⊂ {subsets of X}
of “open subsets” has been chosen, satisfying three conditions:

1) the empty set and the total set X are in τ ,

2) the intersection of a finite number of elements in τ is

again in τ , and

3) the union of any collection of elements in τ is again in

τ .

For example, Rn with the usual definition of “open set” is a

topological space. Any subset A ⊆ R
n (for example, a sphere

or a linear subspace) then inherits a structure of topological

space, with open sets being those obtained by intersecting

an open set of R
n with A. More generally, any (smooth)

manifold is by definition a topological space and any subset

of a manifold inherits a structure of topological space.

A subset A ⊆ X of a topological space is called compact
if the following property holds: given any collection of open

sets of X such that their union contains A, there exist a finite

subcollection which also contains A. This is not a particularly

intuitive definition, but it permits to obtain many results,

notoriously a fundamental result due to Ehressman that will be

recalled below. From the Heine–Borel Theorem, a subset of

R
n or C

n is compact if and only if it is closed (in the usual

definition) and bounded. Thus, the sphere is compact but a

linear subspace is not.

Using the definition, note that a given manifold X is itself

compact if any collection of open subsets whose union is X
has a finite subcollection that covers X . For example, Rn is

not compact (the union for m ≥ 1 of open balls of radius

m covers R
n but no finite subcollection of these balls covers

R
n). It is not obvious but it is true that the projective spaces

P(Rn) and P(Cn) are both compact. We will finally use the

following basic fact: if X is compact and A ⊆ X is closed,

then A is compact as well.

We will also use some basic notions related to regular map-

pings: let ϕ : X→Y be a smooth mapping where X and Y are

smooth manifolds. For every x ∈ X , the derivative is a linear

mapping between the tangent spaces, Dϕ(x) : TxX→Tϕ(x)Y .

A regular point of ϕ is a point such that Dϕ(x) is surjective

(which requires dim(X) ≥ dim(Y )). A critical point is a

x ∈ X which is not regular. Similarly, a regular value of

ϕ is an element y ∈ Y such that for every x ∈ X such that

ϕ(x) = y, x is a regular point. That is, y ∈ Y is a regular value

if every point mapped to y is a regular point. This includes, by

convention, the case ϕ−1(y) = ∅. If y is not a regular value,

we say that it is a critical value. Note that

ϕ{critical points of ϕ} = {critical values of ϕ}.
If x is a regular point of ϕ we say that ϕ is a submersion
at x. If ϕ is a submersion at every point (equivalently, every

x ∈ X is a regular point of ϕ) then we simply say that ϕ is

a submersion.
We now recall a few results from regular mappings; the

reader may find them for example in [40, Ch. 1] or [41]:
Theorem 3 (Preimage Theorem): If Y0 ⊆ Y is a submanifold

such that every y ∈ Y0 is a regular value of ϕ : X→Y
then Z = ϕ−1(Y0) is a submanifold of X of dimension

dim(Z) = dim(X) − dim(Y ) + dim(Y0). Moreover, the

tangent space TxZ at x to Z is the kernel of the derivative

Dϕ(x) : TxX→TyY .
Theorem 4 (Sard’s Theorem): If X and Y are manifolds

and ϕ : X→Y is a smooth mapping, then almost every point

of Y is a regular value of ϕ.
Remark 6: Note that it can happen that every x ∈ X is

a critical point: this simply means that every y ∈ ϕ(X) is

a critical value, which by Sard’s theorem means that ϕ(X)
has zero–measure in Y . This phenomenon is behind case 1 of

Theorem 1.
Another tool that we will use is a celebrated theorem

by Ehresmann, a foundational result in differential topology.

Before writing it, we recall that a fiber bundle is a tuple

(E,B, π, F ) where E,B, F are manifolds and π : E→B is a

continuous surjective mapping that is locally like a projection

B × F→E, in the sense that for any x ∈ E there exists

an open neighborhood U ⊆ B of π(x) such that π−1(U)
is homeomorphic to the product space U × F . For example,

E = R
2 \ {0} is a fiber bundle with base space B the unit

circle and fiber F = R, because locally R
2 \ {0} is as a

product space of a short piece of the circle and a line (which

goes from 0 to ∞ with no extremes). Fiber bundles are very

useful objects in the study of geometry and they are closely

related to regular values as the following result (see [42] or

[43, Th. 5.1] for a more general version) shows:
Theorem 5 (Ehresmann’s Theorem): Let X,Y be smooth

manifolds with Y connected, let U ⊆ X be a nonempty open

subset of X and let π : U → Y satisfy:

• π is a submersion, and

• π is proper, i.e. the inverse image of a compact set is a

compact set.

Then, π : X→Y is a fiber bundle, and π(U) = Y .
In the precedent theorem, if X is compact and dim(X) =
dim(Y ), then the inverse image of any point is a finite set and

the fact that every point is regular with the Inverse Mapping

Theorem implies that π is actually a covering map, that is

every point y ∈ Y has an open neighborhood V whose

preimage by π which is equal to a finite number of open sets

of X , each of them homeomorphic to V . Thus:
Corollary 3: If in Ehresmann’s Theorem we assume more-

over that X is compact and dim(X) = dim(Y ) then π defines

a covering map. In particular, this implies that every y ∈ Y
has a finite number of preimages, and that number is the same

for all y ∈ Y .
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We recall also some known facts from algebraic geometry.

Our basic references are [30], [44]. Given complex vector

spaces V1, . . . , Vl, the Segre embedding is a mapping from

the product of projective spaces P(V1) × · · · × P(Vl) into a

higher dimensional projective space P(T ) (where T is a high–

dimensional vector space) such that:

• it is a diffeomorphism into its image (more specifically,

it is an embedding), and

• the image of an algebraic subvariety is an algebraic

subvariety and viceversa.

The Segre embedding is useful because it allows us to treat

some objects (for example, products of Grassmannians) as

algebraic subvarieties of a high–dimensional projective space.

We will use this at some point combined with the following

result

Theorem 6 (Main Theorem of Elimination Theory): Let Z ⊆
P(Ca)× P(Cb) be an algebraic variety. Then,

π1(Z) = {x ∈ P(Ca) : ∃ y ∈ P(Cb), (x, y) ∈ Z}

is an algebraic subvariety of X .

APPENDIX B

PROOF OF LEMMA 2

Proof: Let (U, V ), (A,B) ∈ S be two points, and assume

that we have chosen affine representatives that we denote by

the same letters U, V,A,B. Note that there exist nonsingular

square matrices Qj of size Nj and Pj of size Mj such that

Uj = QjAj and Vj = PjBj . Consider the following mapping

π−1
2 (U, V ) → π−1

2 (A,B)
Hkl �→ QT

kHklPl

which is a linear bijection. Thus, π−1
2 (U, V ) is empty or

nonempty for every (U, V ) ∈ S and it suffices to prove the

claim for some (U, V ) ∈ S . If it is nonempty for some (thus,

all) (U, V ), let (U, V ) ∈ S be a regular value of π2. Then, from

the Preimage Theorem π−1
2 (U, V ) is a smooth submanifold of

V of the claimed dimension (the dimension of V is given in

Lemma 4.) Moreover, it is given by the nullset of a set of

linear (in H) equations and is thus a product of projective

vector subspaces as claimed.

We now discard the case that π−1
2 (U, V ) is empty for every

(U, V ) ∈ S (equivalently, V is empty). Note that since we have

assumed (8) holds, the particularly simple element (H,U, V ),
first described in Section IV-A, is in V and hence V �= ∅.

APPENDIX C

PROOF OF LEMMA 5

Proof: Let θ1 be the mapping of (13) for representatives

(H1, U1, V1) of (H,U, V ), and similarly let θ2 be the mapping

of (13) for representatives (H2, U2, V2) of (H,U, V ). We need

to prove that if θ1 is surjective then so is θ2. Because both

affine points are representatives of the same (H,U, V ), there

exist complex numbers (λkl)(k,l)∈Φ and nonsingular matrices

Qk ∈ C
dk×dk , k ∈ ΦR, and Pl ∈ C

dl×dl , l ∈ ΦT , such that

(H2)kl = λkl(H2)kl, (U2)k = (U1)kQk, (V2)l = (V1)lPl.

Let Ṙ = (Ṙkl)(k,l)∈Φ ∈ ∏
(k,l)∈Φ C

dk×dl . If θ1 is surjective,

there exist ({U̇k}k∈ΦR
, {V̇l}l∈ΦT

) such that

U̇T
k (H1)kl(V1)l + (U1)

T
k (H1)klV̇l = λ−1

kl (Q
T
k )

−1ṘklP
−1
l .

Then,

(θ2({U̇kQk}k∈ΦR
, {V̇lPl}l∈ΦT

))kl

= QT
k U̇

T
k (H2)kl(V2)l + (U2)

T
k (H2)klV̇lPl

= λkl

(
QT

KU̇T
k (H1)kl(V1)lPl +QT

k (U1)
T
k (H1)klV̇lPl

)
= λklQ

T
k

(
U̇T
k (H1)kl(V1)l + (U1)

T
k (H1)klV̇l

)
Pl

= λklQ
T
k

(
λ−1
kl (Q

T
k )

−1ṘklP
−1
l

)
Pl = Ṙkl.

Thus, θ2 is surjective as claimed.

APPENDIX D

PROOF OF PROPOSITION 1

Proof: Assume first that θ is surjective, and let (H,U, V )
be some fixed affine representatives. For any tangent vector

Ḣ , let Ṙ = (Ṙkl)(k,l)∈Φ ∈ ∏
(k,l)∈Φ C

dk×dl be defined as

Ṙkl = −UT
k ḢklVl.

Because θ is surjective, there exists (U̇ , V̇ ) ∈ θ−1(Ṙ), that is

(U̇ , V̇ ) satisfying

U̇T
k HklVl + UT

k HklV̇l = −UT
k ḢklVl, (k, l) ∈ Φ. (27)

Note that the equations defining V are precisely UT
k HklVl = 0,

(k, l) ∈ Φ, and thus from the Preimage theorem we can cover

the tangent space to V at (H,U, V ) with those (Ḣ, U̇ , V̇ ) satis-

fying (27). We conclude that (Ḣ, U̇ , V̇ ) is in the tangent space

to V at (H,U, V ), and thus Dπ1(H,U, V )(Ḣ, U̇ , V̇ ) = Ḣ ,

which means that Dπ1(H,U, V )−1(Ḣ) �= ∅. As Ḣ was chosen

generically, we conclude that π1 is a submersion at (H,U, V ),
namely (H,U, V ) is a regular point of π1 as wanted. This

finishes the “if” part of the proposition.

The “only if” part is a converse reasoning: assume that

(H,U, V ) is a regular point of π1. This means that for

every Ḣ ∈ THH there exist (U̇ , V̇ ) ∈ T(U,V )S such that

(Ḣ, U̇ , V̇ ) ∈ T(H,U,V )V , which means that these tangent

vectors satisfy (27). Let (Ṙkl)(k,l)∈Φ ∈ ∏
(k,l)∈Φ C

dk×dl .

Now, because Uk and Vl are representatives of an element

of the Grassmanian, they are full rank and thus we can write

Ṙkl = −UT
k ḢklVl for some Ḣkl. Then, (27) reads

U̇T
k HklVl + UT

k HklV̇l = −UT
k ḢklVl = Ṙkl, (k, l) ∈ Φ,

that is all such Ṙkl have a preimage by θ, and θ is surjective.

APPENDIX E

PROOF OF PROPOSITION 2

Proof: From Proposition 1, Σ′ can be written as the set of

(H,U, V ) such that all the minors of the matrix defining θ are

equal to 0. Thus, Σ′ is an algebraic subvariety of V . The set

H is a product of projective spaces and hence the associated

Segre embedding defines a natural embedding

ϕ1 : H → P(T1), (28)
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where T1 is a high–dimensional complex vector space.

Let ∧a(Cb) the a–th exterior power of C
b. Then, the

Grassmannian Ga,b can be seen as an algebraic subset of

a complex projective space P(∧a(Cb)), and as a compact

complex manifold of (complex) dimension a(b − a) (see

for example [30, p.42] and [31, p. 175–176]). The Segre

embedding defines a natural embedding

ϕ2 : S → P(T2), (29)

where T2 is a certain (high–dimensional) complex vector

space. Both ϕ1 and ϕ2 define diffeomorphisms between their

domains and ranges, as does the product mapping ϕ1 × ϕ2,

and they preserve algebraic varieties in both ways. We can thus

identify H ≡ ϕ1(H), S ≡ ϕ2(S) and see V as an algebraic

subvariety of the product space

V ≡ (ϕ1 × ϕ2)(V) ⊆ P(T1)× P(T2).

The Main Theorem of Elimination Theory then grants that

Σ = π1(Σ
′) is an algebraic subvariety of H. We moreover

have that it is a proper subvariety because by Sard’s Theorem

it has zero–measure in H.

APPENDIX F

DERIVATION OF (24)

The execution of the proposed test for a large number

of scenarios suggests that γ(p) and γ′(p), which we will

indistinctly denote as γ�(p), are given by

γ�(p) =
F �
p

F �
p+1

where F �
p satisfies the recurrence relation F �

p+1 = (K −
1)F �

p − F �
p−1 with initial conditions F1 = 1, F0 = −1

(for γ(p)), and F ′
1 = 0, F ′

0 = −1 (for γ′(p)). Sequences

satisfying this recurrence equation are known as Lucas Se-

quences because any such a sequence can be represented as a

linear combination of the Lucas sequences of first and second

kind. Lucas sequences are a generalization of other famous

sequences including Fibonacci numbers, Mersenne numbers,

Pell numbers, Lucas numbers, etc. The interested reader can

find a good introduction to Lucas sequences in [45, Chapter

17].

For convenience, we rewrite the recurrence relation in

matrix form f�
p = Af�

p−1, where(
F �
p+1

F �
p

)
︸ ︷︷ ︸

f�
p

=

(
(K − 1) −1

1 0

)
︸ ︷︷ ︸

A

(
F �
p

F �
p−1

)
︸ ︷︷ ︸

f�
p−1

.

Now, we are interested in writing f�
p as a function of the initial

conditions, i.e. f�
p = Apf�

0 . In order to do so, we first need

the eigenvalue decomposition of A. The eigenvalues are the

roots of the characteristic polynomial

det(A− λI) = λ2 − (K − 1)λ+ 1 = 0,

which are given by

λ± =
1

2
((K − 1)±

√
(K − 1)2 − 4).

Notice that given det(A) = 1, λ− = 1/λ+. Thus, for

convenience we define λ = λ− and factorize Ap = SΛpS−1:

Ap =

(
1/λ λ
1 1

)
︸ ︷︷ ︸

S

(
1/λp 0
0 λp

)
︸ ︷︷ ︸

Λp

(
1 −λ
−1 1/λ

)
λ

1− λ2︸ ︷︷ ︸
S−1

,

where the columns of S are the eigenvectors of A. Then, using

the fact that f�
p = SΛpS−1f�

0 , it is straightforward to obtain

a compact expression for F �
p :

F �
p = λ−p+1

(
F �
1

p−1∑
k=0

λ2k − F �
0

p−2∑
k=0

λ2k+1

)
. (30)

Finally, when the corresponding initial conditions are substi-

tuted in (30), we can write

γ(p) =
Fp

Fp+1
=

(p−1)∑
k=−(p−1)

λk

p∑
k=−p

λk

and

γ′(p) =
F ′
p

F ′
p+1

= λ

p−2∑
k=0

λ2k

p−1∑
k=0

λ2k

.

A final observation is that limp→∞ γ(p) = limp→∞ γ′(p) =

limp→∞
F�

p

F�
p+1

= λ and, thus, λ is also a threshold value sep-

arating the so-called piecewise linear and properness-limited

DoF regimes.
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