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Abstract. In a recent paper, the average complexity of linear
homotopy methods to solve polynomial equations with random
initial input (in a sense to be described below) was proven to be
finite, and even polynomial in the size of the input. In this paper,
we prove that some other higher moments are also finite. In par-
ticular, we show that the variance is polynomial in the size of the
input.

1. Introduction

The complexity theory of solving systems of polynomial equations
still poses many problems. Among these is whether there is a deter-
ministic uniform algorithm which finds an approximate zero of a system
of n homogeneous polynomials in n + 1 complex variables of degrees
(d1, . . . , dn) with average cost polynomial in the input size. This prob-
lem is the deterministic version of the 17th problem on Smale’s list
[18]. To our knowledge this problem is not solved even for n = 2 and
arbitrary degree in the context we consider below. For n = 1, the his-
tory of numerically solving complex polynomial equations is long. It is
surveyed in Pan [11], see also Smale [17]. In [11] many algorithms are
given for solving univariate complex polynomials, sometimes together
with complexity estimates, which may be construed as affirmatively
answering Smale’s question in the positive for univariate polynomials.
See references [12], [8] and [10] in [11] and Chapter 9 of [2] for ap-
proaches which bear a close relationship to our own. There has been
much progress since, but we do not try to survey it here as it would
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take us to far afield except to mention [9] which has a probabilistic and
condition aspect. In the form of the eigenvalue problem a vast litera-
ture exists on numerical methods which perform wonders in practice,
but to our knowledge no rigorous complexity estimates are given, ex-
cept perhaps for the reduction to the characteristic polynomial which
most numerical analysts caution against.

Recently, Beltrán and Pardo have given a positive probabilistic an-
swer to Smale’s problem, [3], [4], [5], [6] for all n and for all vectors of
degrees. Here we give a brief indication of their and our results. More
details and definitions are given below. Beltrán and Pardo show how
to produce a random pair (g, ζ) where g is a polynomial system and ζ a
zero of g starting from a random n by n + 1 matrix. Then given a pair
(g, ζ) they find an approximate zero of f by a homotopy or continua-
tion method, which performs a number of (projective) Newton steps.
They give an upper bound for the cost (number of steps) of finding
this approximate zero as a function C0(g, f, ζ) of f (see equation (1.4)
below). Then the average,

A1(g, ζ) =

∫

f∈S

C0(g, f, ζ) dS

is up to a small factor, cd3/2 where c is a positive constant and d
the maximum of the di’s, an upper bound for the average number of
steps required by a path-following method starting at the pair (g, ζ) to
produce an approximate zero of a system f with probability 1.

Let (d) = (d1, . . . , dn) be a list of positive degrees, and H(d) be the
vector space of homogeneous polynomial functions f = (f1, . . . , fn) :
C

n+1 → C
n, where fj is homogeneous of degree dj, j = 1 . . . n. We

denote D = d1 · · · dn (Bézout’s Number), d = max{dj : 1 ≤ j ≤ n}
and assume that d ≥ 2. Note that D ≤ dn is the number of complex
projective solutions of any non-degenerate system f ∈ H(d). We let
N + 1 denote the dimension of H(d) as a vector space, i.e., N + 1 is the
number of monomials of a generic f ∈ H(d).

A consequence of Theorem 1 in [3] is 1:

Theorem 1. The expectation

(1.1) E (A1(g, ζ)) ≤ 16
√

2πnN.

We describe the probability measures of this theorem below.

1The paper [3] deals with slightly different quantities C and A, satisfying C0 ≤√
2C and A1 ≤

√
2A, thanks to Inequality (2.1) below. Thus, the results in [3] are

still valid up to a small constant
√

2. The quantities A of [3] and A1 of this paper
are versions of the integrals studied in the article [20].
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Theorem 1 has a simple interpretation via Markov’s inequality in
terms of the probability that A1(g, ζ) is small, see [3].

Corollary 1. For 0 < σ < 1, with probability 1 − σ, A1(g, ζ) ≤
σ−116

√
2πnN.

In this paper we extend the polynomial conclusion of Beltrán and
Pardo to some higher moments. Hence, in particular, the central limit
theorem will apply. Let

Ak(g, ζ) =

∫

f∈S

(C0(g, f, ζ))k dS.

Theorem 2. Let 2 ≤ k < 3. Then, the expectation of Ak(g, ζ) satisfies

E (Ak(g, ζ)) < ∞.

Moreover, let 2 ≤ k < 3 − 1
2 lnD

. Then, the expectation E (Ak(g, ζ))
satisfies,

E (Ak(g, ζ)) ≤ 22k+k/2+4 e πkn3k−4N2D4k−8 lnD.

In particular, E(A2(g, ζ)) ≤ 512eπ2n2N2 lnD.

We will prove Theorem 2 in the next section of the paper.
Now Theorems 1 and 2 have a simple interpretation. Let C1 =

32
√

2π and C2 = 1024eπ2.

Corollary 2. For 0 < σ < 1, with probability 1 − σ, A1(g, ζ) ≤
C1σ

−1nN and A2(g, ζ) ≤ C2σ
−1n2N2 lnD.

Example 1. Fix σ = 1/2 then the corollary asserts that with probabil-
ity 1/2 in the choice of (g, ζ) the mean of the number of (projective)
Newton steps for finding, with probability one, an approximate zero of
a system f of homogeneous polynomial equations of degrees (d1, . . . , dn)
is bounded above by O(d3/2nN) and the variance is bounded above by
O(n2N2d3 lnD).

Now we describe the probability distribution we use. We consider
the Bombieri-Weyl inner product in H(d) (cf. [19]), and the associated
norm ‖ · ‖ and Riemannian structure in the sphere S = S(H(d)) = {f ∈
H(d) : ‖f‖ = 1}, normalized in such a way that the total volume of S

is 1.
The set V = {(g, ζ) ∈ S × P(Cn+1) : g(ζ) = 0} is called the solution

variety. We consider Ω = V endowed with the probability measure

(1.2) P(A) =

∫

g∈S

1

D
∑

ζ:g(ζ)=0

χA(g, ζ) dS,
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for any Borel set A ⊆ Ω. Let dΩ be the associated volume element.
Denote by E(φ) the expected value of any measurable function φ : Ω →
R ∪ {∞}, and by Var(φ) its variance. 2

Theorem 2 can be applied to estimate the higher moments of A1(g, ζ)
as well.

Theorem 3. Let 2 ≤ k < 3. Then, the expectation of A1(g, ζ)k satis-
fies

E
(

A1(g, ζ)k
)

< ∞.

Moreover, let 2 ≤ k < 3 − 1
2 lnD

. Then, the expectation E
(

A1(g, ζ)k
)

satisfies,

E
(

A1(g, ζ)k
)

≤ 22k+k/2+4 e πkn3k−4N2D4k−8 lnD.

In particular, E(A1(g, ζ)2) ≤ 512eπ2n2N2 lnD.

Proof. The Hölder Inequality (cf. for example [13, Page 63]) implies

E
(

A1(g, ζ)k
)

=

∫

(g,ζ)∈Ω

(
∫

f∈S

C0(g, f, ζ) dS

)k

dΩ ≤
∫

(g,ζ)∈Ω

∫

f∈S

C0(g, f, ζ)k dS dΩ = E (Ak(g, ζ)) .

So Theorem 2 finishes the proof. �

Now we explain a little how homotopy algorithms work and describe
the function C0(g, f, ζ).

Let Σ′ be the set of critical points of the projection π : V → S,
π(g, ζ) = g. Note that (g, ζ) ∈ Σ′ if g(ζ) = 0 and the Jacobian matrix
Dg(ζ) is not of maximal rank.

A key ingredient in our analysis below is the condition number: For
(g, ζ) ∈ V we define

µ(g, ζ) = ‖(Dg(ζ) | ζ⊥)−1Diag(‖ζ‖di−1d
1/2
i )‖, (g, ζ) ∈ V \ Σ′,

or µ(g, ζ) = ∞ if (g, ζ) ∈ Σ′. Note that µ(g, ζ) is essentially equal to the
operator norm of the inverse of the differential matrix Dg(ζ), restricted
to the orthogonal complement of ζ. The rest of the factors in this
definition are normalizing factors which make results look prettier and
allow projective computations, see [19] for more details. Sometimes µ
is denoted µnorm or µproj, but we keep the most simple notation here.
An important property of µ(g, ζ) is that it bounds the operator norm of
the derivative of the (locally defined) inverse of π. Namely, if g = gt ∈ S

2The set Ω was denoted G(d) in [3]. In that paper, an alternative description
of G(d) is given which allows one to randomly choose pairs (g, ζ) ∈ Ω. Then, it is

proven that the obtained probability distribution is the one described above for Ω.
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is a smooth curve parametrized by a real t ∈ (−ε, ε) and if ζ = ζ0 (with
‖ζ‖ = 1) is a solution of g0 such that µ(g0, ζ0) < ∞, then ζ can locally
be smoothly deformed in such a way that ζt is a solution of gt, and the
tangent vector ζ̇0 = d

dt
|t=0 ζt ∈ TζP(Cn+1) ≡ ζ⊥ satisfies

(1.3)
∥

∥

∥
ζ̇0

∥

∥

∥
≤ µ(g, ζ)

∥

∥

∥

∥

d

dt
|t=0 gt

∥

∥

∥

∥

.

Let (g, ζ) ∈ V and f ∈ S, f 6= −g. Let Lg,f ⊆ S be the (shorter) arc
of the great circle joining g and f , and let Γ(g, f, ζ) be the connected
component of π−1(Lg,f ) that contains (g, ζ). Thus, Γ(g, f, ζ) is a set
of pairs (system, solution) ∈ V . The implicit function theorem guar-
antees that Γ(g, f, ζ) is a smooth arc if it does not intersect Σ′, and
that in that case π |Γ(g,f,ζ) is a bijection, so that for h ∈ Lg,f there is a
unique zero ζh with (h, ζh) ∈ Γ(g, f, ζ). Homotopy algorithms attempt
to approximate this path starting at a known pair (g, ζ) to produce an
approximate zero of the input problem f . The reader may find more
background in [19], [4], [6], [2].

Let the arc Lg,f be parametrized by some real parameter t ∈ [a, b]

and let (ḣ, ζ̇h) ∈ T(h,ζh)V be the tangent vector to Γ(g, f, ζ) at (h, ζh).
Define

(1.4) C0(g, f, ζ) =

∫

h∈Lg,f

µ(h, ζh)‖(ḣ, ζ̇h)‖ dLg,f =

∫ b

a

µ(h(t), ζh(t))‖(h′(t), (ζh)
′(t))‖ dt,

or ∞ if Γ(g, f, ζ) intersects Σ′. By the change of variables formula,
this number is independent of the chosen parametrization. Note that
C0(g, f, ζ) is the length of the arc Γ(g, f, ζ) in the so–called “condition
metric”, namely the metric in V ⊆ S× P(Cn+1) obtained by pointwise
multiplying the product metric by the condition number µ, see [16].

From [16] we know that cd3/2C0(g, f, ζ) (c a universal constant) is
an upper bound for the number of steps of a particular path following
method to approximate a zero of f starting from an approximation
to ζ. More exactly, the homotopy method of [16] starts at the pair
(g, z) where z is an approximate zero of ζ, and then it chooses a small
step t and considers the polynomial system h which lies on the arc
Lg,f at distance t from g. An approximate zero of h is obtained by
one application of Newton’s method N(h) with initial pair z (more
exactly, one has to use projective Newton’s method NP(h) of [15]).
This scheme is repeated until we reach f . The main result of [16] is
that, if the homotopy step t is chosen properly, the total number of
iterations is at most cd3/2C0(g, f, ζ), c a universal constant.
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However, in [16] the method for choosing the homotopy step t is
not described. In a future paper we will compute explicitly a value for
these steps, and all the constants involved in this process.

We finally want to study the variance of the running time of the
following algorithm: Input f , choose (g, ζ) ∈ V at random, then per-
form the homotopy method starting at (g, ζ) to solve f . That is we
choose a random pair for each input system f , instead of fixing some
random (g, ζ) and using it for solving every system f ∈ S as suggested
by example 1. Then for fixed f ∈ S, let

B(f) = E (C0(g, f, ζ)) =

∫

(g,ζ)∈Ω

C0(g, f, ζ) dΩ,

which is thus (up to a small factor cd3/2) an upper bound for the average
number of steps performed by the homotopy algorithm to solve f with
random pair (g, ζ). Note that by Fubini’s Theorem, Inequality (1.1)
above also reads

Corollary 3.
∫

f∈S

B(f) dS ≤ 16
√

2πnN.

Namely the expected value of the number of steps for polynomial
system solving (with random initial pair (g, ζ)) is almost linear in the
size of the input. In the following result we prove that the variance of
this quantity is again finite.

Theorem 4. Let 2 ≤ k < 3. Then, B belongs to Lk(S), that is
∫

f∈S

B(f)k dS < ∞.

Moreover, let 2 ≤ k < 3 − 1
2 lnD

. Then,
∫

f∈S

B(f)k dS ≤ 22k+k/2+4 e πkn3k−4N2D4k−8 lnD.

In particular, the variance of B : S → [0,∞] is at most 512eπ2n2N2 lnD.

That is,

Corollary 4. The average number of homotopy steps performed by the
homotopy algorithm with random initial pair (g, ζ) (see [3, Corollary
2] for a more detailed description of the random choice of (g, ζ)) has
variance at most O(d3n2N2 lnD), thus polynomial in the size of the
input.

Theorem 4 is proven in the third section of the paper.
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Remark 1. In Theorems 2, 3 and 4, if 3 − 1
2 lnD

≤ k < 3 we have the
upper bound

22k+k/2+3πkn3k−4N2D2k−2

3 − k
,

valid for

E (Ak(g, ζ)) , E
(

A1(g, ζ)k
)

and

∫

f∈S

B(f)k dS.

Finally, in the case n = 1 all the bounds in the theorems above can be
improved by a factor of 22k+1.

In the next section we prove Theorem 2. Some background is pro-
vided in the last section for those not familiar with it.

2. Proof of Theorem 2

From now on, assume that h = h(t) ∈ S is arc–length parametrized,

so ‖ḣ‖ = 1. Let 0 < β < 1− 1/k and let (ḣ, ζ̇) be tangent to V . Then,
inequality (1.3) and the fact that µ is bounded below by 1 imply

‖(ḣ, ζ̇h)‖ =

√

‖ḣ‖2 + ‖ζ̇h‖2 ≤
√

‖ḣ‖2 + µ(h, ζh)2‖ḣ‖2 =

(2.1)
√

1 + µ(h, ζh)2 ≤
√

2µ(h, ζh),

which implies

µ(h, ζh)‖(ḣ, ζ̇h)‖ ≤ 2
1−β

2 µ(h, ζh)
2−β‖(ḣ, ζ̇h)‖β.

For 1
p

+ 1
q

= 1, the Hölder Inequality thus yields

C0(g, f, ζ)k =

(

∫

h∈Lg,f

µ(h, ζh)‖(ḣ, ζ̇h)‖ dLg,f

)k

≤ 2
k(1−β)

2 I1I2,

where

I1 =

(

∫

h∈Lg,f

‖(ḣ, ζ̇h)‖qβ dLg,f

)k/q

,

I2 =

(

∫

h∈Lg,f

µ(h, ζh)
p(2−β) dLg,f

)k/p

.

Note that, although not explicitly seen in the notation, ζh depends on
h and on the chosen root ζ of g, for ζh is the unique root of h in the
arc Γ(g, f, ζ). We assume from now on that Lg,f ∩ π(Σ′) = ∅, namely
that every system h ∈ Lg,f has all of its solutions non–singular. We
can assume this without loss of generality, as for almost every choice
of g and f this hypotheses holds, see Section 4 below.
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Now, let q = 1
β

so that p = 1
1−β

< k. Then, from [20, Lemma 7.3.a]

(see also Lemma 1 below), we have

I1 =

(

∫

h∈Lg,f

‖(ḣ, ζ̇h)‖ dLg,f

)kβ

≤
(

∫

h∈Lg,f

(1 + ‖ζ̇h‖) dLg,f

)kβ

≤

(π + 2D2)kβ ≤ (3D2)kβ (using that D ≥ d ≥ 2).

On the other hand, again the Hölder inequality implies

I2 ≤ πk(1−β)−1

∫

h∈Lg,f

µ(h, ζh)
k(2−β) dLg,f .

We have proved that
∫

(g,ζ)∈Ω

∫

f∈S

C0(g, f, ζ)k dS dΩ ≤ 2
k(1−β)

2 πk(1−β)−1(3D2)kβJ,

where

J =

∫

(g,ζ)∈Ω

∫

f∈S

∫

h∈Lg,f

µ(h, ζh)
k(2−β) dLg,f dS dΩ.

From the definition of the probability measure in Ω, i.e., equation (1.2),
we conclude that

J =
1

D

∫

g∈S

∫

f∈S

∑

ζ:g(ζ)=0

∫

h∈Lg,f

µ(h, ζh)
k(2−β) dLg,f dS dS,

From [3, Theorem 3] (see also Theorem 5 below), this last is at most

2π

D

∫

f∈S

∑

η:h(η)=0

µ(f, η)k(2−β) dS.

Finally, from [3, Corollary 5] (see also Proposition 1 below) we conclude
that

(2.2) J ≤ 2πΓ(N + 1)Γ(n2 + n − k(2 − β)/2)

Γ(N + 1 − k(2 − β)/2)Γ(n2 + n)

2k(2−β)+2

4 − k(2 − β)
n3k(2−β)/2

is valid while k(2 − β) < 4, that is β > 2 − 4/k. We may rewrite this
last expression as

22k+3πn3k(2−β)/2

2kβ(4 − k(2 − β))
· Γ(N + 1)

Γ(n2 + n)
· Γ(n2 + n − k(2 − β)/2)

Γ(N + 1 − k(2 − β)/2)
.

Assume that n ≥ 2 and note that N+1 ≥ n2+n and hence the function

α 7→ Γ(n2 + n − α)

Γ(N + 1 − α)
=

1

(N − α) · · · (n2 + n − α)
, 0 ≤ α ≤ 2,



FINITE VARIANCE FOR POLYNOMIAL SYSTEM SOLVING 9

is an increasing function of α. Thus, using that k(2 − β)/2 < 2, we
have

Γ(N + 1)

Γ(n2 + n)
·Γ(n2 + n − k(2 − β)/2)

Γ(N + 1 − k(2 − β)/2)
≤ Γ(N + 1)

Γ(n2 + n)
·Γ(n2 + n − 2)

Γ(N + 1 − 2)
≤ N2

n4
.

We conclude that if n ≥ 2,

J ≤ 22k+3πn3k(2−β)/2−4N2

2kβ(4 − k(2 − β))
.

Hence,

E (Ak(g, ζ)) ≤ 2
k(1−β)

2 πk(1−β)−1(3D2)kβ 22k+3πn3k(2−β)/2−4N2

2kβ(4 − k(2 − β))
≤

(2.3) 22k+k/2+3πkn3k−4N2 D2kβ

4 − k(2 − β)
,

valid for β ∈ (2−4/k, 1−1/k). The minimum of this function is easily
obtained by computing the unique zero of the derivative:
(2.4)

β =
1 + 2(2k − 4) lnD

2k lnD ∈ (2 − 4/k, 1 − 1/k), if 2 ≤ k < 3 − 1

2 lnD ,

and yields the bound

E (Ak(g, ζ)) ≤ 22k+k/2+3πkn3k−4N2eD4k−8 lnD2,

as claimed by the theorem. If 3− 1
2 lnD

≤ k < 3, then the valid interval
for β, β ∈ (2 − 4/k, 1 − 1/k), is non-empty and hence E (Ak(g, ζ)) is
finite. The upper bound of Remark 1 in this last case is easily obtained
by letting β approach 1 − 1/k.

Finally, from the comments after Proposition 1 below, Inequality
(2.2) can be more precisely stated in the special case n = 1; namely, in
that case, we have

J ≤ 2πΓ(N + 1)Γ(2 − k(2 − β)/2)

Γ(N + 1 − k(2 − β)/2)Γ(2)
≤ 4πN2

4 − k(2 − β)
,

and then we have

E (Ak(g, ζ)) ≤ 2
k(1−β)

2 πk(1−β)−1(3D2)kβ 4πN2

4 − k(2 − β)
≤

22+k/2πkN2 D2kβ

4 − k(2 − β)
,

valid for β ∈ (2 − 4/k, 1 − 1/k). Hence, we get an improved version of
inequality (2.3) and the bound in the remark follows, with an improve-
ment of 22k+1. �
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3. Proof of Theorem 4

Hölder’s Inequality implies
∫

f∈S

B(f)k dS =

∫

f∈S

(
∫

(g,ζ)∈Ω

C0(g, f, ζ) dΩ

)k

dS ≤
∫

f∈S

∫

(g,ζ)∈Ω

C0(g, f, ζ)k dΩ dS =

∫

(g,ζ)∈Ω

∫

f∈S

C0(g, f, ζ)k dS dΩ,

by Fubini’s Theorem. Theorem 2 finishes the proof. �

4. Some previous results used in the proof

For the sake of readability and completeness, we recall now some
results that have been used in the proof and that were stated in previous
papers. We start with a result that bounds the length of the path of
solutions ζt when the system ft moves in a great circle of S. We write
this result (and the rest of the results in this section) with the language
and notations of this paper.

Lemma 1. [20, Lemma 7.3.a] Let f0 6= ±f1 ∈ S and let Lf0,f1 be the
small piece of the great circle joining f0 and f1. Let ζ0 be a zero of
f0 and assume that ζ0 can be smoothly deformed to ζt a solution of ft

for ft parametrizing Lf0,f1, as ft moves from f0 to f1. Then, the total
length of the curve ζt : 0 ≤ t ≤ 1 in P(Cn+1) is at most 2D2. Namely,

∫

h∈Lf0,f1

‖ζ̇h‖ dLg,f =

∫ 1

0

∥

∥

∥

∥

dζt

dt

∥

∥

∥

∥

dt ≤ 2D2.

We have also used in the proof of the theorem that for almost every
choice of g, f ∈ S the arc Lg,f does not contain systems with sin-
gular solutions. We explain this idea with more detail now: Recall
that Σ′ ⊆ V is the set of pairs (g, ζ) ∈ V such that Dg(ζ) is not
of maximal rank, equivalently µ(g, ζ) = ∞ or ζ is a singular solu-
tion of g. Σ′ is an algebraic subvariety of V . The set {g ∈ H(d) :
Dg(ζ) is not of maximal rank for some ζ, g(ζ) = 0} is a complex al-
gebraic subvariety of H(d), and has real codimension 2. Moreover, its
intersection with the sphere S, that is Σ = π(Σ′) has also real codimen-
sion 2 in S and hence for every choice of g, f (except for a zero measure
subset of S × S), the great circle containing g and f does not intersect
Σ. Every zero of every system h ∈ Lg,f in that arc is non–singular and
thus the roots of h are in one–to–one correspondence with the roots of
g and f . The reader may see these facts and many other details on the
geometric perspective of this problem in [2].
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Another result used in the proof is a version of [3, Theorem 3], which
we explain now.

Theorem 5. [3, Theorem 3] For f 6= ±g ∈ S, let L̃g,f be the whole great
circle containing g and f . For a measurable function s : V → [0,∞],
we have
∫

g∈S

∫

f∈S

∑

ζ:g(ζ)=0

∫

h∈L̃g,f

s(h, ζh) dL̃g,f dS dS = 2π

∫

f∈S

∑

η:f(η)=0

s(f, η) dS

(Recall that ζh is the unique root of h that lies in the lifted path Γ(g, h, ζ),
and hence it depends on h and on the root ζ of g.)

Theorem 3 of [3] is this same result with the particular function
s = µ2, but the proof is exactly the same for a generic measurable
function s. Note that this is a result from Integral Geometry, similar
to many others that can be found for example in [14]. The interested
reader may find helpful a heuristic explanation of this last result (before
diving into the proof of [3, Theorem 3]): Choosing at random two
points in S and then choosing at random a point in the associated
great circle, must be the same as simply choosing at random a point
in the sphere, because no point is preferred to another one with either
of the two methods. One can make this argument more rigorous using
the uniqueness of Haar’s measure.

We recall now a result that bounds the expected value of the condi-
tion number µ.

Proposition 1. [3, Corollary 5] Let 0 < α < 4 be a real number. Then,
∫

f∈S

∑

η:f(η)=0

µ(f, η)α dS ≤ DΓ(N + 1)Γ(n2 + n − α/2)

Γ(N + 1 − α/2)Γ(n2 + n)

2α+2

4 − α
n3α/2.

In the case that n = 1, this last result can be improved using [3,
Proposition 1] (which we do not include here), proving that

∫

f∈S

∑

η:f(η)=0

µ(f, η)α dS =
DΓ(N + 1)Γ(n2 + n − α/2)

Γ(N + 1 − α/2)Γ(n2 + n)
,

as used in the last part of the proof of Theorem 2, to obtain the bound
for the case n = 1.
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