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Abstract. We prove a new complexity bound, polynomial on the average,

for the problem of finding an approximate zero of systems of polynomial equa-
tions. The average number of Newton steps required by this method is almost

linear in the size of the input. We show that the method can also be used to

approximate several or all the solutions of non–degenerate systems, and prove
that this last task can be done in running time which is linear in the Bézout

number of the system, on the average.
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1. Introduction

In recent papers [BePa2, BePa3], we have presented an Average Las Vegas algo-
rithm, which is a probabilistic solution to Smale’s 17th Problem [Sma]:

Can a zero of n complex polynomial equations in n unknowns be found approxi-
mately, on the average, in polynomial time with a uniform algorithm?

In the present – pretty self contained – paper, we present a new algorithm which
admits a much simpler analysis. The complexity results of our previous papers are
greatly improved, constants and exponents are sharpened, and we provide a shorter,
more general proof. Moreover, the new proof allows us to extend the result for the
search of more than one solution. Our model of computation is the Blum–Shub–
Smale model (see [BSS] or [BCSS, Ch. 2 and 17]), so exact arithmetic computations
are assumed. As in [Sma], we consider the homogeneous version of the problem, so
our systems consist on n homogeneous polynomial equations with n+ 1 unknowns.

Our algorithm is, as some of the most popular polynomial system solvers, based
in the general idea of homotopy (or continuation) methods: let f be the system
we want to solve, and let g be another system which has a known solution ζ0. Let
ft, 0 ≤ t ≤ T be a path in the vector space of systems with extremes g = f0 and
f = fT . Then, one might attempt to lift the path ft to the solution path (ft, ζt)
with extremes (f0, ζ0) and (fT , ζT ) where ζt is a zero of ft for all t. In particular,
the method should produce an approximation to ζT , a zero of fT .

The reader may note that there are two key ingredients for this general approach:

• The choice of a path ft which can actualy be lifted.
• The choice of the path–following method used to lift the path and thus pro-

duce an approximation to ζT .

When studying the complexity of such an algorithm, both ingredients must be
carefully designed and one must try to get a path ft such that the chosen path–
following method requires a small number of arithmetic operations to lift ft.

There are several approaches to the choice of the path ft. Among the most
popular ones is linear homotopy, that is the path ft is the linear path ft = (1 −
t)g + tf . In this paper we use the great circles homotopy that we define now: 1

first, note that the zeros of f do not change if f is multiplied by a non–zero number.
Hence, it suffices to consider systems in the unit sphere S contained in the vector
space of systems, see Section 2.1 for a detailed definition. Then, on input f , the
algorithm will choose some g ∈ S with a known zero ζ0, and ft will then be the
shortest portion of the great circle in S joining g and f . There is just one thing to
decide:

• Where to begin the homotopy? Namely, how to choose (g, ζ0)?

The literature contains different approaches to solving this problem. One of
them is Shub & Smale’s conjecture in [ShSm5] where a particularly simple initial
pair is conjectured to be a good starting point for the linear homotopy, in the
sense that it allows to perform the path–following procedure in average polynomial
time. This is still an open conjecture. Other initial systems were considered in

1From a theoretical point of view, geodesics in the so–called condition metric (see [Shu2, BeSh])
are known to have much better properties for path–following methods, but up to know there is

no practical way to construct these geodesics.
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[Ren, AlGe, Ver1, LLT] (see also references in [BCSS, SoWa]). Among the most
popular ones is the system having as zeros the roots of the unity.

In [BePa2, BePa3] we used a different approach: instead of introducing a deter-
ministic algorithm we introduced a randomized one. Thus, no precise initial pair
is given, but we admitted randomized guessing in some special set of pairs that we
called questor set.

Our new algorithm here also admits randomized guessing but in a set which is
different from the one used in [BePa2, BePa3]. This is the first novelty in our pages
here. The precise description of this new questor set is in Section 2.3.

There also exist different ways to define the path–following method. For instance,
in [BePa2] we used a constant–step Newton procedure to approximate the lifted
path. In [BePa3] we chose the path–following method described in [ShSm5], thus
yielding, for the first time, an average polynomial time procedure. Other path–
following methods have been described in the above cited literature, some times
accompained by complexity analysis.

It was recently pointed out by Shub [Shu2] the existence of a fast path–following
method which admits a complexity analysis, see equation (2.3) below. This method
has been explicitely constructed in [Bel], and is the one that we choose here. It
performs a number of “homotopy steps”, each of them being one application of
projective Newton’s method.

Our algorithm thus uses the two ingredients outlined above (choice of the path
ft with randomized (g, ζ0) and the path–following method of [Shu2, Bel]). We may
informaly write our main outcome as follows.

Theorem 1. The average running time of the algorithm ahmr described in these
pages is O (̃N2), where N is the input size (dense enconding). The average number
of homotopy steps is linear in N . In particular, it is an Average Las Vegas algorithm
that answers affirmatively Smale’s 17th problem.

See Section 2.5 for the description of ahmr. Here we use the O˜ (soft-Oh)
notation, that is Rk ≤ O (̃k) means that there exist constants C, c such that Rk ≤
Ck(log k)c ∀k ∈ {1, 2, . . .}. The technical version of this result (Corollary 9 below)
computes explicitly the bound and is thus more precise.

Our algorithm computes an approximation to some zero of the input system f .
We may then ask: what kind of questions can be answered with this information?
A framework to study this question is that of universal system solvers. Consider
the following “Nullstellensatz–like” question:

Problem (Approximate Nullstellensatz). Given ε > 0 and complex polynomials
f1, . . . , fn, g in variables X1, . . . , Xn, decide whether there is some solution x of
f1 = 0, . . . , fn = 0 such that |g(x)| < ε.

This problem deals with affine (not projective) solutions, while in this paper we
center our attention in the homogeneous case. The relation between these two cases
is however well understood, see for example [BePa3].

A polynomial system solver is called universal (cf. [CGH+03] or [BePa1]) if
the information contained in its output suffices to answer questions like this one.
Symbolic solvers are typically universal, and so are the numerical solvers which
compute all the solutions of f . On the other hand, a system solver is called non–
universal if it attempts to approximate only one or few solutions of f , thus producing
less information but doing it faster.
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Some solvers can be used as universal or non–universal depending on the needs of
the user. For example, most procedures (as, for instance, those quoted in [SoWa])
can be used to find only one, maybe a few or perhaps all solutions of f . On the other
hand, some non–universal solvers are originally designed to find just one solution,
and it is not clear that we can modify any of them to become universal. No general
method is known and, perhaps, it does not exists. Up to our knowledge, the unique
solvers with proven average polynomial running time are the one introduced in
[BePa3] and the one we introduce here. Both of them were initially designed to
find just one zero. We do not know whether we could transform the algorithm in
[BePa3] to get a universal version of it.

In the case of probabilistic algorithms, an obvious way to get more zeros of f
is running the algorithm several times, and hoping that it will produce different
solutions. We claim the following result, which proves that our algorithm admits
this strategy.

Theorem 2. Let f be a non–degenerate system (i.e. f has no singular zeros).
Then, every zero ζ is equally probable as an output of our algorithm ahmr.

Note that the set of non–degenerate systems is a Zariski open set in S. In
particular, its complement has zero measure. Theorem 2 is proved in Section 10.

An inmediate consequence is the following (see corollaries 26 and 27 for details.)

Corollary 3. Algorithm ahmr may be adapted to compute k approximate zeros of
k different solutions of a non–degenerate input system, in average time O (̃kN2),
accepting a small probability that less than k are found. In particular, finding all the
D (Bézout number) solutions of a non–degenerate system can be done in average
time O (̃DN2), with probability of success greater than 1− 1/D.

The proof of Theorem 2 will easily follow from our analysis of the algorithm.
There exists no similar result for the algorithms we introduced in [BePa2] and
[BePa3]: these last two methods may produce different answers each time they
run, but the exact behavior of the output is not well understood, see for example
the comment in the Review [Ver2]. A natural concept to study how close the
distribution of the output is to the uniform distribution is Shannon’s entropy as
introduced in Section 9.

As another example, the linear homotopy method with the initial pair from Shub
& Smale’s conjecture (which is a non–universal solver) produces always the same
zero of any fixed input system f . This algorithm can be modified by a random
unitary transformation applied to the initial pair, but no result in the lines of
Theorem 2 is known for this modification. Equidistribution of the output with this
randomized version of Shub–Smale’s conjecture has been experimentaly confirmed
(see [BeLe]) for degree 2 systems by computing its Shannon’s entropy.

There are several remarkable technical results in this paper, one of them being the
Main Lemma of Section 5 below, which claims that the Normal Jacobian of certain
natural mapping from the solution variety (i.e. the set of pairs (system, solution)
defined in Section 2) onto its linear counterpart is constant. Thanks to this fact
we can greatly simplify the computations of many integrals, state the precise rela-
tion between the expectation and moments of the linear and non–linear condition
numbers, and produce a short and elegant proof of the existence and generation
of good starting pairs. The reader familiar to the Bézout series and our previous
papers may find in this result the greatest novelty of these pages.
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The manuscript is structured as follows. In Section 2 we introduce the basic
notation and the precise statements of our main results. In Section 3 we recall
the geometrical background of the problem and we prove some preliminary results
which are essentially contained in the literature. In Section 4 we prove an Integral
Geometry result needed for our proofs. In Section 5 we prove the Main Lemma. In
Section 6 we use the Main Lemma to prove a formula that helps to compute many
integrals in the solution variety. In Section 7 the exact moments of the condition
number in the linear case are computed. In Section 8 we combine the reduction
formulas of Section 6 and the results of Section 7 to compute the exact moments
of the condition number in the non–linear case, and the average complexity of
linear homotopy with random initial pair. In Section 9 we use again the reduction
formulas of Section 6 to prove that random initial pairs can be obtained by a
simple procedure. Finally, in Section 10 we prove equidistribution in the output of
the algorithm.

Acknowledgments. Thanks to Michael Shub for many insightful comments and
long discussions, some of which lead to the simplification of several proofs in this
manuscript. Thanks to Alan Edelman for pointing out to us that exact computation
of the moments of the linear condition number was possible. Thanks to the referees
for very helpful comments and suggestions.

2. Description of the main results

2.1. Metrics, solution variety and condition number. Let H(d) be the vector
space of all systems of n homogeneous polynomial equations of degrees (d1, . . . , dn) =
(d) with complex coefficients and variables X0, . . . , Xn. Elements in H(d) are n–
tuples f = (f1, . . . , fn) where fi is a homogeneous polynomial of degree di. Some-
times we think on f as a vector in a high-dimensional vector space, containing the
coefficients of the monomials of the fi.

Let H(d) be equipped with the unitarily-invariant, Bombieri-Weyl Hermitian
product, sometimes called Kostlan product (cf. for example [ShSm1] or [BCSS,
Sec. 12.1]). Namely, if f = (f1, . . . , fn) ∈ H(d) and g = (g1, . . . , gn) ∈ H(d) with

fi(X) =
∑

(α)=(α0,...,αn)
α0+···+αn=di

a(α),iX
α0
0 · · ·Xαn

n , gi(X) =
∑

(α)=(α0,...,αn)
α0+···+αn=di

b(α),iX
α0
0 · · ·Xαn

n ,

then

〈f, g〉 =

n∑
i=1

〈fi, gi〉, 〈fi, gi〉 =
∑

(α)=(α0,...,αn)
α0+···+αn=di

(
di

(α)

)−1

a(α),ib(α),i,

where (
di

(α)

)
=

di!

α0! · · ·αn!
is the multinomial coefficient,

and · denotes complex conjugation.
One of the main properties of the Bombieri-Weyl product is the invariance under

unitary changes of coordinates. Namely, if U is a (n+ 1)× (n+ 1) unitary matrix
then the map H(d) → H(d) sending f to f ◦U∗ is an isometry2. With this product,
the space H(d) is a complex Hilbert space. We denote by S = {f ∈ H(d) : ‖f‖ = 1}

2It is a common practice to write f ◦ U∗ instead of f ◦ U . The reason is that the mapping
(U, f)→ f ◦U∗ defines a left action of the unitary group in H(d), which is useful in some contexts.
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the unit sphere in H(d), and equip it with Riemannian structure inherited from
H(d).

The projective solution set V (f) = {ζ ∈ IP(Cn+1) : f(ζ) = 0} of a generic system

f consists of D = d1 · · · dn points. The set of solutions VS(f) = {ζ̂ ∈ S(Cn+1) :

f(ζ̂) = 0} where S(Cn+1) is the unit sphere of Cn+1, consists of D great circles.
Here we take the solution variety as the set V = V(d) = {(f, ζ) ∈ S× IP(Cn+1) :

ζ ∈ V (f)}, which is a smooth (real) submanifold of S × IP(Cn+1) (cf. [BCSS, p.
193]). Note that in some papers, the solution variety is considered as a subset
of IP(H(d)) × IP(Cn+1) instead of S × IP(Cn+1) as here. We equip V with the

metric induced by the product metric in S × IP(Cn+1). The unitary invariance of
the Bombieri-Weyl Hermitian product implies that for any unitary matrix U , the
mapping (f, ζ) 7→ (f ◦ U∗, Uζ) is an isometry of V (cf. [BCSS, Lemma 3, p. 222]).
Let Σ′ = {(f, ζ) ∈ V : det(Df(ζ)Df(ζ)∗) = 0}.

Recall the condition number of [ShSm1, BCSS],

µnorm(f, ζ) = ‖(Df(ζ) |ζ⊥)−1Diag(‖ζ‖di−1d
1/2
i )‖, (f, ζ) ∈ V \ Σ′,

or µnorm(f, ζ) =∞ if (f, ζ) ∈ Σ′. Here, ‖ · ‖ is the operator norm of a linear map.
An equivalent formula is

(2.1) µnorm(f, ζ) = ‖(Diag(‖ζ‖1−did−1/2
i )Df(ζ))†‖, (f, ζ) ∈ V \ Σ′,

whereDf(ζ))† = Df(ζ)(Df(ζ)Df(ζ)∗)−1 denotes the Moore-Penrose pseudo-inverse
of the full–rank matrix Df(ζ). Note that the affine representative chosen for ζ used
to compute µnorm(f, ζ) is not relevant, namely µnorm is well–defined as a mapping
in V ⊆ S× IP(Cn+1), as far as Df(ζ) is of maximal rank.

2.2. Approximate zeros and the linear homotopy method. An approximate
zero z0 ∈ IP(Cn+1) of f ∈ H(d) is a projective point, such that successive iterations

of projective Newton’s method of [Shu1], z 7→ z − (Df(ζ) |ζ⊥)−1f(z), converge

quadratically to an actual zero ζ ∈ IP(Cn+1) of f (cf. [Shu1, Shu2] for background).
Namely,

dR(zl, ζ) ≤ 1

22l−1
dR(z0, ζ)

where dR is the Riemannian distance in IP(Cn+1) and zl is the l–th iteration of
projective Newton’s method, with starting point z0. Sometimes a distance different
from dR is used for this definition, but here we follow [Shu2] where the Riemannian
distance dR is used.

The linear homotopy method is a procedure designed to approximate solution
paths in V . Given an input system f ∈ S and a pair (g, ζ0) ∈ V such that f 6=
−g, the linear homotopy generates a polygonal line that approximates the curve
Γ(f, g, ζ0) = {(ft, ζt)} ⊆ V , where ft parametrizes the short portion of the great
circle joining g and f and ζt is defined by continuation. We can write the following
formula for ft,

t→ ft = g cos(t) +
f −Re(〈f, g〉)g√

1−Re(〈f, g〉)2
sin(t), t ∈ [0, dR(f, g)] ,

where dR(f, g) is the Riemannian distance between f and g. This path is well-
defined and smooth if some regularity conditions are satisfied, i.e. not intersecting
the variety Σ′ (cf. [ShSm1]).
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Associated with Γ(f, g, ζ0) we consider the quantity

(2.2) C(f, g, ζ0) =

∫
h∈Lf,g

µnorm(h, ζh)2 dLf,g,

where ζh is the unique solution of h lying in Γ(f, g, ζ0) and Lf,g is the (shortest)
portion of the great circle joining f and g.

In [Shu2, Corollary 1], it was proven that the number of steps of projective
Newton method sufficient to approximate the path Γ(f, g, ζ0), and thus produce
an approximate zero of f , is at most Cd3/2C(f, g, ζ0), where C is a constant and
d = max{di : 1 ≤ i ≤ n}. The actual algorithm was not described in [Shu2], only
its existence was proved. The specific description of the method has been done
in [Bel]. An alternative has recently been presented in [BuCu]. In [BeLe, Ley],
an implementation of the homotopy algorithm of [Bel] has been implemented in
Macaulay23.

With the assumption of exact arithmetic computations of the Blum–Shub–Smale
model of computation, the homotopy method of [Bel] is guaranteed to produce an
approximate zero of f . The total number of projective Newton method steps is at
most

(2.3) Cd3/2C(f, g, ζ0), with C a constant.

If this number is not finite, then the method shall never end.

Remark 4. The number of projective Newton steps, both in theoretical studies
([Shu2, Bel]) and practical experiments ([BeLe]) can be bounded by the length of the
path (ft, ζt) in the so–called condition metric (i.e. the condition length of the path).
This provides a better bound than the one of equation (2.2), but it is not know how
to transfer it into algorithmic design. We do not discuss these details here, and we
simply use the fact that the condition length of (ft, ζt) is at most

√
2C(f, g, ζ0).

Let N+1 be the complex dimension ofH(d). From [BaSt], a polynomial system f
and all its partial derivatives can be evaluated in O(N). Adding the cost of solving
the linear system of Newton’s operator, the number of arithmetic operations needed
for Newton’s method is thus O(N + n3). Hence, the total number of arithmetic
operations needed to produce an approximate zero of f by approximating the path
Γ(f, g, ζ0), is at most

(2.4) Cd3/2(N + n3)C(f, g, ζ0), C a constant.

Thus, to study the complexity of this algorithm we must bound C(f, g, ζ0).
Our first result claims that the average value of C(f, g, ζ0) is surprisingly small

for random choices of f, g and solution ζ0 ∈ V (g).

Theorem 5. Let E denote expectation. Then,

Ef∈S

Eg∈S

 1

D
∑

ζ0∈V (g)

C(f, g, ζ0)

 =
π

2
N

(
n

(
1 +

1

n

)n+1

− 2n− 1

)
≤ π

2
nN.

3Such an implementation is the first one that has certified output and at the same time attains
the complexity bounds of [Shu2]. Comparisons with [LLT, BHSW, SoWa, Ver1, AlGe] are also

discussed there.
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The proof of this result is in Section 8. As a self–interesting intermediate result
we obtain the exact moments of the condition number both in the linear and non–
linear cases (see Theorem 23 and Section 7).

Theorem 5 already suggests a strategy for choosing an initial pair (g, ζ0) for
the path-following algorithm: First, choose at random a system g, then randomly
choose a solution ζ0 of g. According to Theorem 5, this procedure is expected to
produce initial pairs with small average value of C(f, g, ζ0). However, this choosing
procedure may look difficult, as it requires to solve a random system of equations,
while the problem treated in this paper is precisely system solving. Our second
result will prove an alternative to this process , which uses only simple procedures
from linear algebra.

2.3. How to randomly choose a root of a randomly chosen polynomial
system. In short, the alternative method for randomly choosing an initial pair
(g, ζ0) works as follows: Choose at random a full rank n× (n+ 1) matrix M , and
compute its solution ζ0. Then, construct a polynomial system with solution ζ0
whose “linear part” at ζ0 is given by M , and add a random higher-degree term.
Linear and non-linear parts must be correctly weighted.

We provide now the precise description of this process, which requires the intro-
duction of some notation. Given a Hilbert space W , we denote by B(W ) and S(W )
the unit ball and the unit sphere in W . For ζ ∈ IP(Cn+1) we consider the vector
subspaces of H(d),

Rζ = {h ∈ H(d) : h(ζ) = 0, Dh(ζ) = 0}, Lζ = (Rζ)
⊥.

The structure of Rζ and Lζ are better understood if we first fix ζ = e0 =
(1, 0, . . . , 0)T . Indeed, Re0 is the set of polynomial systems h = (h1, . . . , hn) ∈ H(d)

such that h(e0) = 0 and Dh(e0) = 0, namely

hi(X) = Xdi−2
0 pdi−2(X1, . . . , Xn) + · · ·+X0p1(X1, . . . , Xn) + p0(X1, . . . , Xn),

for some polynomials pj , 0 ≤ j ≤ di−2. Thus, a polynomial system h is in Re0 if all

the coefficients of the monomials containing Xdi
0 and Xdi−1

0 are zero. Reciprocally,

a polynomial system h is in Le0 if all the non zero monomials contain Xdi
0 or Xdi−1

0 .
Note that for such a h ∈ Le0 we have that h(1, X1, . . . , Xn) defines a linear function
of X1, . . . , Xn. Thus, for any h ∈ H(d) we can think on the orthogonal projection
of h onto Lζ as the “linear part” of h with respect to e0.

Now, let ζ ∈ S(Cn+1) and consider a (n + 1) × (n + 1) unitary matrix U such
that Ue0 = ζ. Then, by the unitary invariance of the Bombieri–Weyl product in
H(d) we have

Rζ = {h ◦ U∗ : h ∈ Re0}, Lζ = {h ◦ U∗ : h ∈ Le0}.

Choosing a random point in B(Rζ) is now easy: just choose a random point in the
more simple space B(Re0), find a unitary matrix U whose first column is ζ, and
construct the system h ◦ U∗.

Note that H(1) is the set of n× (n+ 1) matrices, with the usual Frobenius norm.

For M ∈ H(1) and ζ ∈ VS(M) = {ζ ∈ S(Cn+1) : Mζ = 0} (the unit norm affine
zeros of M), let ϕ(M, ζ) ∈ Lζ be the system of equations defined by

(2.5) ϕ(M, ζ)(z) = Diag(〈z, ζ〉di−1d
1/2
i )Mz.
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Note that ‖ϕ(M, ζ)‖ = ‖M‖F and D(ϕ(M, ζ))(ζ) = Diag(d
1/2
i )M (see the proof

of Lemma 21 below.) Again, these formulas become clearer if we first fix ζ = e0.
Then, M = (0 | A) where A is a square matrix of size n. Let aij , 1 ≤ i, j ≤ n be
the entries of A, and let ϕ(M, ζ) = (f1, . . . , fn). Then,

fi(X0, . . . , Xn) = d
1/2
i Xdi−1

0

∑
1≤j≤n

aijXj .

Note that ϕ(M, e0) is in Le0 , and similarly ϕ(M, ζ) ∈ Lζ for any (M, ζ) ∈ V(1).

Then, consider the set Y ⊆ B(CN+1)× S(Cn+1)×B(H(d)),

Y = {(M, l, ζ, h) : det(MM∗) 6= 0,Mζ = 0, h ∈ Rζ}.
Here, a point (M, l) ∈ CN+1 consists of a n × (n + 1) matrix M and a vector l
containing the rest of coordinates. Then, ‖(M, l)‖2 = ‖M‖2F + ‖l‖2 is the usual
product norm. We consider Y endowed with the σ-algebra inherited from the
ambient space, and with measure given by

V ol(A) =

∫
(M,l)∈B(CN+1)

∫
ζ∈VS(M)

∫
h∈B(Rζ)

χA(M, l, ζ, h) dRζ dVS(M) dCN+1,

where χA is the characteristic function of a measurable set A ⊆ Y . Let

G(d) : Y −→ V(d)

(M, l, ζ, h) 7→ (g/‖g‖, ζ),

where
g(z) =

√
1− ‖M‖2h(z) + ϕ(M, ζ)(z).

Remark 6. Note that Y has been endowed with a product-like measure. Hence,
randomly choosing an element (M, l, ζ, h) ∈ Y amounts to choosing (M, l), choosing
an element ζ of norm 1 in the kernel of M , and then choosing an element in the
vector space Rζ . See the appendix for details.

Consider the set G(d) = G(d)(Y ) with the push-forward measure inherited from
G(d) (i.e. to choose a random point in G(d), we choose a random point y ∈ Y and
compute G(d)(y)). Note that G(d) = V(d) \ Σ′ as sets, although they have different
measures.

The following remarkable result justifies the definition of G(d): Choosing random
pairs in G(d) serves to emulate the probability distribution obtained when choosing
a random solution of a random system. But the former process is much easier!

Theorem 7. Let Θ : V(d) −→ [0,∞) be a measurable mapping such that Θ(f, ζ) is
invariant under (real) scaling of f , and let G(d) be the set defined above. Then,

E(g,ζ)∈G(d)
(Θ(g, ζ)) = Eg∈S

 1

D
∑

ζ0∈V (g)

Θ(g, ζ0)

 .

Namely, randomly choosing a pair (g, ζ) ∈ G(d) is equivalent to randomly choosing
a solution ζ0 of a randomly-chosen, polynomial system g ∈ S.

The proof of Theorem 7 is in Section 9.
A reader interested in the practical construction of random points in G(d) might

find useful the following recipe: Choosing a point at random (g, ζ) ∈ G(d) is done
by choosing a point at random in y = (M, l, ζ, h) ∈ Y and taking

G(d)(y) = (g/‖g‖, ζ) ∈ G(d), where g(z) =
√

1− ‖M‖2h(z) + ϕ(M, ζ)(z)
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Once that y = (M, l, ζ, h) is fixed, it is easy to compute G(d)(y). On the other
hand, to choose a random y ∈ Y we must follow the following process:

(1) Choose at random (M, l) ∈ Cn2+n×CN+1−n2−n = CN+1 with the uniform
distribution in the unit ball for the usual Euclidean norm in CN+1. Note
that M is a (n2 + n)–dimensional complex vector, that we consider as a
n× (n+ 1) complex matrix. At this point we may discard l and just keep
M . The reader may think that choosing (M, l) is not a good idea, as we will
immediately discard l. As a matter of fact, it turns out that the probability
distribution needed for M is exactly the one obtained by choosing (M, l)
and then projecting on the M coordinate. Thus, choosing (M, l) in the unit
ball and then discarding l is precisely what we need to do.

(2) With probability 1, we have produced a matrixM whose kernel has complex
dimension 1. We let ζ be a unit norm element of Ker(M). Note that ζ
has to be chosen at random in such kernel, so we may compute it by any
means, and then multiply it by a complex number of modulus one chosen
at random with the uniform distribution in the unit complex circle.

(3) Now we choose any unitary matrix U such that Ue0 = ζ. For example, we
can start with some maximal–rank matrix whose first column is ζ and then
apply Househölder reflections to get U . The matrix U can again be chosen
by any means.

(4) Choose a system h̃ at random in B(Re0), that is the unit ball (for the
Bombieri–Weyl norm) of Re0 , which we have seen is a well–defined space

with a very simple description. Then, consider h = h̃◦U∗. As we said above,
this process is equivalent to choosing at random h ∈ Rζ . The advantage of
the procedure we have just suggested is that it does not need to compute
a orthogonal basis of Rζ .

(5) Thus, we have produced y = (M, l, ζ, h) (where l can be discarded), which
we then input in the mapping G(d) above to obtain the initial pair (g, ζ).

Although the process that we have just described may seem difficult and involves
many notations, it is actually very simple for a computer to perform these oper-
ations. In [BeLe] the first author, with A. Leykin, implemented this process to
generate random initial pairs.

2.4. Good starting pairs. Note that for fixed (g, ζ) ∈ V , the number A(g, ζ) =
Ef∈S (C(f, g, ζ)) provides a bound for the average number of projective Newton
steps needed for computing an approximate zero of f ∈ S.

A pair (g, ζ) ∈ V is a good starting pair if A(g, ζ) is polynomial in n,N, d.
Formally, we look for pairs (g(d), ζ(d)) such that A(g(d), ζ(d)) ≤ p(n,N, d) for any

list of degrees (d), where p : R3 → R is some fixed polynomial.

Corollary 8 (Existence and generation of good starting pairs). Let (g, ζ0) ∈ G(d)

be chosen randomly. Then, with probability at least 1/2, (g, ζ0) is a good starting
pair, and

A(g, ζ) ≤ πnN.

Proof. From Theorems 5 and 7 and Fubini’s Theorem, we conclude that

(2.6) E(g,ζ)∈G(d)
(Ef∈S (C(f, g, ζ))) ≤ π

2
nN.

The corollary follows from Markov’s inequality. �
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2.5. Average Las Vegas Algorithm. Note that for fixed f ∈ S, the number
E(g,ζ)∈G(d)

(C(f, g, ζ)) provides a bound for the average complexity of approximating

a homotopy path to solve f , where (g, ζ) ∈ G(d) are chosen randomly. This leads
to the notion of Average Las Vegas algorithm.

Recall that a probabilistic algorithm is called Las Vegas if, for a given input
x, it randomly generates an element y in some set, and performs a deterministic
algorithm with input (x, y), in such a way that:

• If an answer is given by the algorithm, it is a correct answer.
• For every x, the running time t(x) of the algorithm is polynomial in the

size of the input. Note that the running time for a given choice of y may
depend both in x and y, so we should denote it by t(x, y). The running
time t(x) on input x is then defined as the average of the running times for
random choices of y, i.e. t(x) = Ey(t(x, y)).

The algorithm introduced in this paper is an Average Las Vegas algorithm, namely
the same properties are satisfied but the second one is relaxed to

E{x:size(x)≤K}(t(x)) ≤ p(K)

for some polynomial p. That is, the average running time of the algorithm is
polynomial in the size of the input. Our algorithm is

Adaptive Homotopy Method with random initial pair (ahmr)

Input: f ∈ S.

• Choose randomly (g, ζ0) ∈ G(d).
• Approximate the curve Γ(f, g, ζ0) using the homotopy algorithm of [Bel].

Output: An approximate zero of f , with associated zero the unique zero of f
lying on Γ(f, g, ζ0).

Corollary 9. The algorithm described above is Average Las Vegas, with average
number of Newton steps at most Cd3/2nN (C a constant) and average running time
(number of arithmetic ops.) O(d3/2nN(N + n3)).

Proof. From Theorems 5 and 7, we conclude that

(2.7) Ef∈S

(
E(g,ζ)∈G(d)

(C(f, g, ζ))
)
≤ π

2
nN.

The corollary follows from the complexity bounds of equations (2.3), (2.4). �

The reader may compare the estimate of Corollary 9 with the one of [BePa3],

O (̃n7N3).
Corollary 9 proves that ahmr yields a solution to Smale’s 17th problem. As

many other well–known algorithms in Numerical Analysis and Computer Science,
our algorithm is probabilistic. Namely, it starts by making some random choices and
then performs some operations on the input and the random choices. It is however
uniform as demanded by Smale’s problem. The question of finding a deterministic,
uniform algorithm for Smale’s problem remains open.
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2.6. How to randomly choose a root of a given polynomial system. As
mentioned in the introduction, if f ∈ S is such that all of its zeros are regular,
then the algorithm ahmr with input f produces an approximation to one of the
zeros of f , all of them being equally probable. This is an interesting feature of our
algorithm, and the reader may realize that it allows us to power up the random
choice method of Section 2.3: in that section we have seen that it is possible to
choose a random zero of a random system of equations. Using ahmr we are then
able to approximate a random zero of any fixed system in quadratic time in the
dense input length! (asking only that this system has no singular zeros.) This
feature is not known for any other average polynomial time algorithm that solves
systems of multivariate polynomial equations. This property may be used, for
instance, to answer questions about the average value of a function defined in the
zeros of some given input system f . It may also be applied to compute by homotopy
methods solutions of input systems f that satisfy certain constraints provided that
the probability distribution of the solutions with respect to the constraints is known
(cf. as, for instance, being real as in [BoPa]).

2.7. Relation to other works. To the knowledge of the authors, the unique
(proven) uniform average polynomial time algorithm to find a zero of a system of
polynomial equations is the one of [BePa2] (which assumes a small probability of
failure) and its Average Las Vegas version [BePa3]. Those two papers describe a
probabilistic solution to Smale’s 17th problem, as does this.

There is a huge bibliography on the complexity analysis of methods for solving
polynomial equations that we do not intend to summarize here. See [BePa1] and
references therein. The approach here (as well as that of [BePa2, BePa3]) was
originally inspired by the works [ShSm1, ShSm2, ShSm5, ShSm4].

Several articles, some of which have already appeared, have followed this man-
uscript. In [BeSh] the variance of Algorithm ahmr is proven to be polynomial in
the input size, and some higher moments are shown to be finite. In [BuCu] some
of the results in this paper are combined with smooth analysis techniques to show
a deterministic way to choose the initial pair (g, ζ0) in such a way that the total
complexity is close to polynomial, O(N log logN ). For that purpose, [BuCu] com-
bines the homotopy algorithm with that of [Ren]. In [BeLe] an implementation in
Macaulay2 of algorithm ahmr is presented.

3. The underlying geometry

In this section we summarize some notions and results which are essential for
the understanding of our proofs. The results in this section are already implicitely
present in the literature, so we just recall them for the sake of completeness.

Some of the main advances in [ShSm1, ShSm2, ShSm5, ShSm4] are due to the
smart explotation of a geometric structure related to the polynomial system solving:
the solution variety. This variety can be defined in several manners, depending on
the space where the two components (f, ζ) are. Here, we have already defined it as

V = {(f, ζ) ∈ S× IP(Cn+1) : ζ ∈ V (f)} ⊆ S× IP(Cn+1) ⊆ H(d) × IP(Cn+1).

One can also consider the affine solution variety allowing the systems to be in the
vector space instead of the sphere S, and the zeros to be in the sphere instead of
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IP(Cn+1),

V̂ = {(f, ζ) ∈ H(d) \ {0} × S(Cn+1) : f(ζ) = 0} ⊆ H(d) × S(Cn+1).

The following result easily follows from the arguments in [BCSS, p. 193, proof of
Prop. 1].

Proposition 10. V̂ is a smooth real submanifold of H(d) × S(Cn+1) of dimension
2N + 3. Its tangent space is

T(f,ζ)V̂ = {(ḟ , ζ̇) ∈ H(d) × Cn+1 : ḟ(ζ) +Df(ζ)ζ̇ = 0, Re〈ζ, ζ̇〉 = 0}.

Moreover, V is a smooth submanifold of S × IP(Cn+1) of dimension 2N + 1, that
is equal to the dimension of S.

Proof. Consider the set

Ṽ = {(f, ζ) ∈ H(d) \ {0} × Cn+1 \ {0} : f(ζ) = 0} ⊆ H(d) × Cn+1.

Following [BCSS, p. 193, proof of Prop. 1], we have that Ṽ is a smooth, complex
submanifold of H(d) ×Cn+1, of complex dimension N + 2, and its tangent space is

T(f,ζ)Ṽ = {(ḟ , ζ̇) ∈ H(d) × Cn+1 : ḟ(ζ) +Df(ζ)ζ̇ = 0}.
Note that polynomial systems in H(d) contain homogeneous polynomials and

hence a point ζ ∈ Cn+1 \ {0} is a zero of f ∈ H(d) if and only if λζ is a zero of f ,

for any λ ∈ C \ {0}. Thus, Ṽ is transversal to H(d) × S(Cn+1) and the set

Ṽ ∩ (H(d) × S(Cn+1)) = V̂

is a smooth real submanifold of H(d) × S(Cn+1) of dimension 2N + 3, as claimed.

The formula given for its tagent The tangent space of V̂ is then

T(f,ζ)V̂ = {(ḟ , ζ̇) ∈ H(d) × Cn+1 : ḟ(ζ) +Df(ζ)ζ̇ = 0,Re〈ζ, ζ̇〉 = 0}.
The same argument shows that the set

{(f, ζ) ∈ S× S(Cn+1) : f(ζ) = 0} ⊆ S× S(Cn+1)

is a smooth submanifold of S× S(Cn+1) of dimension 2N + 2. Finally, our solution
variety V is the quotient of this last set by the free action (f, ζ) 7→ (f, λζ) defined
for ζ ∈ C, |ζ| = 1. Hence, V is a smooth submanifold of S × IP(Cn+1) and the
dimension of V is 2N + 1. �

An important subset of the solution variety is the set

Σ′ = {(f, ζ) ∈ V : rank(Df(ζ)) < n} ⊆ V,
that is the set of pairs (f, ζ) such that ζ is a singular zero of f . We define the
discriminant variety

Σ = {f ∈ S : (f, ζ) ∈ Σ′ for some ζ ∈ V (f)},
that is the set of systems which have some singular zero.

Proposition 11. The set Σ is an algebraic subvariety of S of (real) codimension
2. There exists r ≥ 1 and a decomposition

Σ = K1 ∪ · · · ∪Kr,

where each Kj is a smooth embedded submanifold of S of dimension at most 2N−1.
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Proof. We use a standard argument in Algebraic Geometry. First, note that the
set

{f ∈ IP(H(d)) : f has some singular solution}

is a proper, complex algebraic subvariety of IP(H(d)) (see for example [BCSS, p.
198]). Here, by proper we mean that the set is strictly contained in IP(H(d)). Thus,
the set

Σ̂ = {f ∈ H(d) : f has some singular solution}

is a proper, complex, homogeneous (i.e. containing the lines thorugh the origin)

algebraic subvariety of H(d). Thus, the real codimension of Σ̂ in H(d) is 2 and

Σ = Σ̂ ∩ S is an algebraic subvariety of S of real codimension 2.
On the other hand, from [Har, Th. 5.3] we have that Σ̂ = K̂1 ∪H where K̂1 is

a smooth submanifold of H(d) (consisting on the simple points of Σ̂) and H is a
complex homogeneous algebraic subvariety of H(d) of complex codimension at least
2. Inductively, we can write

Σ̂ = K̂1 ∪ · · · ∪ K̂r,

where each K̂r is a smooth homogeneous submanifold ofH(d) and the real dimension

of each K̂j is at most dim(H(d)) − 2 = 2N . The decomposition in the proposition

follows, taking Kj = K̂j ∩ S. �

Recall that for f, g ∈ S, f 6= ±g, Lf,g is the (shortest) portion of the great circle
from g to f . We prove now that for almost every choice of (f, g) ∈ S × S the arc
Lf,g does not intersect Σ.

Proposition 12. The set

S = {(f, g) ∈ S× S : Lf,g ∩ Σ 6= ∅}

has zero measure in S× S. Moeover, for (f, g) 6∈ S and for h ∈ Lf,g the zeros of h
can be continued from (and are thus in one to one correspondence with) the zeros
of g, following the arc Lf,g.

Proof. Note that

S ⊆ (Σ× S) ∪ Image(Φ),

where Φ is the following C∞ map,

Φ : (S \ Σ)× Σ× (0, 2π) → (S \ Σ)× S
(g, h, θ) 7→ (g, f)

where f ∈ S is the system in the great circle containing g, h, at distance θ from
g (in the direction from g to h). It is not difficult to give a precise formula for
h but we do not need it. From Proposition 11, Image(Φ) is a finite union of
sets, each of which is the C∞ image of a smooth manifold of dimension at most
2N −1 + 2N + 1 + 1 = 4N + 1, thus a null set in S×S which has dimension 4N + 2.
The first assertion of the lemma follows.

The second claim is an easy consequence of the Implicit Function Theorem ap-
plied to the projection π1 : V → S, which is locally invertible if (f, ζ) 6∈ Σ′. See for
example [ShSm5, Paragraphs 1–4, Sec. 2] or [BePa3, Prop. 3.1]. �
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4. An integral geometry formula

The following result allows us to rewrite the quantity of Theorem 5 in terms of
the expected value of the condition number in S.

Theorem 13.

Ef∈S

Eg∈S

 ∑
ζ0∈V (g)

C(f, g, ζ0)

 =
π

2
Ef∈S

 ∑
ζ∈V (f)

µnorm(f, ζ)2

 .

Proof. Let S be the set of Proposition 12. Then, for every (f, g) ∈ (S× S) \ S and
for every h ∈ Lf,g, the mapping

(4.1)
V (g) −→ V (h)
ζ 7→ η(h, ζ) = V (h) ∩ Γ(f, g, ζ)

is a bijection. Here, Γ(f, g, ζ) is the path defined in Section 2.2. Thus, we can write
V (h) = ∪ζ0∈V (g)η(ζ). In particular,∑

ζ0∈V (g)

C(f, g, ζ0) =
∑

ζ0∈V (g)

∫
h∈Lf,g

µnorm(h, η(h, ζ0))2 dLf,g =

∫
h∈Lf,g

∑
ζ∈V (h)

µnorm(h, ζ)2 dLf,g.

Using Fubini’s Theorem, we then have
(4.2)

Ef∈S

Eg∈S

 ∑
ζ0∈V (g)

C(f, g, ζ0)

 =
1

V ol(S)2

∫
(f,g)∈S×S

∫
h∈Lf,g

φ(h) dLf,g d(S×S),

where φ(h) =
∑
ζ∈V (h) µnorm(h, ζ)2. We claim that for any measurable non–

negative function φ̂ : S→ R the following holds,

(4.3)
1

V ol(S)2

∫
(f,g)∈S×S

∫
h∈Lf,g

φ̂ dLf,g d(S× S) =
π

2V ol(S)

∫
f∈S

φ̂ dS,

which together with (4.2) readily implies the theorem. To prove (4.3), note that
the unitary group U(N + 1) acting on S defines a transitive left action. Seing f as
a vector in CN+1 whose components are the coefficients of the monomials of the
fi’s, the action will send

(U, f)→ ∆U∆−1f,

where ∆ is a diagonal matrix containing
(

di
α0···αn

)
in the position corresponding to

the monomial Xα0
0 · · ·Xαn

n of fi.
From the uniqueness of invariant measures (see for example [SeKu, Cor. 7.5.1]),

the existence of this transitive group of isometries in S implies that

(4.4)

∫
(f,g)∈S×S

∫
h∈Lf,g

φ̂ dLf,g d(S× S) = λ

∫
f∈S

φ̂ dS,

for some constant λ ∈ R. Take φ̂ ≡ 1 in (4.4) to get∫
f∈S

∫
g∈S

dR(f, g) dSdS =

∫
(f,g)∈S×S

dR(f, g) d(S× S) = λV ol(S).

From Lemma 14 below we conclude that λ = V ol(S)π/2, and (4.3) then follows.
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�

Lemma 14. Let k ≥ 1, and let Rk+1 be endowed with some inner product 〈·, ·〉1.
Let the unit sphere S1 = {x ∈ Rk+1 : ‖x‖1 = 1} have the Riemannian structure
inherited from (Rk+1, 〈·, ·〉1). Then, for any x ∈ S1 we have∫

y∈S1

dR(x, y) dS1 = V ol(S1)
π

2
,

where dR is the Riemannian distance in S1.

Proof. As in [BCSS, pp. 225,226], we have that dR(x, y) = arccos〈x, y〉1 where
arccos is chosen in [0, π]. Thus,∫

y∈S1

dR(x, y) dS1 =

∫
y∈S1

arccos〈x, y〉1 dS1.

Now, g(y) = (arccos〈x, y〉1 − π/2) is an odd function for g(y) = −g(−y). Thus,∫
y∈S1

(
arccos〈x, y〉1 −

π

2

)
dS1 = 0,

which implies ∫
y∈S1

arccos〈x, y〉1 dS1 =

∫
y∈S1

π

2
dS1 = V ol(S1)

π

2
,

as wanted. �

5. Jacobian and the solution variety: the Main Lemma

Recall from Proposition 10 that the affine solution variety V̂ is a (real) smooth

manifold of dimension 2N + 3. We equip V̂ with the Riemannian metric inherited
from that of H(d) × S(Cn+1).

With the notations above, the set V̂(1) = {(M, ζ) : M ∈ H(1), ζ ∈ S(Cn+1), Mζ =

0} is the linear solution variety. The metric in V̂(1) is then given by,

〈(M1, ζ1), (M2, ζ2)〉 = 〈M1,M2〉F + 〈ζ1, ζ2〉,
where 〈M1,M2〉F = trace(M1M

∗
2 ) is the usual Frobenius product and for i = 1, 2

we have

(Mi, ζi) ∈ T(M,ζ)V̂(1) = {(Ṁ, ζ̇) ∈ H(1) × Cn+1 : Ṁζ +Mζ̇ = 0,Re〈ζ, ζ̇〉 = 0}.

The formula for T(M,ζ)V̂(1) follows from Proposition 10.
Recall that for a mapping Φ :M→M′ whereM,M′ are Riemannian manifolds,

the Normal Jacobian of Φ at x ∈M is

NJ(Φ)(x) = det
(
A |(Ker(A)⊥

)
, where A = DΦ(x).

Equivalently,

NJ(Φ)(x) =
V ol(Parallelepiped(Av1, . . . , Avn))

V ol(Parallelepiped(v1, . . . , vn))

where v1, . . . , vr form a basis of Ker(DΦ(x))⊥.
Consider the mapping

Π̂ : V̂ −→ V̂(1)

(f, ζ) 7→ (Df(ζ), ζ)
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The following technical lemma is a key result for the main outcome of this
manuscript.

Main Lemma. Let d ≥ 2. Then, the Normal Jacobian of Π̂ is constant and equal
to Dn.

Proof. For any unitary matrix U of size (n+ 1)× (n+ 1) we have the commutative
diagram

V̂
Π̂−→ V̂(1) (f, ζ) 7→ (Df(ζ), ζ)

↓ ↓ ↓ ↓
V̂

Π̂−→ V̂(1) (f ◦ U∗, Uζ) 7→ (Df(ζ)U∗, Uζ)

Thus, from [BCSS, Lemma 4, p. 244] we have NJ(Π̂)(f, ζ) = NJ(Π̂)(f ◦ U∗, Uζ).
By choosing U such that Uζ = e0 = (1, . . . , 0)T it then suffices to check the result
for ζ = e0. Note that

DΠ̂(f, e0)(ḟ , ζ̇) = (Dḟ(e0) +D(2)f(e0)(ζ̇, ·), ζ̇).

Here, D(2)f(e0)(ζ̇, ·) is seen as an element of TH(1) = H(1), the only one satisfying

D(2)f(e0)(ζ̇, ·)x = D(2)f(e0)(ζ̇, x), ∀ x ∈ Cn+1.

It follows that Ker(DΠ̂(f, e0)) = {(ḟ , 0) ∈ T(f,e0)V̂ : Dḟ(e0) = 0} = Re0 , namely

the set of pairs (ḟ , 0) such that every monomial of the polynomials of f is at least
quadratic in X1, . . . , Xn. We claim that

(5.1) Ker(DΠ̂(f, e0))⊥ = P1 ⊕ P2 ⊕ {(0, i e0)},
where

P1 = {((ḟ1, . . . , ḟn), 0) : ḟi(z) =

n∑
j=1

aijz
di−1
0 zj , aij ∈ C},

P2 = {((ḟ1, . . . , ḟn), ζ̇) : ḟi(z) = aiz
di
0 , ai = −(Df(e0)ζ̇)i}.

For (5.1), note that every element in P1⊕P2⊕{(0, i e0)} is contained in T(f,e0)V̂ and

is orthogonal to Ker(DΠ̂(f, e0)) and then use the following dimension argument:

dimR(P1) + dimR(P2) + dimR({(0, i e0)}) = 2n2 + 2n+ 1.

dimR

(
Ker(DΠ̂(f, e0))⊥

)
= 2N + 3− dimR

(
Ker(DΠ̂(f, e0))

)
=

2N + 3− (2N + 2− 2n2 − 2n) = 2n2 + 2n+ 1.

A complex orthogonal basis of the complex subspace P1 is given by the set
{Diag(zdi−1

0 )δijzj : 1 ≤ i, j ≤ n} where δij is a matrix identically equal to zero
with a 1 in the position (i, j). Note that the vector of the basis corresponding to

δij has a Bombiery-Weyl norm equal to d
−1/2
i . Also,

(5.2) DΠ̂(f, e0)(Diag(zdi−1
0 )δijzj , 0) = ((0 δij), 0).

On the other hand, for (ḟ , ζ̇) ∈ P2 we have

Dḟ(e0)e0 = Diag(−di(Df(e0)ζ̇)i) = −Diag(di)Df(e0)ζ̇.

Using that D(2)f(e0)(ζ̇, e0) = Diag(di − 1)Df(e0)ζ̇ (see Lemma 15 below), for

(ḟ , ζ̇) ∈ P2 we conclude

(Dḟ(e0) +D(2)f(e0)(ζ̇, ·))e0 = Dḟ(e0)e0 +D(2)f(e0)(ζ̇, e0) =
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−Diag(di)Df(e0)ζ̇ +Diag(di − 1)Df(e0)ζ̇ = −Df(e0)ζ̇.

Thus, for (ḟ , ζ̇) ∈ P2 we have

(5.3) DΠ̂(f, e0)(ḟ , ζ̇) = ((−Df(e0)ζ̇ | M), ζ̇),

where M is some n×n matrix that we do not need to compute explicitely. Similarly,

(5.4) DΠ̂(f, e0)(0, i e0) = ((0 | M), i e0),

where M is again some n × n matrix. The volume of a parallelepiped in affine
space does not vary if a multiple of the vector defining one edge is added to another
vector. Hence, to compute the volume of the parallelepiped generated by the vectors
obtained in equations (5.2), (5.3), (5.4), we can omit the matrices M in (5.3), (5.4).
We conclude that

NJ(f,e0)Π̂ =
V olTΠ̂(f,e0)V̂(1)

(((−Df(e0)(ej) | 0), ej) : j = 0 . . . n)

V olP2
((−Diag(zdi0 )Df(e0)(ej), ej) : j = 0 . . . n)

×

(5.5)
V olTΠ̂(f,e0)V̂(1)

((δij , 0) : i, j = 1 . . . n)

V olP1
((Diag(zdi−1

0 )δijzj , 0) : i, j = 1 . . . n)
.

Note that the first of these two quotients is equal to 1, for

〈((−Df(e0)(ej) | 0), ej), ((−Df(e0)(ek) | 0), ek)〉 =

〈(−Diag(zdi0 )Df(e0)(ej), ej), (−Diag(zdi0 )Df(e0)(ek), ek)〉, ∀ j, k = 1 . . . n.

Moreover, the second factor in (5.5) is easy to compute, as the vectors appearing
are orthogonal: The numerator is equal to 1 and the denominator is equal to

n∏
i,j=1

‖Diag(zdi−1
0 )δijzj‖2 =

n∏
i,j=1

d−1
i = D−n.

The lemma follows. Note that in the last formula we have to consider ‖ · ‖2 for the
computation of the volume, because we are dealing with complex vectors. �

Lemma 15. Let f ∈ H(d) be such that f(e0) = 0 where e0 = (1, 0, . . . , 0) ∈ Cn+1.

Then, for any ζ̇ ∈ Cn+1 we have:

D(2)f(e0)(ζ̇, e0) = Diag(di − 1)Df(e0)ζ̇.

Proof. Let f = (f1, . . . , fn). Fix i ∈ {1, . . . , n} and write

fi(z0, . . . , zn) = zdi−1
0

n∑
j=1

ajzj + zdi−2
0

∑
j≤k

bjkzjzk + zdi−3
0 (· · · ) .

A straight forward computation shows that the gradient of fi at e0 is ∇fi(e0) =
(0, a1, . . . , an). Thus,

Dfi(e0)ζ̇ = (0, a1, . . . , an) · ζ̇.
On the other hand, another straight forward computation yields

H = Hessfi(e0) =


0 (di − 1)a1 · · · (di − 1)an

(di − 1)a1 ∗ · · · ∗
...

...
...

(di − 1)an ∗ · · · ∗


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Thus,

D(2)fi(e0)(ζ̇, e0) = eT0 Hζ̇ = (di − 1)(0, a1, . . . , an) · ζ̇ = (di − 1)Dfi(e0)ζ̇,

which holds for any i ∈ {1, . . . , n}. The lemma follows. �

6. Integration formulas and the solution variety

In this section, we describe a reduction method that allows us to integrate func-
tions defined on V(d) by analyzing the behavior of these functions on the linear
solution variety V(1). This method is similar to the one described on [ShSm2] or
[BCSS, Chapter 12], but it has a shorter and more direct proof using the Main
Lemma.

We will use the following result which closely follows [ShSm2, Sec. 2]. There

is a subtle difference with that paper: here, the affine solution variety V̂ is a
subset of H(d) × S while in [ShSm2, Sec. 2] the solution variety is a subset of

IP(H(d))× IP(Cn+1). Due to this difference, we include a proof of the result.

Theorem 16. Let Θ̂ : V̂ → [0,∞) be a measurable mapping. Then,∫
f∈H(d)

∫
ζ∈VS(f)

Θ̂(f, ζ) dVS(f) dH(d) =

∫
(f,ζ)∈V̂(d)

Θ̂(f, ζ)

det(In +Df(ζ)†(Df(ζ)†)∗)
dV̂(d).

Proof. We denote by π̂1 : V̂ −→ H(d) the projection on the first coordinate. The
Coarea formula [BCSS, pg. 241] then yields
(6.1)∫

f∈H(d)

∫
ζ∈VS(f)

Θ̂(f, ζ) dVS(f) dH(d) =

∫
(f,ζ)∈V̂(d)

Θ̂(f, ζ)NJ(π̂1)(f, ζ) dV̂(d).

where NJ(π̂1)(f, ζ) is the Normal Jacobian of π̂1 at (f, ζ), that is

NJ(π̂1)(f, ζ) = |det(A |Ker(A)⊥)|, where A = Dπ̂1(f, ζ).

Now, note that

A : T(f,ζ)V̂ → H(d)

(ḟ , ζ̇) 7→ ḟ

and from Proposition 10 we have that

Ker(A) = {(0, ζ̇) : Df(ζ)ζ̇ = 0, Re〈ζ, ζ̇〉 = 0}.

The kernel of Df(ζ) is the complex line defined by ζ. Thus, Ker(A)⊥ = ζ⊥ is the
complex orthogonal complement of ζ. Then,(

A |Ker(A)⊥
)−1

: H(d) → {(ḟ , ζ̇) ∈ H(d) × ζ⊥ : ḟ(ζ) +Df(ζ)ζ̇ = 0}
ḟ 7→ (ḟ ,−Df(ζ)†ḟ(ζ))

We are in the conditions of [ShSm2, Lemma 1, p. 274 and Remark, p. 275] which
yields ∣∣∣det

((
A |Ker(A)⊥

)−1
)∣∣∣ = det(IN+1 +Q∗Q)−1,

where Q is the linear mapping Q(ḟ) = −Df(ζ)†ḟ(ζ). If we first fix ζ = e0 =
(1, 0, . . . , 0) ∈ Cn+1 then following [ShSm2, p. 276] we have

QQ∗ζ̇ = Df(e0)†(Df(e0)†)∗ζ̇, for ζ ∈ e⊥0 ≡ Cn.
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Thus, in that case we have

det(IN+1 +Q∗Q) = det(In +Q∗Q) = det(In +Df(e0)†(Df(e0)†)∗),

and

NJ(π̂1)(f, e0) = |det(A |Ker(A)⊥)| =∣∣∣det
((
A |Ker(A)⊥

)−1
)∣∣∣−1

= det(IN+1+Q∗Q)−1 = det(In+Df(e0)†(Df(e0)†)∗)−1.

By unitary invariance as in [ShSm2, p. 276] we then have

NJ(π̂1)(f, ζ) = det(In +Df(ζ)†(Df(ζ)†)∗)−1, ∀ (f, ζ) ∈ V̂ .

The proposition follows from this last formula and (6.1) �

Corollary 17. Let Θ̂ : V̂(d) −→ [0,∞) be a measurable mapping. Then,∫
f∈H(d)

∫
ζ∈VS(f)

Θ̂(f, ζ) dVS(f) dH(d) =

D
∫
M∈H(1)

∫
ζ∈VS(M)

∫
h∈Rζ

Θ̂(h+ ϕ(M, ζ), ζ) dRζ dVS(M) dH(1).

where ϕ(M, ζ) is defined by equation (2.5).

Proof. From Theorem 16,∫
f∈H(d)

∫
ζ∈VS(f)

Θ̂(f, ζ) dVS(f) dH(d) =

∫
(f,ζ)∈V̂(d)

Θ̂(f, ζ)

det(In +Df(ζ)†(Df(ζ)†)∗)
dV̂(d).

From the Main Lemma and the Coarea Formula, this last equals

D−n
∫

(M,ζ)∈V̂(1)

1

det(I +M†(M†)∗)

∫
(f,ζ)∈Π̂−1(M,ζ)

Θ̂(f, ζ) dΠ̂−1(M, ζ) dV̂(1).

Again from Theorem 16, this time applied to V(1), the last formula equals

D−n
∫
M∈H(1)

∫
ζ∈VS(M)

∫
(f,ζ)∈Π̂−1(M,ζ)

Θ̂(f, ζ) dΠ̂−1(M, ζ) dVS(M) dH(1).

Finally, the change of variables formula applied to the mapping

H(1) −→ H(1)

M 7→ Diag(d
−1/2
i )M

whose Jacobian is D−(n+1) yields the corollary. Note that identifying

Π̂−1(Diag(d
1/2
i )M, ζ) ≡ ϕ(M, ζ) +Rζ ,

we can substitute the inner integral∫
(f,ζ)∈Π̂−1(Diag(d

1/2
i )M,ζ)

Θ̂(f, ζ) dΠ̂−1(Diag(d
1/2
i )M) =

∫
h∈Rζ

Θ̂(h+ϕ(M, ζ), ζ) dRζ .

�



FAST LINEAR HOMOTOPY 21

Corollary 18. Let Θ : V(d) −→ [0,∞) be a measurable mapping. Let φ : [0, 1]→ R
be a measurable non–negative function and consider the mapping

Θ̂ : {(f, ζ) ∈ V̂ : ‖f‖ ≤ 1} → [0,∞)

Θ̂(f, ζ) 7→ φ(||f ||)Θ(f/||f ||, ζ).

Then, ∫
f∈S

∑
ζ∈V (f)

Θ(f, ζ) dS =
D

2π
∫ 1

0
φ(t)t2N+1 dt

×

∫
M∈B(H(1))

(1− ‖M‖2)p
∫
ζ∈VS(M)

I(M, ζ) dVS(M) dH(1),

where p = N − n2 − n+ 1 is the complex dimension of the vector space Rζ and

I(M, ζ) =

∫
h∈B(Rζ)

Θ̂(
√

1− ‖M‖2F h+ ϕ(M, ζ), ζ) dRζ .

Proof. Using polar coordinates,

1

2π

∫
f∈B(H(d))

∫
ζ∈VS(f)

Θ̂(f, ζ) dVS(f) dH(d) =

(∫ 1

0

φ(t)t2N+1 dt

)
×

∫
f∈S

∑
ζ∈V (f)

Θ(f, ζ) dS

 .

On the other hand, from Corollary 17,∫
f∈B(H(d))

∫
ζ∈VS(f)

Θ̂(f, ζ) dVS(f) dH(d) =

D
∫
M∈B(H(1))

∫
ζ∈VS(M)

∫
h∈Rζ ,||h||≤

√
1−||M ||2F

Θ̂(h+ ϕ(M, ζ), ζ) dRζ dVS(M) dH(1).

Using the change of variables h 7→ h(1− ‖M‖2)−1/2, this last equals

D
∫
M∈B(H(1))

(1− ‖M‖2F )p
∫
ζ∈VS(M)

I(M, ζ) dVS(M) dH(1),

and the corollary follows. �

7. The moments of the condition number, linear case

In this section we compute these moments in the linear case, namely assuming
that all the degrees are equal to 1. Thus, we consider H(1) the vector space of
n× (n+ 1) matrices and S(1) the unit sphere (for the Frobenius norm) in H(1).

There are several estimates for the probability distribution of the condition num-
ber of n× (n+ 1) matrices. Note that the case with n = 1 is trivial as µnorm ≡ 1 is
constant. The sharpest published bounds for n ≥ 2 are those of [ChDo] and [EdSu],
which deal with general n×m matrices. In previous versions of this paper, we used
the estimates of [ChDo] which (after normalization) produce the bound

EM∈S(1)
(||M†||α) ≤ 4

4− α
(cn6)α/4, 0 < α < 4,

where c ≤ 16. But this bound is not optimal. During the preparation of the revised
version of this paper, it was pointed out to us by Alan Edelman that the n× (n+1)
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Figure 1. Comparison of exact and experimental values of
‖M†‖2 = σ−2

n (M). The experimental value has been obtained
with Matlab, computing the average from 30000 random matrices
in S(1) for each n = 1, . . . , 98.

case might admit an exact computation of the moments, which is what we do in
this section. We will prove the following result .

Theorem 19. Let 0 < α < 4 be a real number. Then,

ES(1)
(‖M†‖α) =

Γ(n2 + n)

Γ(n2 + n− α/2)

n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1− α/2)

nn−k+1−α/2Γ(n− k)

In particular,

ES(1)
(‖M†‖2) = (n2 + n− 1)

(
n

(
1 +

1

n

)n+1

− 2n− 1

)
≤ n(n2 + n− 1).

In Figure 1 we compare experimental and theoretical values of ES(1)
(‖M†‖2).

We start by computing the moments of ‖M†‖ for a gaussian matrix M .

Theorem 20. Let M ∈ H(1) be chosen randomly in H(1) with the Complex Gauss-

ian distribution (that is, each element of M is chosen as mij = aij +
√
−1bij where

aij and bij are real Gaussian with mean 0 and variance 1). Then,

EH(1)
(‖M†‖α) = 2−α/2

n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1− α/2)

nn−k+1−α/2Γ(n− k)
.

In particular,

EH(1)
(‖M†‖2) =

n

2

(
1 +

1

n

)n+1

− n− 1

2
.
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Proof. For a n× (n+ 1) matrix M , let σ1(M), . . . , σn(M) be the singular values of
M in decreasing order. Note that ‖M†‖ = σ−1

n . According to [Ede, Formula (5.5)],
the probability density function of σ−2

n (M) is

Ξ(λ) =
K̃

(n− 1)!
λe−λn/2

∫
(0,∞)n−1

F (λ, x1, . . . , xn−1) dx1 · · · dxn−1,

where

K̃−1 = 2n
2+n

n∏
i=1

Γ(n− i+ 2)Γ(n− i+ 1),

F (λ, x1, . . . , xn−1) = x2
1 · · ·x2

n−1e
−x1/2 · · · e−xn−1/2

n−1∏
i=1

(xi + λ)∆,

∆ =
∏

1≤i<j≤n−1

(xi − xj)2.

By expanding the term
∏n−1
i=1 (xi + λ), we have that

Ξ(λ) =
K̃

(n− 1)!
λe−λn/2P (λ),

where P (λ) =
∑n−1
k=0 Cn−1−kλ

n−1−k is a polynomial of degree n− 1, whose λn−1−k

coefficient is

Cn−1−k =
∑

j1,...,jk

∫
(0,∞)n−1

xj1 · · ·xjkx2
1 · · ·x2

n−1∆e−x1/2 · · · e−xn−1/2 dx1 · · · dxn−1,

where the sum is carried out over every choice of different k numbers 1 ≤ j1, · · · , jk ≤
n− 1. By symmetry, we have

Cn−1−k =

(
n− 1

k

)∫
(0,∞)n−1

x1 · · ·xkx2
1 · · ·x2

n−1∆e−x1/2 · · · e−xn−1/2 dx1 · · · dxn−1.

The change of variables xi = 2yi gives

Cn−1−k =

(
n− 1

k

)
2n

2+k−1

∫
(0,∞)n−1

y1 · · · yky2
1 · · · y2

n−1∆̂e−y1 · · · e−yn−1 dy1 · · · dyn−1,

where ∆̂ =
∏

1≤i<j≤n−1(yi − yj)2. This last integral is a particular case of one of

the forms of Selberg’s Integral, and its value is known, see [AAR, Cor. 8.2.2]:

k∏
j=1

(n+ 2− j)
n−1∏
j=1

Γ(j + 2)Γ(j + 1)

Γ(2)
= k!

(
n+ 1

k

) n∏
i=1

Γ(n− i+ 2)Γ(n− i+ 1).

Thus, we have

K̃

(n− 1)!
Cn−1−k =

2k
(
n+1
k

)
2n+1Γ(n− k)

.

We conclude that

(7.1) Ξ(λ) =

n−1∑
k=0

2k
(
n+1
k

)
2n+1Γ(n− k)

λn−ke−λn/2,

The expected value of σ−αn (M) (α ∈ (−∞, 4)) is then

EH(1)
(σαn) =

∫ ∞
0

λ−α/2Ξ(λ) dλ =

n−1∑
k=0

2k
(
n+1
k

)
2n+1Γ(n− k)

∫ ∞
0

λn−k−α/2e−λn/2 dλ.
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The integral inside the sum is equal to 2n−k+1−α/2Γ(n−k+1−α/2)n−(n−k+1−α/2).
Thus, we get

EH(1)
(σ−αn ) = 2−α/2

n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1− α/2)

nn−k+1−α/2Γ(n− k)
,

as wanted. In the particular case that α = 2 we can simplify this formula as follows.

EH(1)
(σ−2
n ) =

1

2

n−1∑
k=0

(
n+1
k

)
nn−k

=
1

2

(
−2n− 1 + n

n+1∑
k=0

(
n+1
k

)
nn−k+1

)
=
n

2

(
1 +

1

n

)n+1

−n−1

2
.

�

7.1. Proof of Theorem 19. Integration in polar coordinates now gives the fol-
lowing:

2−α/2
n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1− α/2)

nn−k+1−α/2Γ(n− k)
= EH(1)

(σ−αn ) =

1

2n2+nπn2+n

∫
M∈H(1)

σn(M)−αe−‖M‖
2
F /2 dM =

1

2n2+nπn2+n

∫ ∞
0

e−r
2/2

∫
M∈H(1),‖M‖=r

σn(M)−α dM dr =

1

2n2+nπn2+n

∫ ∞
0

r2n2+2n−1−αe−r
2/2 dr

∫
M∈S(1)

σn(M)−α dM =

2−1−α/2Γ(n2 + n− α/2)

πn2+n

∫
M∈S(1)

σn(M)−α dM.

Hence,∫
M∈S(1)

σn(M)−α dM =
2πn

2+n

Γ(n2 + n− α/2)

n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1− α/2)

nn−k+1−α/2Γ(n− k)
,

and we conclude that

ES(1)
(‖M†‖α) = ES(1)

(σ−αn ) =
1

V ol(S(1))

∫
M∈S(1)

σ−αn (M) dM =

Γ(n2 + n)

2πn2+n

∫
M∈S(1)

σ−αn (M) dM =

Γ(n2 + n)

Γ(n2 + n− α/2)

n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1− α/2)

nn−k+1−α/2Γ(n− k)
,

as wanted. The particular case α = 2 admits, as in Theorem 20, a shorter formula.
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8. Proof of Theorem 5

We will use Corollary 18. Let −∞ < α < 4 and let Θ(f, ζ) = µnorm(f, ζ)α,
φ(t) = t−α.

Lemma 21. Let (M, ζ) ∈ V̂(1), and let f =
√

1− ‖M‖2 h + ϕ(M, ζ). In the
notations of Corollary 18,

Θ̂(f, ζ) = ||M†||α.

Proof. Note that h ∈ Rζ and hence Dh(ζ) = 0 as a matrix. Thus, we have

Df(ζ) = D(ϕ(M, ζ))(ζ).

Now, for ζ̇ ∈ Cn+1, using that (M, ζ) ∈ V̂(1) and hence Mζ = 0 we have

D(ϕ(M, ζ))(ζ)(ζ̇) =
d

dt
|t=0

(
ϕ(M, ζ)(ζ + tζ̇)

)
=

(2.5)
Diag(d

1/2
i )Mζ̇.

We conclude that

Df(ζ) = Diag(d
1/2
i )M.

Thus,

Θ̂(f, ζ) =
1

‖f‖α
µnorm

(
f

‖f‖
, ζ

)α
=

(2.1)

1

‖f‖α

∥∥∥∥∥
(
Diag(d

−1/2
i )D

(
f

‖f‖

)
(ζ)

)†∥∥∥∥∥
α

= ‖M†‖α,

as wanted. �

Proposition 22.

Ef∈S

 ∑
ζ∈V (f)

µnorm(f, ζ)α

 =
DΓ(N + 1)Γ(n2 + n− α/2)

Γ(N + 1− α/2)Γ(n2 + n)
EM∈S(1)

(||M†||α).

Proof. From Corollary 18 and Lemma 21,∫
f∈S

∑
ζ∈V (f)

µnorm(f, ζ)α dS =
DV ol(B(Cp))∫ 1

0
t2N+1−α dt

∫
M∈B(H(1))

(1−‖M‖2)p||M†||α dH(1),

where p = N − n2 − n+ 1. Taking polar coordinates for M , this equals

DV ol(B(Cp))∫ 1

0
t2N+1−α dt

∫ 1

0

(1− s2)ps2n2+2n−1−α ds

∫
M∈S(1)

||M†||α dH(1).

The proposition follows from

V ol(B(Ck)) =
πk

Γ(k + 1)
, V ol(S(Ck)) = 2

πk

Γ(k)
, V ol(S) = 2

πN+1

Γ(N + 1)
,

∫ 1

0

(1− s2)ps2n2+2n−1−α ds =
Γ(p+ 1)Γ(n2 + n− α/2)

2Γ(N + 2− α/2)
.

�

Finally, from Proposition 22 and Theorem 19 we conclude the following result.
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Theorem 23. Let 0 < α < 4 be a real number. Then,

Ef∈S

 ∑
ζ∈V (f)

µnorm(f, ζ)α

 =
DΓ(N + 1)

Γ(N + 1− α/2)

n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1− α/2)

nn−k+1−α/2Γ(n− k)
.

In particular,

Ef∈S

 ∑
ζ∈V (f)

µnorm(f, ζ)2

 = DN

(
n

(
1 +

1

n

)n+1

− 2n− 1

)
≤ nND.

Theorem 5 is immediate from Theorem 13 and Theorem 23.

9. Proof of Theorem 7

Following the Θ, Θ̂ notation of Corollary 18 with φ ≡ 1, we denote

I(M, ζ) =

∫
h∈B(Rζ)

Θ̂(
√

1− ‖M‖2F h+ ϕ(M, ζ), ζ) dRζ .

Note that∫
(g,ζ)∈G(d)

Θ(g, ζ) dG(d) =

∫
(M,l,ζ,h)∈Y

Θ(G(d)(M, l, ζ, h)) dY =∫
(M,l)∈B(CN+1)

∫
ζ∈VS(M)

I(M, ζ) dVS(M) dCN+1.

Projecting elements (M, l) ∈ CN+1 onto M , this last equals

V ol(B(Cp))
∫
M∈B(H(1))

(1− ‖M‖2)p
∫
ζ∈VS(M)

I(M, ζ) dVS(M) dH(1),

where p = N − n2 − n+ 1. From Corollary 18, we conclude that∫
(g,ζ)∈G(d)

Θ(g, ζ) dG(d) =
2πV ol(B(Cp))

(2N + 2)D

∫
f∈S

∑
ζ∈V (f)

Θ(f, ζ) dS.

Thus,

E(g,ζ)∈G(d)
(Θ(g, ζ)) =

πV ol(S)V ol(B(Cp))
(N + 1)V ol(G(d))D

Ef∈S

 ∑
ζ∈V (f)

Θ(f, ζ)

 .

The theorem follows substituting

πV ol(S)V ol(B(Cp))
(N + 1)V ol(G(d))

=
πV ol(S)V ol(B(Cp))

2π(N + 1)V ol(B(CN+1))V ol(B(Cp))
= 1.

10. Uniform equidistribution in the output set

In a general setting, it is interesting to analyze the probability distribution of
the output of a probabilistic algorithm. Assume for example that we have a de-
terministic algorithm for finding one zero of systems of equations, such that for
every fixed system, it produces always the same zero. In some sense, the “amount
of information” that such an algorithm gives us is small. On the other hand, if
the algorithm involves some random choices and all the roots are equidistributed,
then the amount of information that the algorithm provides is big, as there is no
“hidden” solution that will scape from our algorithm easily. We want to bring to
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the attention of the reader a concept from Information Theory and Random Num-
ber Generator Theory, which seems to be a useful way to measure the intermediate
states between those two extremes:

Definition 24. Let alg be an algorithm which may involve some random choices
and which may produce different outputs x1, . . . , xr. Let pi be the probability that
output xi is produced. The Shannon Entropy of alg is

H(alg) = −
r∑
i=1

pi log(pi).

It is a simple exercise to show that H(alg) ≤ log r, and equality holds if and
only if pi = 1/r for all i. Thus, H being maximal is equivalent to equidistribution
of outputs, and the closer it is to maximal, the closer we are to equidistribution.

As claimed in Theorem 2, for algorithm ahmr we have equidistribution of the
output. Of course, we do not need to express this fact using Shannon’s Entropy.
However, we want to insist that it might be a very useful concept in other set-
tings. For example, it is used in [BeLe] to analyze data and then conjecture the
equidistribution of the roots using another randomized algorithm (for which no
equidistribution or complexity results have been proved so far). We have found no
previous work where this concept is used in the context of analysis of algorithms.
Hence, although we will not use this concept for other purposes on this paper, we
want to insist on its potential importance.

We write now a more detailed version of our Theorem 2

Theorem 25. Let f be such that ζ ∈ V (f) implies (f, ζ) 6∈ Σ′. Hence, f has
exactly D solutions ζ1, . . . , ζD. Run ahmr on input f . Then,

• With probability 1, the algorithm produces an output z, which is an approx-
imate zero of some exact zero ζ ∈ V (f).
• Every exact zero of f is equally probable as the one associated to the output

of ahmr, namely Prob(ζ = ζi) = 1/D for 1 ≤ i ≤ D.

10.1. Proof of Theorem 25. As in the proof of Theorem 13, we let Σ = {h ∈ S :
(f, ζ) ∈ Σ′ for some ζ ∈ V (h)}. Our hypotheses is that f 6∈ Σ. Moreover, Σ is a
(real) algebraic variety of S of real codimension 2, and thus for every g ∈ S \ Z (Z
a null set), the arc Lf,g does not intersect Σ (this argument can be formalized as
in the proof of Proposition 12). Let g ∈ S \ Z. Assume that some solution ζ of f
is fixed. Let

Θ : V → {0, 1}

(g, ζ0) 7→

{
1 (f, ζ) ∈ Γ(f, g, ζ0)

0 otherwise

The mapping (4.1) is a bijection between the solutions of g and those of f . Thus,
for fixed g ∈ S \ Z we have Θ(ζ0) = 1 exactly for one solution of g. Hence,

Eg∈S\Z

 1

D
∑

ζ0∈V (g)

Θ(g, ζ0)

 =
1

D
.

Being Z a null set and using Theorem 7 we conclude,

E(g,ζ0)∈G(d)
(Θ(g, ζ0)) =

1

D
,
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namely the probability that a randomly chosen pair (g, ζ0) ∈ G(d) satisfies ζ ∈
Γ(f, g, ζ0) is exactly equal to 1/D. This finishes the proof.

10.2. Finding few, some, most or all solutions. In this section we analyze
the probability of getting some or all solutions of a system by repeatedly using
algorithm ahmr. Namely, we will use amhr a number of times on the same intput
f ∈ S. This is equivalent to considering the algorithm

ahmrs

Input: f ∈ S.

• Choose randomly s pairs (g1, ζ1
0 ), . . . , (gs, ζs0) ∈ G(d).

• Approximate the curves Γ(f, gs, ζs0) using the homotopy algorithm of [Bel].

Output: s approximate zeros of f , with associated zeros the ones lying on
Γ(f, gj , ζj0), 1 ≤ j ≤ s.

The average running time of ahmrs is s times the average running time of ahmr,
thus at most O(sd3/2nN(N + n3)) from Corollary 9. The following result follows
from Theorem 25 and elementary computations of Enumerative Probability.

Corollary 26. Fix 1 ≤ s, 1 ≤ k ≤ D and let f ∈ S\Σ. The probability that ahmrs

produces approximations to k or more different solutions of f , is at least

1−
(
D

k − 1

)
(k − 1)s

Ds

Proof. The probability (in the space Gs(d)) that ahmrs produces k−1 or less different

solutions of f is equal to the probability that a randomly chosen Z := (z1, . . . , zs) ∈
{1, . . . ,D}s (w.r.t. the uniform distribution) satisfies

]{z1, . . . , zs} ≤ k − 1.

According to the Inclusion-Exclusion Principle of Probability Theory, this last is
at most (

D
k − 1

)
(k − 1)s

Ds
.

The corollary follows. �

This result allows us to obtain some upper bounds on the probability that some
or all the solutions of f are reached within s tries of ahmr. For example,

Corollary 27. Fix l ≥ 1 and let f ∈ S \ Σ. Let s = d2lD logDe. Running s times
algorithm ahmr on input f produces approximations to all the solutions of D, with
probability greater than or equal to 1−D−l.

Proof. From Corollary 26, the probability we are trying to compute is at least

1−
(
D
D − 1

)
(D − 1)2lD logD

D2lD logD = 1− (D − 1)2lD logDD
D2lD logD .

Applying logarithms, we check that this last is greater than or equal to 1−D−l as
claimed. �
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Corollary 27 proves for the first time that, accepting a very small probability of
failure, a complete description of the solution set of a system f ∈ S\Σ can be done
with average running time O(d3/2nN(N +n3)D logD), that is linear in the Bézout
number D and almost quadratic in the input length.

It is clear that any description of an approximate zero of every solution of f
requires running time at least as big as D, for D projective points are needed.
Moreover, from [CGH+03] we know that any other “natural” encoding of the com-
plete solution set of f , no matter how compressed, cannot be obtained in running
time less than D. Thus, our algorithm ahmr is essentially optimal as a universal
solver, at least with respect to its average complexity.
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