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Abstract. In a recent work [Shu09], Mike Shub obtained a new
upper bound for the number of steps needed to continue a known
zero η0 of a system f0, to a zero ηT of an input system fT , following
the path of pairs (ft, ηt), where ft, t ∈ [0, T ] is a polynomial system
and ft(ηt) = 0. He proved that, if one can choose the step–size in
an optimal way, then the number of steps is essentially bounded by
the length of the path of (ft, ηt) in the so–called condition metric.
However, the proof of that result in [Shu09] is not constructive.
We give an explicit description of an algorithm which attains that
complexity bound, including the choice of step–size.

1. Introduction

Continuation methods (also called homotopy or path–following meth-
ods) for solving systems of polynomial equations try to approximate
solutions of a target system f by continuing one or more known so-
lutions of a “simple” system g. They have been studied and used for
years. A very brief list of references describing many practical and the-
oretical aspects of these methods is [GZ79, Ren87, Li93, Mor87, MS87,
LVZ08, SW05, LT09]. In these works a path ft, t ∈ [0, T ] is defined
with extremes g and f (for example, ft = (1 − t)g + tf , t ∈ [0, 1]),
so f0 = g and fT = f . The space of polynomial systems with degrees
bounded by some quantity has a natural structure of finite–dimensional
complex vector space, and ft is just a curve in that vector space. Under
some widely satisfied regularity hypotheses, a known zero ζ0 = η0 of f0
can be continued to a zero ηt of ft. Namely, we have ft(ηt) = 0 which
readily implies

ḟt(ηt) +Dft(ηt)η̇t = 0, or equivalently η̇t = Dft(ηt)
−1ḟt.
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Continuation methods attempt to lift the solution path ηt to produce
an approximation to ηT , a zero of fT = f . In practice, a first “homo-
topy step” t0 is chosen and a predictor method (for example Euler’s
approximation applied to the differential equality above) is used to pro-
duce an approximation zt0 to ζ1 = ηt0 , and then a corrector method
(like Newton’s method) is used to get a better approximation of ζ1. If
no convergence of the corrector method is achieved, then t0 is changed
by a smaller step. This idea is repeated, generating t1, t2, . . . until we
reach fT .

In some of the papers cited above there are very impressive exper-
imental results showing that methods based on this idea can produce
approximations of one or more zeros of the target system very quickly.
However, theoretical guarantees for the performance of these methods
are still not known. We consider the two following questions:

Q1 Can we describe analytically a choice of the homotopy steps
t0, t1, . . . above? Can we guarantee that zti is approximating
the continued solution ηti of fti , and not some other solution of
fti?

Q2 Given a path ft, can we control the total number of homotopy
steps? Namely, what is the complexity of homotopy methods,
in terms of some geometric or algebraic invariant of ft?

In the list of references above, there is no general theory that can give
satisfactory answers to these two questions, save for [Ren87] where they
are addressed with probabilistic arguments.

During the nineties, a series of papers by Shub and Smale [SS93a,
SS93b, SS93c, SS96, SS94] established the basis for the study of the
complexity of homotopy methods. They started by considering the
homogeneous (projective) version of the problem: fix n ≥ 1 and for
r ∈ N, let Hr be the vector space of homogeneous polynomials of
degree r with complex coefficients and unknowns X0, . . . , Xn. Then,
let (d) = (d1, . . . , dn) be a list of positive degrees and let

H(d) = Hd1 × · · · × Hdn ,

namely H(d) is the vector space of systems of n homogeneous polyno-
mial equations of respective degrees d1, . . . , dn, and elements inH(d) are
n–tuples f = (f1, . . . , fn). From now on, we let d = max{d1, . . . , dn}.
Note that if an element in Cn+1 is a zero of f ∈ H(d), then every com-
plex multiple of that element is also a zero of f . Thus, we consider zeros
of f as points in the complex projective space P (Cn+1). It is useful
to endow H(d) with a Hermitian product and its associated norm. As
in [SS93a], we choose Bombieri-Weyl inner product (sometimes called
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Kostlan inner product): let f = (f1, . . . , fn), g = (g1, . . . , gn) ∈ H(d).
Consider f as a high–dimensional vector, containing the list of the co-
efficients the monomials of f1, . . . , fn, and similarly for g. Then, the
Bombieri-Weyl inner product 〈f, g〉 is the weighted Hermitian product
of these two vectors, where the weight(

di!

α0! · · ·αn!

)−1
,

is associated with each monomial Xα0
0 · · ·Xαn

n of fi, gi. A more de-
tailed description of this Hermitian product including some interesting
properties can be found in [BCSS98, Chapter 12.1]. Let

S = {f ∈ H(d) : ‖f‖ = 1}
be the unit sphere in H(d). Note that the (projective) zeros of a system
f ∈ H(d) are also those of f/‖f‖, and hence we may assume that our
input systems f are always in S.

Key to the works of Shub and Smale cited above is the so–called
normalized condition number (sometimes denoted µnorm, µproj or simply
µ), defined as follows: given f ∈ H(d) and x ∈ Cn+1, let

(1.1) µ(f, x) = ‖f‖‖(Df(x)|x⊥)−1Diag(‖x‖di−1d1/2i )‖.
Here, Df(x)|x⊥ is just the differential matrix of f at x, restricted to the
orthogonal complement x⊥ of x. The quantity µ(f, x) depends only on
the projective class of f and x, and it satisfies µ(f, x) ≥ 1 whenever
f(x) = 0.

Finding decimal approximations to algebraic points sufficiently pre-
cise to distinguish a putative solution from some other algebraic point
is a subtle problem. An elegant approach is provided by the concept of
approximate zero (cf. [SS93a] or [Sma81] for the affine version.) First,
recall projective Newton’s method from [Shu93]:

NP(f)(z) = z −
(
Df(z)

∣∣
z⊥

)−1
f(z), f ∈ H(d), z ∈ P

(
Cn+1

)
.

A point z ∈ P (Cn+1) is a (projective) approximate zero of a system f ∈
S if there exists an exact nondegenerate zero ζ of f such that all the it-
erates of projective Newton’s method NP(f)i(z) = NP(f)◦· · ·◦NP(f)(z)

(i times ) exist and they satisfy dR(NP(f)i(z), ζ) ≤ dR(z, ζ)/22i−1 where
dR is the Riemannian distance in P (Cn+1). Namely, an approximate
zero guarantees fast and secure convergence of the sequence of projec-
tive Newton’s method iterates to an actual, exact zero of f .

It can be proven that if z is close enough to ζ in terms of µ(f, ζ),
then z is an approximate zero of f with associated zero ζ (in the spirit
of Smale’s γ–theory, with µ instead of γ.) See Lemma 6 below.
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Now we describe with some more detail the general structure of the
homotopy method proposed by Shub and Smale. Let f ∈ H(d) be
a target system to be solved, and let g ∈ H(d) be another system
that has a known approximate zero z0 with associated exact zero some
η0 ∈ P (Cn+1). Consider some piecewise C1 curve {ft : t ∈ [0, T ]}
joining g and f , so that f0 = g, fT = f .

Under some widely satisfied regularity hypothesis (if no singular so-
lution is found, or C0(ft, η0) < ∞ in the notation below), the curve ft
can be lifted to a piecewise C1 curve of pairs

(ft, ηt) ⊆ V = {(f, ζ) ∈ S× P
(
Cn+1

)
: ζ is a zero of f}.

The set V is called the solution variety. This curve is completely de-
termined from (ft, η0) so we denote it by Γ(ft, η0).

Shub and Smale’s homotopy method works as follows:

(1) Set h0 = g, z0 = z.
(2) Choose a small step t0 > 0. Let h1 = ft0 ∈ S. Let

z1 = NP(h1)(z0).

The step t0 must be small enough to guarantee that z1 is an
approximate zero of h1, with associated zero ζ1 = ηt0 , the unique
zero of h1 which lies in the lifted path Γ(ft, η0).

(3) For i ≥ 2 define hi, zi, ζi inductively as follows. Choose a small
step ti−1 > 0. Let hi = ft0+···+ti−1

∈ S. Let

zi = NP(hi)(zi−1).

Again, the step ti−1 must be small enough to guarantee that zi is
an approximate zero of hi, with associated zero ζi = ηt0+···+ti−1

,
the unique zero of hi which lies in the lifted path Γ(ft, η0).

Note that this description does not include the use of a predictor–
corrector step, only projective Newton’s method is used.

In [SS94, Theorem 6.1] and assuming that ft = (1 − t)g + tf (i.e.
linear homotopy), Shub and Smale proved that one may choose the
steps ti in such a way that the first question Q1 above is answered in
the affirmative, and that the total number of homotopy steps is at most

(1.2) Cd3/2 max{µ(ft, ηt) : t ∈ [0, T ]}L,
where L is the length of the curve ηt, thus giving a satisfactory answer
to question Q2 above in the case of linear homotopy paths. In [BP08,
BP09], this result is used to prove that randomized linear homotopy
paths require a small (polynomial in the size of the input) number
of homotopy steps to run, on the average. The algorithm in [BP09]
works as follows: first, an initial pair (g, η0) is chosen using a certain
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randomized procedure. Then, the path–following method of [SS94,
Theorem 6.1] is used to approximate the solution path ηt associated to
the linear homotopy ft = (1 − t)g + tf and thus find an approximate
zero of the input system f .

The average running time of the algorithm in [BP09] is already poly-
nomial in the size of the input. However Mike Shub has pointed out in
[Shu09] that the path–following method can be done much faster. The
main outcome of [Shu09] is the following result, which generalizes and
improves [SS94, Theorem 6.1]. Here and in the rest of the paper, dλe
denotes the smallest integer greater than or equal to λ for λ ∈ R.

Theorem 1 ([Shu09]). Assume that t→ ft, t ∈ [0, T ] is a piecewise C1

curve. The number k of (projective) Newton’s method steps necessary
to guarantee that zk is an approximate zero of f is bounded above by

(1.3) k ≤ dCd3/2C0(ft, η0) e,
where C > 0 is a universal constant and

C0(ft, η0) =

∫ T

0

µ(ft, ηt)‖(ḟt, ζ̇t)‖2 dt.

Theorem 1 says that, if the homotopy steps ti are chosen properly,
then hk = f for some k satisfying (1.3) and hence zk is an approximate
zero of hk = f , the target system.

Remark 1. We have defined the solution variety V as the set of pairs
(f, ζ) ∈ S × P (Cn+1) such that ζ is a zero of f . It turns out that
V is a smooth submanifold of S × P (Cn+1), see [BCSS98, p.193], and
hence it has a natural Riemannian structure (let us denote it by 〈·, ·〉V )
inherited from the inner product Riemannian structure in S×P (Cn+1).
Now, consider a new Riemannian structure in W = V \ {(f, ζ) ∈ V :
µ(f, ζ) =∞} given by

〈(ḟ , ζ̇), (ġ, η̇)〉κ,(f,ζ) = µ(f, ζ)2〈(ḟ , ζ̇), (ġ, η̇)〉V .
This new Riemannian structure defines a new metric in W , called the
condition number metric, or condition metric for short, see [Shu09].
The quantity C0(ft, η0) is the length of the path (ft, ηt) in the condition
metric, which gives a nice geometrical interpretation of Theorem 1. In
[BS09, BP] it is shown that the use of (1.3) instead of (1.2) yields a
great improvement on the complexity of path–following methods, both
for randomized algorithms and for theoretically optimal ones.

However, the proof of Theorem 1 in [Shu09] is not constructive, and
it does not provide an explicit, constructive description of the homo-
topy steps ti. Thus, Q1 above is not answered by Theorem 1 and an



6 CARLOS BELTRÁN

algorithm does not immediately follow from [Shu09]. The goal of this
paper is to give a constructive version of Theorem 1, namely to de-
scribe analytically how to choose the ti. As a drawback, we will need
to ask our curves to be piecewise C1+Lip, namely C1 and with Lipschitz
derivative, instead of only C1 as in Theorem 1.

Remark 2. Recall that a mapping β : I → Rm, I = [a, b] ⊆ R, is
Lipschitz if there exists a constant K ≥ 0 such that ‖β(t) − β(t′)‖ ≤
K|t − t′| for every t, t′ ∈ I. The smallest of such K is called the
Lipschitz constant of the map β. From Rademacher’s Theorem (see
for example [EG92, p. 81]), this implies that β′(t) is defined a.e. in
[a, b]. Moreover, clearly ‖β′(t)‖ ≤ K where defined. Any Lipschitz
function β : I → R where U ⊆ R is absolutely continuous and hence
the following holds (see for example [Rud87, Th. 7.18]):

(1.4) β(t) = β(0) +

∫ t

a

β′(s) ds.

A function β : I → Rm, I = [a, b) ⊆ R is locally Lipschitz if it is
Lipschitz in every compact subinterval [a, b′] : a ≤ b′ < b. Locally
Lipschitz functions also satisfy (1.4) for t < t0.

In [BL] we present an implementation (included in NAG4M2, the
numerical algebraic geometry package of the computer algebra system
Macaulay 2) of the algorithm described in this paper, and address other
practical issues.

Remark 3. Most commonly used homotopy paths ft are certainly piece-
wise C1+Lip (or even C∞), so we believe that including this extra hy-
potheses is a minor drawback. Moreover, in view of Theorem 1, one
should choose (if possible) paths ft whose lifts (ft, ηt) minimize C0(ft, ηt),
namely length–minimizing geodesics with respect to the condition met-
ric. These optimal paths, whose study has been started in [Shu09, BS09,
BD, BDMSa, BDMSb], are known from the arguments in [BD, BDMSb]
to be of class C1+Lip. Hence, they can be approximated using the algo-
rithm described in this paper.

I have (unsuccessfully) tried to produce an algorithm which only re-
quires the curve to be of class C1 and which uses no other extra hypothe-
ses. This may be a difficult goal, for if only C1 is assumed the integrand
in the formula above might be an arbitrary continuous function, even a
very pathological one. This question thus remains open.

The rest of this paper is organized as follows. In Section 2 we give
the formal statement of our main results. Section 3 contains several
technical lemmas used in our main proofs. Sections 4 and 5 contain
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the proofs of our two main theorems. A short Conclussions section is
included at the end of the paper.

Notation 1. The letters g, f, h, ζ, z are reserved for the meanings they
have in the description above. We will also use the letters `, v for poly-
nomial systems; η for zeroes of systems; and x (resp. y) for projective
(resp. affine) points.

2. Main results

Now we give a practical version of the main theorem of [Shu09]. For

i ≥ 0 and t ∈ [0, T ] such that hi = ft ∈ S, let ḣi = ḟt = d
dt
ft ∈ ThiS be

the tangent vector to the curve t → ft at hi. Note that ḟt (and thus

ḣi) depends on the chosen parametrization of the path t→ ft.
Recall that for any fixed ` ∈ S and y in the unit sphere S(Cn+1)

of Cn+1, the differential matrix Dl(y) is a n × (n + 1) matrix with
complex coefficients. LetMn+1(C) be the set of n+ 1 square matrices
with complex coefficients and define the diagonal matrix

Λ = Diag(d
1/2
1 , . . . , d1/2n , 1) ∈Mn+1(C).

Then, consider the following mappings (where defined)

φ : S× S(Cn+1) → Mn+1(C),

(`, y) 7→ Λ−1
(
D`(y)
y∗

)
χ1 : S× S(Cn+1) → R,

(`, y) 7→ ‖φ(`, y)−1‖
χ2 : S×H(d) × S(Cn+1) → R,

(`, v, y) 7→
(
‖v‖2 +

∥∥∥(D`(y)y∗

)−1(v(y)
0

)∥∥∥2)1/2

ϕ : S×H(d) × S(Cn+1) → R,
(`, v, y) 7→ χ1(`, y)χ2(`, v, y)

Here and throughout the paper, y∗ is the conjugate transpose of y and
‖A‖ denotes operator 2–norm of A ∈Mn+1(C). Note that

(2.1) χ1(`, y) ≥ 1 for every l, y.

Indeed, let z ∈ Cn+1 be an element of the kernel of Dl(y). Then,

‖φ(`, y)z‖ =

∥∥∥∥( 0

〈z, y〉

)∥∥∥∥ ≤ ‖z‖, and hence χ1(`, y) = ‖φ(`, y)−1‖ ≥ 1.

The reader may check that χ1, χ2, ϕ only depend on the projective
class of y in S(Cn+1). Thus, we will sometimes consider χ1(`, x) with
x ∈ P(Cn+1), meaning χ1(`, y) for any representative y of x in S(Cn+1),
and similarly for χ2, ϕ.
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If t → (`t, ηt) ⊆ S × P (Cn+1) is a C1 curve such that ηt is a zero of
`t, and if t → yt is a horizontal lift1 of t → ηt to the sphere S(Cn+1)

then `t(yt) = 0 implies ˙̀
t(yt) + D`t(yt)ẏt = 0 and 〈yt, ẏt〉 = 0, that

is ẏt =
(
D`t(yt)
y∗t

)−1(− ˙̀
t(yt)
0

)
. Moreover, `t is a system of homogeneous

polynomials and hence D`t(yt)yt = 0 for every t. We hence conclude
that

(2.2) χ1(`t, yt) = µ(`t, yt), ϕ(`t, ˙̀
t, yt) = µ(`t, yt)‖( ˙̀

t, ẏt)‖.

Note that the last formula is the length of the vector ( ˙̀
t, ẏt) or equiva-

lently ( ˙̀
t, η̇t) in the condition metric. However, (2.2) does not hold in

general (i.e. if ηt is not a zero of `t.)

2.1. Explicit description of the algorithm. We now describe the
algorithm in its most general form. The particular case of linear homo-
topy paths will be addressed after the statements of the main theorems.

Assume that t → ft ⊆ S, 0 ≤ t ≤ T is a C1+Lip curve (i.e. it is a

C1 curve and its derivative is Lipschitz.) Hence, ḟt is Lipschitz and

f̈t exists for almost every t ∈ [0, T ]. Moreover, when defined, f̈t is

bounded by the Lipschitz constant of t 7→ ḟt. Assume moreover that

‖f̈t‖ ≤ d3/2H‖ḟt‖2,

for almost every t ∈ [0, T ], where H ≥ 0 is some constant. Note that

if ḟt 6= 0 for t ∈ [0, T ] such a H exists. From now on, H (or an upper
bound of H) is supposed to be known.

Let P ≥ 0 be such that

P ≥
√

2 +
√

4 + 5H2 ≥ 2 +
√

2.

Let c > 0 be such that

(2.3) c ≤ (1−
√

2u0/2)
√
2

1 +
√

2u0/2

(
1−

(
1− u0√

2 + 2u0

) P√
2

)
,

where u0 is as in Theorem 2 below. Set h0 = f0, ḣ0 = ḟ0 and let z0
be an approximate zero of h0 with associated exact zero η0. As in
the general scheme of homotopy methods described above, define hi, zi
inductively as follows. Let

(2.4) ti ≤ Bi =
c

Pd3/2ϕ(hi, ḣi, zi)
, i ≥ 0.

1i.e. yt is a representative of ηt and ẏt is orthogonal to the complex line defined
by yt, for every t.
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(If t + Bi > T , we just take ti = T − t.) For the computation of

ϕ(hi, ḣi, zi) we choose any unit norm representative of zi. Let hi+1 =

ft+ti , ḣi+1 = ḟt+ti and zi+1 = NP(hi+1)(zi).

Theorem 2. With the notation and hypotheses above, assume that

dR(z0, η0) ≤
u0

2d3/2µ(h0, η0)
, u0 = 0.17586...

where u0 is the constant from Lemma 6 below. Then, for every i ≥ 0,
zi is an approximate zero of hi, with associated zero ζi, the unique zero
of hi that lies in the lifted path Γ(ft, η0). Moreover,

dR(zi, ζi) ≤
u0

2d3/2µ(hi, ζi)
, i ≥ 1.

Theorem 3. With the hypotheses of Theorem 2, assume moreover that
c

2Pd3/2ϕ(hi, ḣi, zi)
≤ ti ≤

c

Pd3/2ϕ(hi, ḣi, zi)
, i = 0, 1, 2...

namely ti is within a factor of 2 of its upper bound (save possibly for
the last step.) Then, if C0(ft, η0) <∞, there exists k ≥ 0 such that f =
hk+1. Namely the number of homotopy steps is at most k. Moreover,

k ≤ dCd3/2C0(ft, η0)e,
where

C =
2P

(1−
√

2u0/2)1+
√
2

1

c
+

1 +
√

2u0/2(
1−
√

2u0/2
)√2
 .

In particular, if C0(ft, η0) < ∞ the algorithm finishes and outputs zk,
an approximate zero of f = hk+1 with associated zero ζk+1, the unique
zero of f that lies in the lifted path Γ(ft, η0).

Remark 4. Computing ϕ(hi, ḣi, zi) involves computing the norm of
a vector (for χ2) and the norm of a matrix (for χ1.) However, from
Theorem 3 we only need to do this second and more difficult task ap-
proximately, for we just need to compute a quantity contained in the
interval

[ϕ(hi, ḣi, zi), 2ϕ(hi, ḣi, zi)].

Remark 5. In particular, the number of steps is at most 1+Cd3/2C0(ft, η0).
If the curve t → ft is piecewise C1+Lip we may divide the curve in
L pieces, each of them of class C1+Lip and satisfying a.e. ‖῭t‖ ≤
d3/2H‖ ˙̀

t‖2 for a suitable H ≥ 0. The theorem may then be applied
to each of these pieces. The total number of steps is thus at most

L+ Cd3/2C0(ft, η0),
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by linearity of the integral.

Remark 6. If more than one approximate zero of g = f0 is known, the
algorithm described above may be used to follow each of the homotopy
paths starting at those zeros. By theorems 2 and 3, if the approximate
zeros of g correspond to different exact zeros of g, and if C0 is finite for
all the paths (i.e. if the algorithm finishes for every initial input), then
the exact zeros associated with the output of the algorithm correspond
to different exact zeros of f = fT .

2.2. Example: linear homotopy. We consider now the case of linear
homotopy: Let g, f ∈ S be given, and let z0 be an approximate zero
of g with associated exact zero η0. Consider the (short) arc of great
circle joining g and f . That is, a portion of the unit circle (for the
Bombieri–Weyl norm) in the real plane defined by the origin, g and f .
We may parametrize this arc by arc–length as follows,

t→ ft = g cos(t)+
f −Re(〈f, g〉)g√

1−Re(〈f, g〉)2
sin(t), t ∈

[
0, arcsin

√
1−Re〈f, g〉2

]
,

where Re(·) stands for real part. Note that ft is the projection on S
of a segment, thus the name “linear homotopy”. As ft is arc–length
parametrized, we have ‖ḟt‖ ≡ 1. Moreover, ft is regular enough to be

C1+Lip and f̈t = −ft yields

‖f̈‖ = ‖ft‖ = 1.

Hence, we may choose

H =
1

d3/2
, and thus we need a P such that P ≥

√
2 +

√
4 +

5

d3
.

In particular, as d ≥ 2 it suffices to take

P =
√

2 +

√
4 +

5

23
= 3.56479487...

Moreover, from inequality (2.3) we just need

c ≤ (1−
√

2u0/2)
√
2

1 +
√

2u0/2

(
1−

(
1− u0√

2 + 2u0

) 3.56479487...√
2

)
= 0.17126872...

so in the case of linear homotopy we may take c = 0.17126872 and we
must thus choose the homotopy step in such a way that

0.04804448

2d3/2ϕ(hi, ḣi, zi)
≤ ti ≤

0.04804448

d3/2ϕ(hi, ḣi, zi)
.
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The estimate of the number of steps given by Theorem 3 is then

d70.68842056d3/2C0(ft, η0)e.

3. Technical lemmas

The proofs of theorems 2 and 3 will follow from the long and subtle
computation of the rates of change of the functions χ1, χ2, ϕ studied in
this section.

Recall first the higher derivative estimate from [SS93a] (see also
[BCSS98, Prop. 1, p. 267]): let ` be a homogeneous polynomial of
degree p. Let 0 ≤ k ≤ p and let y, w1, . . . , wk ∈ Cn+1. Then,
(3.1)∣∣Dkl(y)(w1, . . . , wk)

∣∣ ≤ p(p− 1) · · · (p− k + 1)‖l‖‖y‖p−k‖w1‖ · · · ‖wk‖.

By abuse of notation, given a curve t → (`t, vt, yt) ⊆ S × H(d) ×
S(Cn+1) we will denote

φ(t) = φ(`t, yt), χ1(t) = χ1(`t, yt),

χ2(t) = χ2(`t, vt, yt), ϕ(t) = ϕ(`t, vt, yt).

Lemma 1. Let S(Cn+1) be the unit sphere in Cn+1. Let t→ (`t, yt) ∈
S× S(Cn+1) be a C1 curve, 0 ≤ t ≤ T . Then,∥∥∥∥ ddtφ(t)

∥∥∥∥ ≤√2d‖ ˙̀
t‖2 +Q‖ẏt‖2, 0 < t < T,

where Q = 1 + 2d(d− 1)2.

Proof. Recall that that φ(t) = Λ−1
(
D`t(yt)
y∗t

)
. Hence,

d

dt
φ(t) = Λ−1

(
D ˙̀

t(yt) +D2`t(yt)(ẏt)

ẏ∗t

)
,

whereD2`t(yt)(ẏt) is the matrix satisfyingD2`t(yt)(ẏt)y = D2`t(yt)(ẏt, y),
y ∈ Cn+1. We consider the i–th row of that matrix, 1 ≤ i ≤ n,(

d

dt
φ(t)

)
i

= d
−1/2
i (D( ˙̀

t)i(yt) +D2(`t)i(yt)(ẏt)),

where (`t)i is the i–th polynomial of the system `t, 1 ≤ i ≤ n. From
inequality (3.1) we conclude,∥∥∥∥( d

dt
φ(`t, yt)

)
i

∥∥∥∥2 ≤ (d1/2i ‖( ˙̀
t)i‖+ d

1/2
i (di − 1)‖(`t)i‖‖ẏt‖

)2
≤

≤ 2d‖( ˙̀
t)i‖2 + 2d(d− 1)2‖(`t)i‖2‖ẏt‖2.
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Hence, ∥∥∥∥ ddtφ(t)

∥∥∥∥2 ≤ n+1∑
i=1

∥∥∥∥( d

dt
φ(`t, yt)

)
i

∥∥∥∥2 ≤
‖ẏ∗t ‖2 +

n∑
i=1

(
2d‖( ˙̀

t)i‖2 + 2d(d− 1)2‖(`t)i‖2‖ẏt‖2
)

=

‖ẏt‖2+2d‖ ˙̀
t‖2+2d(d−1)2‖`t‖2‖ẏt‖2 = ‖ẏt‖2+2d‖ ˙̀

t‖2+2d(d−1)2‖ẏt‖2,
and the lemma follows. �

Lemma 2. Let t → (`t, yt) ∈ S × S(Cn+1) be a C1 curve, 0 ≤ t ≤ T .
Let t → vt ∈ H(d) be Lipschitz and let Kt = ‖v̇t‖ where v̇t is defined.
t ∈ [0, T ]. Assume that χ1(0) < +∞. Then, χ1(t) is a locally Lipschitz
function in [0, t0) where t0 = sup{t ∈ [0, T ] : χ1(s) < +∞∀ s ∈ [0, t]}
and

(3.2) |χ′1(t)| ≤ χ1(t)
2

√
2d‖ ˙̀

t‖2 +Q‖ẏt‖2, a.e. in [0, t0)

where Q = 1+2d(d−1)2. Moreover, χ2(t) is a locally Lipschitz function
in [0, t0) and

(3.3) |χ′2(t)| ≤
√

2χ1(t)2χ2(t)2(2d‖ ˙̀
t‖2 +Q‖ẏt‖2) + 5χ1(t)2K2

t ,

a.e. in [0, t0).

Proof. Note that χ1 is a locally Lipschitz function for it is the compo-
sition of locally Lipschitz functions. Let s, t ∈ [0, T ]. Then,

|χ1(t)− χ1(s)| =
∣∣‖φ(t)−1‖ − ‖φ(s)−1‖

∣∣ ≤ ‖φ(t)−1 − φ(s)−1‖.
On the other hand, t→ φ(t) is a C1 map and hence,

‖φ(t)−1−φ(s)−1‖
|t−s| ≤ 1

|t−s|

∫ t
s

∥∥ d
du
φ(u)−1

∥∥ du
= 1

|t−s|

∫ t
s

∥∥φ(u)−1
(
d
du
φ(u)

)
φ(u)−1

∥∥ du
≤ 1

|t−s|

∫ t
s
‖φ(u)−1‖2

∥∥ d
du
φ(u)

∥∥ du
≤

Lemma 1

1
|t−s|

∫ t
s
χ1(u)2

√
2d‖ ˙̀

u‖2 +Q‖ẏu‖2 du

≤ max
u∈[s,t]

(
χ1(u)2

√
2d‖ ˙̀

u‖2 +Q‖ẏu‖2
)
.

As χ1(t) is locally Lipschitz, by Rademacher’s Theorem it is differ-
entiable a.e. in [0, t0) and satisfies

|χ′1(t)| = lim
s→t

|χ1(t)− χ1(s)|
|t− s|

≤ χ1(t)
2

√
2d‖ ˙̀

t‖2 +Q‖ẏt‖2, a.e.

Equation (3.2) follows.
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On the other hand, χ1 <∞ implies χ2 <∞ is well defined in [0, t0).
As vt is Lipschitz, it is differentiable a.e. in [0, t0). Hence, χ2(t) is also
differentiable a.e. and

χ′2(t) =
Re〈vt, v̇t〉+ Re〈

(
D`t(yt)
y∗t

)−1(vt(yt)
0

)
, d
dt

((
D`t(yt)
y∗t

)−1(vt(yt)
0

))
〉

χ2(t)
, a.e.

Hence, the following holds a.e.

|χ′2(t)| ≤

‖v̇t‖2 +

∥∥∥∥∥ ddt
((

D`t(yt)

y∗t

)−1(
vt(yt)

0

))∥∥∥∥∥
2
1/2

.

Note that ∥∥∥∥∥ ddt
((

D`t(yt)

y∗t

)−1(
vt(yt)

0

))∥∥∥∥∥ =

∥∥− (D`t(yt)
y∗t

)−1
Λ d
dt

(
Λ−1

(
D`t(yt)
y∗t

)) (
D`t(yt)
y∗t

)−1(vt(yt)
0

)
+

(
D`t(yt)
y∗t

)−1(v̇t(yt)+Dvt(yt)ẏt
0

)∥∥.
We find a bound for each of these summands. For the first one,∥∥∥∥∥

(
D`t(yt)

y∗t

)−1
Λ
d

dt

(
Λ−1

(
D`t(yt)

y∗t

))(
D`t(yt)

y∗t

)−1(
vt(yt)

0

)∥∥∥∥∥ =

∥∥∥∥∥φ(t)−1
d

dt
(φ(t))

(
D`t(yt)

y∗t

)−1(
vt(yt)

0

)∥∥∥∥∥ ≤
χ1(t)

∥∥∥∥ ddt (φ(t))

∥∥∥∥√χ2(t)2 − ‖vt‖2 ≤
Lemma 1

χ1(t)

√
2d‖ ˙̀

t‖2 +Q‖ẏt‖2
√
χ2(t)2 − ‖vt‖2.

For the second one,∥∥∥∥∥
(
D`t(yt)

y∗t

)−1(
v̇t(yt) +Dvt(yt)ẏt

0

)∥∥∥∥∥ ≤ χ1(t)

∥∥∥∥Λ−1
(
v̇t(yt) +Dvt(yt)ẏt

0

)∥∥∥∥ .
We can bound this last expression using Inequality (3.1) as in the proof
of Lemma 1, to get∥∥∥∥Λ−1

(
v̇t(yt) +Dvt(yt)ẏt

0

)∥∥∥∥ ≤√2‖v̇t‖2 + 2d‖vt‖2‖ẏt‖2.
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We have thus proved:∥∥∥∥∥ ddt
((

D`t(yt)

y∗t

)−1(
vt(yt)

0

))∥∥∥∥∥
2

≤

(
χ1(t)

√
χ2(t)2 − ‖vt‖2

√
2d‖ ˙̀

t‖2 +Q‖ẏt‖2 + χ1(t)
√

2‖v̇t‖2 + 2d‖vt‖2‖ẏt‖2
)2

≤

2χ1(t)
2(χ2(t)

2−‖vt‖2)(2d‖ ˙̀
t‖2+Q‖ẏt‖2)+2χ1(t)

2(2‖v̇t‖2+2d‖vt‖2‖ẏt‖2) ≤
2χ1(t)

2χ2(t)
2(2d‖ ˙̀

t‖2 +Q‖ẏt‖2) + 4χ1(t)
2‖v̇t‖2

Hence,

|χ′2(t)|2 ≤ 2χ1(t)
2χ2(t)

2(2d‖ ˙̀
t‖2 +Q‖ẏt‖2) + (4χ1(t)

2 + 1)‖v̇t‖2 ≤
(2.1)

2χ1(t)
2χ2(t)

2(2d‖ ˙̀
t‖2 +Q‖ẏt‖2) + 5χ1(t)

2‖v̇t‖2,
and the second inequality of the lemma follows. �

Lemma 3. Let t→ (`t, yt) ∈ S×S(Cn+1) be a C1+Lip curve, 0 ≤ t ≤ T .

Assume that t → ˙̀
t ∈ H(d) is Lipschitz and let Kt = ‖῭t‖ where ῭

t is
defined. Assume that

Kt ≤ d3/2H‖ ˙̀
t‖2 a.e. , where H ≥ 0 is some constant.

Consider the curve t → (`t, ˙̀
t, yt) ∈ S ×H(d) × S(Cn+1). Assume that

χ1(0) < +∞. Assume moreover that

(3.4) ‖ ˙̀
t‖2 + ‖ẏt‖2 ≤ χ2(t)

2, ∀ t ∈ [0, T ],

and let
P =

√
2 +
√

4 + 5H2.

Then, for t < (P d3/2ϕ(0))−1, we have

ϕ(0)

1 + P d3/2ϕ(0)t
≤ ϕ(t) ≤ ϕ(0)

1− P d3/2ϕ(0)t
<∞.

Moreover,

(3.5) dR(yt, y0) ≤
1√

2d3/2χ1(0)

(
1−

(
1− Pd3/2ϕ(0)t

)√2/P)
.

Proof. First, note that (3.4) and Q = 1 + 2d(d− 1)2 ≥ 2d implies

(3.6) 2d‖ ˙̀
t‖2 +Q‖ẏt‖2 ≤ Qχ2(t)

2 ≤ 2d3χ2(t)
2.

Hence, if t0 = sup{t ∈ [0, T ] : χ1(s) < +∞,∀s ∈ [0, t]}, (3.2) and (3.3)
imply:

|χ′1(t)| ≤
√

2 d3/2χ1(t)
2χ2(t), a.e. in [0, t0),

|χ′2(t)| ≤
√

4d3χ1(t)2χ2(t)4 + 5χ1(t)2K2
t ≤
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4d3χ1(t)2χ2(t)4 + 5χ1(t)2d3H2‖ ˙̀

t‖4 ≤

d3/2χ1(t)χ2(t)
2
√

4 + 5H2, a.e. in [0, t0).

Now, ϕ is locally Lipschitz thus a.e. differentiable in [0, t0) and

|ϕ′(t)| ≤ |χ′1(t)|χ2(t) + χ1(t)|χ′2(t)| ≤ P d3/2ϕ(t)2, a.e. in [0, t0).

As ϕ(t) > 0 for all t ∈ [0, t0), we conclude that ϕ(t)−1 is also a locally
Lipschitz function in [0, , t0) and

(3.7)

∣∣∣∣( 1

ϕ(t)

)′∣∣∣∣ =

∣∣∣∣ϕ′(t)ϕ(t)2

∣∣∣∣ ≤ P d3/2, a.e. in [0, t0).

In particular, from (1.4) we conclude that∣∣∣∣ 1

ϕ(t)
− 1

ϕ(0)

∣∣∣∣ ≤ Pd3/2t, 0 ≤ t ≤ t0,

which yields the first claim of the lemma. For the second one, note
that

χ′2(t) ≤
√

4 + 5H2d3/2ϕ(t)χ2(t) ≤
(P −

√
2)d3/2ϕ(0)

1− Pd3/2tϕ(0)
χ2(t), a.e. in [0, t0),

which from (1.4) implies

χ2(t) ≤ χ2(0) +

∫ t

0

(P −
√

2)d3/2ϕ(0)

1− Pd3/2sϕ(0)
χ2(s) ds.

Gronwall’s Inequality (see for example [Fle80, Page 95]) then implies

χ2(t) ≤
χ2(0)

(1− Pd3/2ϕ(0)t)
P−
√
2

P

.

Hence,

dR(yt, y0) ≤
∫ t

0

‖ẏs‖ ds ≤
∫ t

0

χ2(s) ds ≤
∫ t

0

χ2(0)

(1− Pd3/2ϕ(0)s)
P−
√
2

P

ds =

χ2(0)√
2d3/2ϕ(0)

(
1−

(
1− Pd3/2ϕ(0)t

)√2/P)
,

which proves the last assertion of the lemma. �

Lemma 4. Let `0, ` ∈ S, v ∈ H(d), x0, x ∈ P (Cn+1). Assume that
χ1(`0, x0) < +∞. Assume moreover that

dR(x0, x) ≤ a

d3/2χ1(`0, x0)
, some a < 1/

√
2 and

dS(`0, `) ≤
3a

2d3/2χ1(`0, x0)
,



16 CARLOS BELTRÁN

where dS is the Riemannian distance in the sphere S. Then,

χ1(`0, x0)

1 +
√

2a
≤ χ1(`, x) ≤ χ1(`0, x0)

1−
√

2a
and

ϕ(`0, v, x0)
(1−

√
2 a)

√
2

1 +
√

2 a
≤ ϕ(`, v, x) ≤ ϕ(`0, v, x0)

(1−
√

2 a)1+
√
2
,

for every v ∈ H(d).

Proof. If v = 0 the last assertion is trivial. We may thus consider
that v 6= 0. Let t → (`t, v, xt), 0 ≤ t ≤ T be C1 curve with ex-
tremes (`0, v, x0) and (`, v, x) where (`T , v, xT ) = (`, v, x). From the
assumptions on dS(`0, l) and dR(x0, x) we can assume that the curve is
parametrized such a way that

‖ ˙̀
t‖ ≤

3

2
, ‖ẋt‖ ≤ 1, T ≤ a

d3/2χ1(0)
.

Let t → yt be a horizontal lift of the curve t → xt to the unit sphere
S(Cn+1). Hence, ‖ẏt‖ = ‖ẋt‖ ≤ 1, and 〈yt, ẏt〉 ≡ 0. Note that we are
under the hypotheses of Lemma 2 with Kt ≡ 0. Note that

2d‖ ˙̀
t‖2 +Q‖ẏt‖2 ≤

9d

2
+Q =

9d

2
+ 1 + 2d(d− 1)2 ≤

(d≥2)
2d3.

Let t0 = sup{t ∈ [0, T ] : χ1(s) < +∞∀s ∈ [0, t]}. Equations (3.2) and
(3.3) then imply

|χ′1(t)| ≤
√

2 d3/2χ1(t)
2, a.e. in [0, t0),

|χ′2(t)| ≤ 2 d3/2χ1(t)χ2(t), a.e. in [0, t0).

As in the proof of Lemma 3, the first inequality implies

(3.8)
χ1(0)

1 +
√

2 d3/2χ1(0)t
≤ χ1(t) ≤

χ1(0)

1−
√

2 d3/2χ1(0)t
.

Moreover,

|χ′2(t)| ≤
2 d3/2χ1(0)

1−
√

2 d3/2χ1(0)t
χ2(t) a.e. in [0, t0).

As χ2(t) is locally Lipschitz in [0, t0) and χ2(t) ≥ ‖v‖ > 0 is bounded
away from 0, we have that log(χ2(t)) is again locally Lipschitz and∣∣∣∣d log(χ2(t))

dt

∣∣∣∣ =

∣∣∣∣χ′2(t)χ2(t)

∣∣∣∣ ≤ 2 d3/2χ1(0)

1−
√

2 d3/2χ1(0)t
a.e. in [0, t0).

From (1.4), this implies that for 0 ≤ t ≤ t0,

| log(χ2(t))− log(χ2(0))| ≤
∫ t

0

2 d3/2χ1(0)

1−
√

2 d3/2χ1(0)s
ds =
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−
√

2 log(1−
√

2 d3/2χ1(0)t),

that is

χ2(0)(1−
√

2d3/2χ1(0)t)
√
2 ≤ χ2(t) ≤

χ2(0)

(1−
√

2d3/2χ1(0)t)
√
2
.

We conclude that T = t0 (i.e. χ1(t) <∞ for t ∈ [0, T ]) and

ϕ(`, v, x) = ϕ(T ) = χ1(T )χ2(T ) ≤ ϕ(0)

(1−
√

2d3/2χ1(0)T )1+
√
2
.

Finally,

ϕ(`, v, x) = χ1(T )χ2(T ) ≥ ϕ(0)
(1−

√
2d3/2χ1(0)T )

√
2

1 +
√

2d3/2χ1(0)T
.

The claims of the lemma follow from these last inequalities, (3.8) and
the upper bound on T . �

Lemma 5. Let t→ `t ∈ S, 0 ≤ t ≤ T be a C1+Lip curve. Let Kt = ‖῭t‖
where ῭

t is defined, and assume that

Kt ≤ d3/2H‖ ˙̀
t‖2 a.e. , where H ≥ 0 is some constant.

Let P =
√

2 +
√

4 + 5H2. Let η0 ∈ P (Cn+1) be a projective zero of `0
such that µ(`0, η0) < +∞. Let

t0 =
1

Pd3/2ϕ(`0, ˙̀
0, η0)

.

Then, for 0 ≤ t < t0, η0 can be continued to a zero ηt ∈ P (Cn+1) of `t
in such a way that t → ηt is a C1+Lip curve. Moreover, consider the
curve t→ (`t, ˙̀

t, ηt), 0 ≤ t < t0. Then, the following inequalities hold:

ϕ(0)

1 + P d3/2ϕ(0)t
≤ ϕ(t) ≤ ϕ(0)

1− P d3/2ϕ(0)t
,

dR(η0, ηt) ≤
1√

2d3/2χ1(0)

(
1−

(
1− Pd3/2ϕ(0)t

)√2/P)
,

dS(`0, `t) ≤
1

d3/2H
log

1

1− d3/2Hχ2(0)t

Proof. Let π : V → S be the projection on the first coordinate, defined
from the solution variety V to the sphere of systems S. It is known
(see for example [BCSS98, Sections 12.3, 12.4]) that π admits a local
inverse near π(h, η) if and only if µ(h, η) = χ1(h, η) < +∞. We thus
have that η0 can be continued for 0 ≤ t < ε, for some 0 < ε < t0. Now,
consider the horizontally lifted path yt ∈ S(Cn+1) where y0 is some unit
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norm affine representative of η0. Hence, the Hermitian product 〈yt, ẏt〉
is equal to 0. Moreover, the equations `t(yt) ≡ 0 and 〈yt, ẏt〉 ≡ 0 imply:

ẏt =

(
D`t(yt)

y∗t

)−1(− ˙̀
t(yt)

0

)
,

which implies (3.4). Thus, all the conditions of Lemma 3 are satisfied

for the curve t → (`t, ˙̀
t, yt), 0 ≤ t < ε. In particular, using Inequality

(3.5) it is easy to see that for any sequence ti
i→∞→ ε, the sequence yti is

a Cauchy sequence, which implies that the curve yt converges to some
yε ∈ S(Cn+1) as t→ ε. Moreover, yε is an (affine) zero of `ε and

ϕ(0)

1 + P d3/2ϕ(0)ε
≤ ϕ(`ε, yε) ≤

ϕ(0)

1− P d3/2ϕ(0)ε
< +∞

In particular, π is again locally invertible at (`ε, ηε) where ηε ∈ P (Cn+1)
is the projective class of yε. Thus ηt can be continued for 0 < t < ε+ε′.
We conclude thus that ηt can be continued while t < t0, and from
Lemma 3, for 0 ≤ t < t0 we have

ϕ(0)

1 + P d3/2ϕ(0)t
≤ ϕ(t) ≤ ϕ(0)

1− P d3/2ϕ(0)t
,

as wanted. Inequality (3.5) of Lemma 3 yields the bound for dR(η0, ηt) =

dR(y0, yt). As for the last assertion of the lemma, note that ‖ ˙̀
t‖ is lo-

cally Lipschitz, thus differentiable a.e. and

d

dt
‖ ˙̀
t‖ ≤ ‖῭t‖ = Kt ≤ d3/2H‖ ˙̀

t‖2, a.e. in [0, t0),

which as in the proof of Lemma 3 implies

‖ ˙̀
t‖ ≤

‖ ˙̀
0‖

1− d3/2H‖ ˙̀
0‖t

.

Finally,

dS(`0, `t) ≤
∫ t

0

‖ ˙̀
s‖ ds ≤

∫ t

0

‖ ˙̀
0‖

1− d3/2H‖ ˙̀
0‖s

ds ≤

1

d3/2H
log

1

1− d3/2H‖ ˙̀
0‖t
≤ 1

d3/2H
log

1

1− d3/2Hχ2(0)t
,

as wanted. �

We will use the following result which is essentially included in
[Shu09]. Recall that for x, η ∈ P (Cn+1), dR(x, η) is the Riemannian
distance between these two points, namely the length of the shortest
path joining x and η.
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Lemma 6. Let ` ∈ S have a zero η ∈ P (Cn+1) and let x ∈ P (Cn+1)
be such that dR(x, η) ≤ u0(d

3/2µ(`, η))−1 where u0 = 0.17586... is a
universal constant. Then x is an approximate zero of ` with associated
zero η. That is, the sequence

x0 = x, xi+1 = NP(`)(xi), i ≥ 0,

is well–defined and it satisfies dR(xi, η) ≤ dR(x,η)

22i−1
. In particular, dR(x1, η) ≤

dR(x, η)/2.

[Shu09, Th. 2] is this same result but the constant in [Shu09, Th. 2]

is u0 = 1−
√

7/8 ≈ 0.06458 instead of 0.17586 here.

Proof. The lemma is proved following the argument in [Shu09, Th.
2] and optimizing the constants there. We first prove that if u ≤
23/2 arctan

(
3−
√
7

23/2

)
and dR(x, η) ≤ u(d3/2µ(`, η))−1 then dR(NP(`)(x), η) ≤

λ2u
ψ(λu)

dR(x, η) where

ψ(r) = 1− 4r + 2r2, λ =
3−
√
7

23/2

arctan
(

3−
√
7

23/2

) = 1.00520714...

Indeed, note that d ≥ 2 and µ ≥ 1 implies

dR(x, η) ≤ u(d3/2µ(`, η))−1 ≤ u/23/2 ≤ arctan

(
3−
√

7

23/2

)
,=⇒

tan(dR(x, η)) ≤ λdR(x, η) ≤ 3−
√

7

d3/2µ(`, η)
.

From [BCSS98, Lemma 1 and Remark 1, page 263] this implies that
NP(`)(x) is well–defined and

dR(NP(`)(x), η) ≤ tan(dR(NP(`)(x), η)) ≤

λu

ψ(λu)
tan(dR(x, η)) ≤ λ2udR(x, η)

ψ(λu)
.

We have thus proved a sharp version of [Shu09, Lemma 1] (where λ
was chosen to be 2.) The rest of the proof of the lemma is an induction
argument identical to the proof of [Shu09, Th. 2]. Our u0 is the smallest
positive number satisfying

λ2u0
ψ(λu0)

=
1

2
, that is u0 ≈ 0.17586...

Any lower bound of this number satisfies the claim of the lemma. �
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4. Proof of Theorem 2

Recall that we have chosen

(4.1) t0 ≤
c

Pd3/2ϕ(h0, ḣ0, z0)
,

where c is a positive constant satisfying (2.3). The reader may check
that (2.3) implies

(4.2) c′ = c
1 +
√

2u0/2

(1−
√

2u0/2)
√
2
< 1.

Moreover,

H‖ḣ0‖
Pϕ(h0, ḣ0, z0)

≤ 1.

The proof is by induction on i. Thus, by our earlier hypotheses, the
base case i = 0 of our induction follows. So,

(4.3) dR(z0, ζ0) ≤
u0

2d3/2µ(h0, ζ0)
=

u0
2d3/2χ1(h0, ζ0)

From Lemma 4 we have,
(4.4)

ϕ(h0, ḣ0, ζ0)
(1−

√
2u0/2)

√
2

1 +
√

2u0/2
≤ ϕ(h0, ḣ0, z0) ≤

ϕ(h0, ḣ0, ζ0)

(1−
√

2u0/2)1+
√
2
.

To simplify our notation, we just show how the first induction step
goes. Note that

(4.5) t0 ≤
c′

Pd3/2ϕ(h0, ḣ0, ζ0)
<

(4.2)

1

Pd3/2ϕ(h0, ḣ0, ζ0)
.

From Lemma 5, for 0 ≤ t ≤ t0, ζ0 can be continued to a unique zero
ηt ∈ P (Cn+1) of ft in such a way that ζ0 = η0 and t → ηt is a C1+Lip

curve. Then, let ζ1 from Theorem 2 be ηt0 .
The induction will be finished if we prove that

(4.6) dR(z0, ζ1)χ1(h1, ζ1) ≤
u0
d3/2

,

for in that case, from Lemma 6, z0 is an approximate zero of h1 with
associated zero ζ1, and so is z1 = NP(h1)(z0). Moreover,

dR(z1, ζ1) ≤
dR(z0, ζ1)

2
≤ u0

2d3/2µ(h1, ζ1)
.

finishing the induction step and the proof of Theorem 2.
We thus have to prove (4.6). Let

θ(t) = dS(Cn+1)(x0, yt)χ1(ft, yt), 0 ≤ t ≤ t0,



CONTINUATION METHOD 21

where x0 is a unit norm representative of z0, dS(Cn+1) is the Riemannian
distance in S(Cn+1) and yt is a horizontal lift of ηt to S(Cn+1) such that

(4.7) dS(Cn+1)(x0, y0) ≤
u0

2d3/2χ1(h0, ζ0)
,

whose existence is granted by (4.3). Then, θ(t) is a Lipschitz function
of t and hence it is almost everywhere differentiable. Moreover, (4.3)
and (4.7) imply that θ(0) ≤ u0/(2d

3/2). Finally, writing χ1(t) (resp.

ϕ(t)) for χ1(ft, yt) (resp. ϕ(ft, ḟt, yt)),

θ′(t) ≤ ‖ẏt‖χ1(t) + dS(Cn+1)(x0, yt)

∣∣∣∣ ddtχ1(t)

∣∣∣∣ ≤
(2.2),(3.2)

ϕ(t) + θ(t)χ1(t)

√
2d‖ ˙̀

t‖2 +Q‖ẏt‖2 ≤
(3.6)

ϕ(t) + θ(t)ϕ(t)
√

2d3/2.

Thus, we get

θ′(t)

1 +
√

2d3/2θ(t)
≤ ϕ(t), θ(0) ≤ u0/(2d

3/2).

Gronwall’s inequality applied to θ̃(t) = 1 +
√

2d3/2θ(t) then yields

θ(t) ≤ 1√
2d3/2

((
1 +

u0√
2

)
exp

(√
2d3/2

∫ t

0

ϕ(s) ds

)
− 1

)
.

From Lemma 5 we know that

ϕ(s) ≤ ϕ(0)

1− P d3/2ϕ(0)s
, 0 ≤ s ≤ t0,

which yields

θ(t) ≤ 1√
2d3/2

((
1 +

u0√
2

)(
1

1− Pϕ(0)d3/2t

)√2/P
− 1

)
, 0 ≤ t ≤ t0.

In particular, from (4.5) we have,

θ(t0) ≤
1√

2d3/2

((
1 +

u0√
2

)(
1

1− c′

)√2/P
− 1

)
.

Our choice of c is such that the right-hand term in this last equation
is at most u0/d

3/2. Thus, we get θ(t0) ≤ u0/d
3/2, namely

dS(Cn+1)(x0, yt0)χ1(ft0 , yt0) ≤
u0
d3/2

.

The projective distance dR(z0, ηt0) is the minimum of the distances
between any unit norm affine representatives of z0 and ηt0 . Thus, we
conclude

dR(z0, ηt0)χ1(ft0 , ηt0) ≤
u0
d3/2

,



22 CARLOS BELTRÁN

that is (4.6). The theorem is proved.

5. Proof of Theorem 3

The proof of Theorem 3 is similar to that of the main result of
[Shu09]. We use the notation of Section 4.

From Lemma 5, (4.1) and (4.2),

(5.1) ϕ(0) ≤ ϕ(s)(1 + c′), 0 ≤ s ≤ t0.

Then, if h1 6= f (i.e. if the homotopy does not finish in one step),

t0 ≥
c

2Pd3/2ϕ(h0, ḣ0, z0)
≥

(4.4)

c (1−
√

2u0/2)1+
√
2

2Pd3/2ϕ(h0, ḣ0, ζ0)
≥

(5.1)

c (1−
√

2u0/2)1+
√
2

2Pd3/2ϕ(s)(1 + c′)
, 0 ≤ s ≤ t0.

This implies ∫ t0

0

ϕ(s) ds ≥ c (1−
√

2u0/2)1+
√
2

2Pd3/2(1 + c′)
.

Similarly, as far as hi+1 6= f we have∫ t0+···+ti

t0+···+ti−1

ϕ(s) ds ≥ c (1−
√

2u0/2)1+
√
2

2Pd3/2(1 + c′)
, i ≥ 1,

where ηs is the unique zero of fs in Γ(ft, ζ0). We conclude that if
hi+1 6= f , necessarily∫ t0+···+ti

0

ϕ(s) ds ≥ ci (1−
√

2u0/2)1+
√
2

2Pd3/2(1 + c′)
.

As t0 + · · ·+ ti < T , we have that if hi+1 6= f ,

ci (1−
√

2u0/2)1+
√
2

2Pd3/2(1 + c′)
<

∫ T

0

ϕ(fs, ḟs, ηs) ds =
(2.2)
C0(ft, ζ0),

namely,

i < Pd3/2C0(ft, ζ0)
2(1 + c′)

c (1−
√

2u0/2)1+
√
2
.

We conclude that for k greater than this quantity, necessarily hk+1 = f
and we are done.
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6. Conclussions

We describe a new path–following algorithm which can be used to
solve systems of homogeneous polynomial equations by continuation.
Given a path t 7→ ft where ft is a polynomial system for t ∈ [0, T ] and
given an approximate zero z0 of the initial system f0 with associated
(exact) zero some η0, we describe how to approximate the solution path
ηt in such a way that ηt is a zero of ft fot t ∈ [0, T ]. The output of
our algorithm is an approximate zero z of fT with associated zero ηT .
Two main features of our algorithm are certification of the output and
analysis of the number of steps. Our algorithm is designed to lift paths
t 7→ ft which are of class C1+Lip, that is C1 with Lipschitz derivative.
It attains the complexity bound of the main result in [Shu09], namely
the number of homotopy steps is proportional to the length of the
solution path in the condition metric. Our result opens the door to
experimental research in complexity issues (to appear in [BL]) and
justifies theoretical works on the complexity of Bezóut’s Theorem as
[BP]. The problem of designing this algorithm for general C1 paths as
stated in [Shu09] remains open.
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