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The complexity and geometry of numerically solving
polynomial systems.
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This paper is dedicated to the memory of our beloved friend and colleague Jean Pierre Dedieu.

Abstract. These pages contain a short overview on the state of the art of effi-
cient numerical analysis methods that solve systems of multivariate polynomial
equations. We focus on the work of Steve Smale who initiated this research
framework, and on the collaboration between Stephen Smale and Michael
Shub, which set the foundations of this approach to polynomial system–solving,
culminating in the more recent advances of Carlos Beltrán, Luis Miguel Pardo,
Peter Bürgisser and Felipe Cucker.

1. The modern numerical approach to polynomial system solving

In this paper we survey some of the recent advances in the solution of poly-
nomial systems. Such a classical topic has been studied by hundreds of authors
from many different perspectives. We do not intend to make a complete historical
description of all the advances achieved during the last century or two, but rather
to describe in some detail the state of the art of what we think is the most successful
(both from practical and theoretical perspectives) approach. Homotopy methods
are used to solve polynomial systems in real life applications all around the world.

The key ingredient of homotopy methods is a one–line thought: given a goal
system to be solved, choose some other system (similar in form, say with the same
degree and number of variables) with a known solution ζ0, and move this new
system to the goal system, tracking how the known solution moves to a solution of
the goal. Before stating any notation, we can explain briefly why this process is
reasonable: if for every t ∈ [0, 1] we have a system of equations ft (f0 is the system
with a known solution, f1 is the one we want to solve), then we are looking for a path
ζt, t ∈ [0, 1], such that ft(ζt) = 0. As long as the derivative dft(ζt) is invertible for
all t we can continue the solution from f0 to f1, by the implicit function theorem.
Now we have various methods to accomplish this continuation. We can slowly
increment t and use iterative numerical solution methods such as Newton’s method
to track the solution or we may differentiate the expresion ft(ζt) = 0 and solve for
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d/(dt)(ζt) = ζ̇t. Then, we can write our problem as an initial value problem:

(1.1)

{
ζ̇t = −Dft(ζt)

−1ft(ζt)

ζ0 known

Systems of ODEs have been much studied and hence this is an interesting idea:
we have reduced our original problem to a very much studied one. One can just
plug in a standard numerical ODE solver such as backward Euler or a version of
Runge–Kutta’s method. Even then, in practice, it is desirable to, from time to time,
perform some steps of Newton’s method z → x−Dft(x)

−1ft(x) to our approxima-
tion zt of ζt, to get closer to the path (ft, ζt). After some testing and adjustment
of parameters, this näıve idea can be made to work with impressive practical per-
formance and there are several software packages which attain spectacular results
(solving systems with many variables and high degree) in a surprisingly short run-
ning time, see for example [7,41,42,63]

From a mathematical point of view, there are several things in the process we
have just described that need to be analyzed: will there actually exist a path ζt
(maybe it is only defined for, say, t < 1/2)? what is the expected complexity of
the process (in particular, can we expect average polynomial running time in some
sense)? what “simple system with a known solution” should we start at? how
should we join f0 and f1, that is what should be the path ft?

In the last few decades a lot of progress has been made in studying these
questions. This progress is the topic of this paper.

2. A technical description of the problem

We will center our attention in Smale’s 17–th problem, which we recall now.

Problem 2.1. Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a uniform
algorithm?

We have written in bold the technical terms that need to be clarified.
In order to understand the details of the problem and the solution suggested

in Section 1, we need to describe some important concepts and notation in detail.
Maybe the first one is our understanding of what a “solution” is: clearly, one
cannot expect solutions of polynomial systems to be rational numbers, so one can
only search for “quasi–solutions” in some sense. There are several definitions of
such a thing, the most stable being the following one (introduced in [57], see also
[23,39,40]):

Definition 2.2. Given a polynomial system, understood as a mapping f :
Cn → Cn, an approximate zero of f with associated (exact) zero ζ is a vector
z0 ∈ C

n such that

‖zk − ζ‖ ≤ 1

22k−1
‖z0 − ζ‖, k ≥ 0,

where zk is the result of applying k times Newton’s operator z �→ z−Df(z)−1f(z)
(note that the definition of approximate zero implicitly assumes that zk is defined
for all k ≥ 0.)

The power of this definition is that, as we will see below, given any polynomial
system f and any exact zero ζ ∈ Cn, approximate zeros of f with associated zero
ζ exist whenever Df(ζ) is an invertible matrix.
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Recall that our first goal is to transform the problem of polynomial system
solving into an implicit function problem or an ODE system like that of (1.1).
There exist two principal reasons why the solution of such a system can fail to be
defined for all t > 0: that the function defining the derivative is not everywhere
defined (this corresponds naturally to Dft(ζt) not being invertible), and that the
solution escapes to infinity. The first problem seems to be more delicate and difficult
to solve, but the second one is actually very easily dealt with: we just need to define
our ODE in a compact manifold, instead of just in Cn. The most similar compact
manifold to Cn is P(Cn+1), and the way to take the problem into P(Cn+1) is just
homogenizing the equations.

Definition 2.3. Let f : Cn → Cn be a polynomial system, that is f =
(f1, . . . , fn) where fi : C

n → C is a polynomial of degree some di,

f(x1, . . . , xn) =
∑

α1+···+αn≤di

a(i)α1,...,αn
xα1
1 · · ·xαn

n .

The homogeneous counterpart of f is h : Cn+1 → Cn defined by h = (h1, . . . , hn)
where

h(x0, x1, . . . , xn) =
∑

α1+···+αn≤di

a(i)α1,...,αn
x
di−

∑n
i=1 αi

0 xα1
1 · · ·xαn

n .

We will talk about such a system h simply as a homogeneous system.

Note that if ζ is a zero of f then (1, ζ) is a zero of the homogeneous counter-
part h of f . Reciprocally, if ζ = (ζ0, ζ1, . . . , ζn) is a zero of h and if ζ0 �= 0, then
(ζ1/ζ0, . . . , ζn/ζ0) is a zero of f . Thus, the zeros of f and h are in correspondence
and we can think of solving h and then recovering the zeros of f (this is not a com-
pletely obvious process when we only have approximate zeros, see [15].) Moreover,
it is clear that for any complex number λ ∈ C and for x ∈ Cn+1 we have

h(λx) = Diag(λd1 , . . . , λdn)h(x),

and thus the zeros of h lie naturally in the projective space P(Cn+1).
As we will be working with homogeneous systems and projective zeros, we need

a definition of approximate zero in the spirit of Definition 2.2 which is amenable
to a projective setting. The following one, which uses the projective version [50]
of Newton’s operator, makes the work. Here and throughout the paper, given a
matrix or vector A, by A∗ we mean the complex conjugate transpose of A, and by
dR(x, y) we mean the Riemannian distance from x to y, where x and y are elements
in some Riemannian manifold.

Definition 2.4. Given a homogeneous system h, an approximate zero of h
with associated (exact) zero ζ ∈ P(Cn+1) is a vector z0 ∈ P(Cn+1) such that

dR(zk, ζ) ≤
1

22k−1
dR(z0, ζ), k ≥ 0,

where zk is the result of applying k times the projective Newton operator z �→ z −
Dh(z) |−1

z⊥ h(z) (again, the definition of approximate zero implicitly assumes that zk
is defined for all k ≥ 0.) Here, byDf(z) |z⊥ we mean the restriction of the derivative
of h at z, to the (complex) orthogonal subspace z⊥ = {y ∈ Cn+1 : y∗z = 0}.
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It is a simple exercise to verify that (projective) Newton’s method is well de-
fined, that is the point it defines in projective space does not depend on the repre-
sentative z ∈ C

n+1 chosen for a point in projective space.
A (projective) approximate zero of h is thus a projective point such that the

successive iterates of the projective Newton operator quickly approach an exact
zero of h. Thus finding an approximate zero is an excellent output of a numerical
zero–finding algorithm to solve h.

Because we are going to consider paths of systems {ht}t∈[a,b], it is convenient
to fix a framework where one can define these nicely. To this end, we consider the
vector space of homogeneous polynomials of fixed degree s ≥ 1:

Hs = {h ∈ C[x0, . . . , xn] : h is homogeneous of degree s}.
It is convenient to consider an Hermitian product (and the associated metric) on
Hs. A desirable property of such a metric is the unitary invariance, namely, we
would like to have an Hermitian product such that

〈h, g〉Hs
= 〈h ◦ U, g ◦ U〉Hs

, ∀ U ∈ Un+1,

where Un+1 is the group of unitary matrices of size n+1. Such property was studied
in detail in [52]. It turns out that there exists a unique (up to scalar multiplication)
Hermitian product that satisfies it, the one defined as follows:

〈
∑

α0+···+αn=s

aα0,...,αn
xα0
0 · · ·xαn

n ,
∑

α0+···+αn=s

bα0,...,αn
xα0
0 · · ·xαn

n 〉Hs
=

∑
α0+···+αn=s

α0! · · ·αn!

s!
aα0,...,αn

bα0,...,αn
,

where · just means complex conjugation. Note that this is just a weighted version
of the standard complex Hermitian product in complex affine space.

Then, given a list of degrees (d) = (d1, . . . , dn), we consider the vector space

H(d) =

n∏
i=1

Hdi
.

Note that an element h of H(d) can be seen both as a mapping h : Cn+1 → Cn or as
a polynomial system, and can be identified by the list of coefficients of h1, . . . , hn.
We denote by P(H(d)) the projective space associated to H(d), by N the complex
dimension of P(H(d)) (so the dimension of H(d) is N + 1) and we consider the
following Hermitian structure in H(d):

〈h, g〉 =
n∑

i=1

〈hi, gi〉Hdi
, ‖h‖ = 〈h, h〉1/2.

This Hermitian product (and the associate Hermitian structure and metric) is also
called the Bombieri–Weyl or the Kostlan product (structure, metric). As usual,
this Hermitian product in H(d) defines an associated Riemannian structure given
by the real part of 〈·, ·〉. We can thus consider integrals of functions defined on
H(d).

We denote by S the unit sphere in H(d), and we endow S with the inherited
Riemannian structure from that of H(d). Then, P(H(d)) has a natural Riemannian
structure, the unique one making the projection S → P(H(d)) a Riemannian sub-
mersion. That is the derivative of the projection restricted to the normal to the
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fibers is an isometry. We can thus also consider integrals of functions defined in S or
P(H(d)). We can now talk about probabilities in S or P(H(d)): given a measurable
(nonnegative or integrable) mapping X defined in S or P(H(d)), we can consider its
expected value:

ES(X) =
1

ν(S)

∫
S

X(h) dh or EP(H(d))(X) =
1

ν(P(H(d)))

∫
P(H(d))

X(h) dh,

where we simply denote by ν(E) the volume of a Riemannian manifold E. Simi-
larly, one can talk about probabilities in H(d) according to the standard Gaussian
distribution compatible with 〈·, ·〉: given a measurable (nonnegative or integrable)
mapping X defined in H(d), its expected value is:

EH(d)
(X) =

1

(2π)N+1

∫
H(d)

X(h)e−‖h‖2/2 dh.

We can now come back to Problem 2.1 and see what do each of the terms in
that problem mean: Smale himself points out that one can just solve homogeneous
systems (as suggested above). We still have a few terms to clarify:

• found approximately. This means finding an approximate zero in the sense
of Definition 2.4.

• on the average, in polynomial time. This now means that, if X(h) is the
time needed by the algorithm to output an approximate zero of the input
system h, then the expected value of X is a quantity polynomial in the
input size, that is polynomial in N . The number of variables, n, and the
maximum of the degrees, d, are smaller than N , and hence one attempts
to get a bound on the expected value of X, as a polynomial in n, d,N .

• uniform algorithm. Smale demands an algorithm in the Blum–Shub–
Smale model [20,21], that is exact operations and comparisons between
real numbers are assumed. This assumption departs from the actual per-
formance of our computers, but it is close enough to be translated to
performance in many situations. Uniform means that the same algorithm
works for all (d) and n.

3. Geometry and condition number

We can now set up a geometric framework for homotopy methods. Consider
the following set, usually called the solution variety:

(3.1) V = {(h, ζ) ∈ P(H(d))× P(Cn+1) : h(ζ) = 0}.
This set is actually a smooth complex submanifold (as well as a complex algebraic
subvariety) of P(H(d))×P(Cn+1), see [20], and is clearly compact. It will be useful
to consider the following diagram.

(3.2)

V
π1 ↙ ↘ π2

P(H(d)) P(Cn+1)

It is clear that π−1
1 (h) is a copy of the zero set of h. Reciprocally, for fixed ζ ∈

P(Cn+1), the set π−1
2 (ζ) is the vector space of polynomial systems that have ζ as a

zero.
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Let Σ′ ⊆ V be the set of critical points of π1 and Σ = π1(Σ
′) ⊆ P(H(d)) the set

of critical values of π1. It is not hard to prove that:

• π1 restricted to the set V \ π−1
1 (Σ) is a (smooth) D–fold covering map,

where D = d1 · · · dn is the Bezóut number.
• Σ′ = {(h, ζ) ∈ V : Dh(ζ) |ζ⊥ has non–maximal rank}. In that case, we
say that ζ is a singular zero of h. Otherwise, we say that ζ is a regular
zero of h.

This means, in particular, that the homotopy process described above can be carried
out whenever the path of systems lies outside of Σ:

Theorem 3.1. Let {ht : t ∈ [a, b]} be a C1 curve in P(H(d)) \ Σ and let ζ be

a zero of ha. Then, there exists a unique lift of ht through π1, that is a C1 curve
(ht, ζt) ∈ V such that ζa = ζ. In particular, ζb is a zero of hb. Moreover, the lifted
curve satisfies:

(3.3)
d

dt
(ht, ζt) =

(
ḣt,−Dht(ζt) |−1

ζ⊥
t
ḣt(ζt)

)
.

Finally, the set Σ ⊆ P(H(d)) is a complex projective algebraic variety, thus it has
real codimension 2 and the projection of most real lines in H(d) to P(H(d)) does not
intersect Σ.

The last claim of Theorem 3.1 must be understood as follows. Let g, f ∈ H(d)

be chosen at random. Then, with probability one, the projection to P(H(d)) of the
line containing g and f does not intersect Σ.

In the case the thesis of Theorem 3.1 holds we just say that ζa can be continued
to a zero ζb of ha. One can be even more precise:

Theorem 3.2. Let {ht : t ∈ [a, b]} be a C1 curve in P(H(d)) \ Σ and let ζ be
a zero of ha. Then, every zero ζ of ha can be continued to a zero of hb, defining a
bijection between the D zeros of ha and those of hb.

Remark 3.3. Even if ht crosses Σ some solutions may be able to be continued
while others may not.

The (normalized) condition number [52] is a quantity describing “how close to
singular” a zero is. Given h ∈ H(d) and z ∈ P(Cn+1), let

(3.4) μ(f, z) = ‖f‖‖(Dh(z) |z⊥)−1Diag(‖z‖di−1d
1/2
i )‖2,

and μ(f, z) = +∞ if Dh(z) |z⊥ is not invertible. Sometimes μ is denoted μnorm

or μproj but we prefer to keep the more simple notation here. One of the most
important properties of μ is that it is an upper bound for the norm of the (locally

defined) implicit function related to π1 in (3.2). Namely, let (ḣ, ζ̇) ∈ T(h,ζ)V where
(h, ζ) ∈ V is such that μ(h, ζ) < +∞. Then,

(3.5) ‖ζ̇‖ ≤ μ(h, ζ)‖ḣ‖, μ(h, ζ) ≥
√
n.

We also have the following result.

Theorem 3.4 (Condition Number Theorem,[52]).

μ(h, ζ) =
1

sin (dR(h,Σζ))
,

where dR is the Riemannian distance in P(H(d)) and

Σζ = {h ∈ P(H(d)) : h(ζ) = 0, and Dh(ζ) |ζ⊥ is not invertible}.
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Note that this is a version of the classical Condition Number Theorem of linear
algebra (see Theorem 6.5 below). The existence of approximate zeros in the sense
of Definition 2.4 above is also guaranteed by this condition number, as was noted
in [52]. More precisely:

Theorem 3.5 (μ–Theorem, [52]). There exists a constant u0 > 0 (u0 =
0.17586 suffices) with the following property. Let (h, ζ) ∈ V and let z ∈ P(Cn+1)
satisfy

dR(z, ζ) ≤
u0

d3/2 μ(h, ζ)
.

Then, z is an approximate zero of h with associated zero ζ.

4. The complexity of following a homotopy path

The sentence “can be continued” in the discussion of Section 3 can be made
much more precise, by defining an actual path–following method. It turns out that
the unique method that has actually been proved to correctly follow the homotopy
paths and at the same time achieve some known complexity bound is the most
simple one, which only uses the projective Newton operator, and not an ODE
solver step.

Problem 4.1. It would be an interesting project to compare the overall cost of
using a higher order ODE solver to the projective Newton–based method we describe
below. Higher order methods or even predictor–corrector methods may require fewer
steps but be more expensive at each step so a total cost comparison is in order.
Some experience indicates that higher order methods are rarely cheaper, if ever.
See [39,40].

More precisely, the projective Newton–based homotopy method is as follows.
Given a C1 path {ht : a ≤ t ≤ b} ⊆ P(H(d)), and given za an approximate zero of
ha with associated (exact) zero ζa, let t0 > 0 be “small enough” and let

za+t0 = za − (Dha+t0(za) |z⊥
a
)−1ha+t0(za),

that is za+t0 is the result of one application of the projective Newton operator
based on ha+t0 to the point za. If za is an approximate zero of ha and t0 is small
enough, then za can be close enough to the actual zero ζa+t0 of ha+t0 to satisfy
Theorem 3.5 and thus be an approximate zero of ha+t0 as well. Then, by definition
of approximate zero, za+t0 will be half–closer to ζa+t0 than za. This leads to an
inductive process (choosing t1, then t2, etc. until hb is reached) that, analysed
in detail, can be made to work and actually programmed. The details on how to
choose t0 would take us too far apart from the topic, so we just give an intuitive
explanation: if we are to move from (ha, ζa) to (ha+t0 , ζa+t0) we must be sure
that we are far enough from Σ′ to have our algorithm behaving properly. As the
condition number essentially measures the distance to Σ′, it should be clear that
the bigger the condition number, the smaller step t0 we can take. This idea lead to
the following result (see [56] for a weaker, earlier result):

Theorem 4.2 ([51]). Let (ht, ζt) ⊆ V \ Σ′, t ∈ [a, b] be a C1 path. If the steps
t0, t1, . . . are correctly chosen, then an approximate zero of hb is reached at some

point, namely there is a k ≥ 1 such that
∑k

i=0 ti = b− a (k is the number of steps
in the inductive process above.) Moreover, one can bound

k ≤ �Cd3/2Lκ�,
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where d is the maximum of the degrees in (d), C is some universal constant, and

(4.1) Lκ =

∫ b

a

μ(ht, ζt)‖(ḣt, ζ̇t)‖ dt

is called the condition length of the path (ht, ζt). Moreover, the amount of arithmetic
operations needed in each step is polynomial in the input size N , and hence the total
complexity of the path–following procedure is a quantity polynomial in N and linear
in Lκ

There exist several ways to algorithmically produce the steps t0, t1, . . . in this
theorem (and indeed the process has been programmed in two versions [12,13],)
but the details are too technical for this report, see [8,27,31]. We also point out
that, if the path we are following is linear, i.e. ht = (1− t)h0+ th1, and if the input
coordinates are (complex) rational numbers, then all the operations can be carried
out over the rationals without a dramatic increase of the bit size of intermediate
results, see [13].

Note that since Lκ is a length it is independent of the C1 parametrization of
the path. If we specify a path of polynomial systems in H(d) then we project the
path of polynomials and solutions into V to calculate the length. We may project
from H(d) to S first and reparametrize if we wish. For example, we project the
straight line segment ht = (1− t)g + th for 0 ≤ t ≤ 1 into S and reparametrize by
arc–length. If ‖g‖ = ‖h‖ = 1 the resulting curve is

ht = g cos(t) +
h− 〈h, g〉g
‖h− 〈h, g〉g‖ sin(t)

which is an arc of great circle through g and h. If 0 ≤ t ≤ dR(g, h), then the arc
goes from g to h. Here dR(g, h) is the Riemannian distance in S between g and h
which is the angle between them.

5. The problem of good starting points

We now come back to the original question in Smale’s 17-th problem. Our plan
is to analyse the complexity of an algorithm that we could call “linear homotopy”:
choose some g ∈ S, ζ ∈ P(Cn+1) such that g(ζ) = 0 (we will call (g, ζ) a “starting
pair”). For input h ∈ S, consider the path contained in the great circle :

(5.1) ht = g cos(t) +
h− 〈h, g〉g
‖h− 〈h, g〉g‖ sin(t), t ∈ [0, dR(g, h)].

Then, use the method described in Theorem 4.2 to track how ζ0 moves to ζdR(g,h),
a zero of hdR(g,h) = h, thus producing an approximate zero of h. We call this linear
homotopy (maybe a more appropriate name would be “great circle homotopy”)
because great circles are projections on S of segments in H(d).

Assuming that the input h is uniformly distributed on S, we can give an upper
bound for the average number of arithmetic operations needed for this task (that
is, the average complexity of the linear homotopy method) by a polynomial in N
multiplied by the following quantity:

1

ν(S)

∫
h∈S

∫ dR(g,h)

0

μ(ht, ζt)‖(ḣt, ζ̇t)‖ dt dS,
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where ht is defined by (5.1) and ζt is defined by continuation (the fact that ht∩Σ =
∅, and thus the existence of such ζt, is granted by Theorem 3.1 for most choices of
g, h). It is convenient to replace this last expected value by a similar upper bound:

A1(g, ζ) =
1

ν(S)

∫
h∈S

∫ π

0

μ(ht, ζt)‖(ḣt, ζ̇t)‖ dt dS.

Note that we are just replacing the integral from 0 to dR(g, h) by the distance from
0 to π.

We thus have:

Theorem 5.1. Let (g, ζ) ∈ V. The average complexity of linear homotopy with
starting pair (g, ζ) is bounded above by a polynomial in N multiplied by A1(g, ζ).

This justifies the following definition:

Definition 5.2. Fix some polynomial1 p ∈ R[x, y, z]. We say that (g, ζ) is a
good starting pair w.r.t. p(x, y, z) if A1(g, ζ) ≤ p(n, d,N) (which implies that the
average number of steps of the linear homotopy is O(d3/2p(n, d,N)).) From now

on, if nothing is said, we assume p(x, y, z) =
√
2πxz. Thus, (g, ζ) ∈ V is a good

initial pair if A1(g, ζ) ≤
√
2πnN .

So, if a good sequence of initial pair is known for all choices of n and the list of
degrees (d), then the total average complexity of linear homotopy is polynomial in
N . In other words, finding good starting pairs for every choice of n and (d) gives
a satisfactory solution to Problem (2.1).

In [56] the following pair2 was conjectured to be a good starting pair (for some
polynomial p(x, y, z)) :

(5.2) g(z) =

⎧⎪⎪⎨⎪⎪⎩
d
1/2
1 zd1−1

0 z1,
...

d
1/2
n zdn−1

0 zn

, ζ = (1, 0, . . . , 0).

To this date, proving this conjecture is still an open problem. Some experimental
data supporting this conjecture was shown in [12].

5.1. Choosing initial pairs at random: an Average Las Vegas al-
gorithm for problem (2.1). One can study the average value of the quantity
A1(g, ζ) described above. Most of the results in this section are based on the fact
that the expected value of the square of the condition number is relatively small.
This was first noted in [53], then this expected value was computed exactly in [16]:

Theorem 5.3. Let h ∈ S be chosen at random, and let ζ be chosen at random,
with the uniform distribution, among the zeros of h. Then, the expected value of
μ2(h, ζ) is at most nN . More exactly:

Eh∈S

⎛⎝ 1

D
∑

ζ:h(ζ)=0

μ(h, ζ)2

⎞⎠ = N

(
n

(
1 +

1

n

)n+1

− 2n− 1

)
≤ nN.

1Because n, d ≤ N , we could just talk about a one variable polynomial p(x) and change
p(n, d,N) to p(N) in the following definition. However, we prefer here to be a bit more precise.

2The pair conjectured in [56] does not contain the extra d
1/2
i factors. There is, however,

some consensus that these extra factors should be added, for with these factors the condition
number μ(g, ζ) = n1/2 is minimal.
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In particular, in the case of one homogeneous polynomial of degree d (i.e. n = 1,)
we have:

Eh∈S

⎛⎝ ∑
ζ:h(ζ)=0

μ(h, ζ)2

⎞⎠ = d(d+ 1).

Now we use some arguments which are very much inspired by ideas from in-
tegral geometry, one of the main contributions of Lluis Santaló to XX century
mathematics. We can try to compute the expected value of A1(g, ζ). Although
this can be done directly (see [18],) it is easier to first consider an upper bound of
A1: let us note from (3.5) that

(5.3) A1(g, ζ) ≤
√
2

ν(S)

∫
h∈S

∫ π

0

μ(ht, ζt)
2 dt dS.

So, we have

Eg∈S

⎛⎝ ∑
ζ:g(ζ)=0

A1(g, ζ)

⎞⎠ ≤ Eg∈S

⎛⎝ ∑
ζ:h(ζ)=0

√
2

ν(S)

∫
h∈S

∫ π

0

μ(ht, ζt)
2 dt dS.

⎞⎠ =

√
2 E(g,h)∈S×S

⎛⎝∫
f∈Lg,h

∑
ζ:f(ζ)=0

μ(f, ζ)2

⎞⎠ ,

where Lg,h is the half–great circle in S containing g, h, starting at g and going to
−g (we have to remove from this argument the case h = −g but this is unimportant
for integration purposes.) Note that we can define a measure and more generally
a concept of integral in S as follows: given any measurable function q : S → [0,∞),
its integral is

(5.4) E(g,h)∈S×S

(∫
f∈Lg,h

q(f)

)
.

Now, this last formula describes an invariant (with respect to the group of sym-
metries of S, that can be identified with the unitary group of size N + 1 or with
the orthogonal group of size 2N + 2) measure in S and is thus equal to a multiple
of the usual measure in S. In words, averaging over S or over great circles in S is
the same, up to a constant. The constant is easy to compute by considering the
constant function q ≡ 1. What we get is:

Eg∈S

⎛⎝ ∑
ζ:g(ζ)=0

A1(g, ζ)

⎞⎠ ≤ π√
2
Eh∈S

⎛⎝ ∑
ζ:h(ζ)=0

μ(h, ζ)2

⎞⎠ .

After this argument is made rigorous, we have (see [14,15] for earlier versions of
the following result:)

Theorem 5.4 ([16]). Let g ∈ S be chosen at random with the uniform dis-
tribution, and let ζ be chosen at random, with the uniform (discrete) distribution
among the roots of g. Then, the expected value of A1(g, ζ) is at most π√

2
nN . In

particular, for such a randomly chosen pair (g, ζ), with probability at least 1/2 we

have A1(g, ζ) ≤
√
2πnN , that is, (g, ζ) is a good starting pair3.

3Note that we are computing there the average of A1 not that of the integral of μ2 as in [16].

From (5.3), the constant
√
2 has to be added to the formula in [16] in this context.
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The previous result would be useless for describing an algorithm (because choos-
ing a random zero of a randomly chosen g ∈ S might be a difficult problem) without
the following one.

Theorem 5.5 ([16]). The process of choosing a random g ∈ S and a random
zero ζ of g can be emulated by a simple linear algebra procedure.

The details of the linear algebra procedure of Theorem 5.5 require the intro-
duction of too much notation. We just describe the process in words: one has to
choose a random n × (n + 1) matrix M with complex entries, compute its kernel
(a projective point ζ ∈ P(Cn+1)) and consider the system g ∈ S that has ζ as a
zero and whose linear part is given by M . A random higher–degree term has to be
added to g, and then linear and higher–degree terms must be correctly weighted.
This whole process has running time polynomial in N . We thus have:

Corollary 5.6. The linear homotopy algorithm with the starting pair obtained
as in Theorem 5.5 has average complexity4 Õ(N2).

The word “average” in Corollary 5.6 must be understood as follows. For an
input system h, let T (h) be the expected running time of the linear homotopy
algorithm, when (g, ζ) is randomly chosen following the procedure of Theorem 5.5.

Then, the average value of T (h) for random h is Õ(N2). This kind of algorithm
is called Average Las Vegas, the “Las Vegas” term coming from the fact that a
random choice has to be done. The user of the algorithm plays the role of a Las
Vegas casino, not of a Las Vegas gambler: the chances of winning (i.e. getting a
fast answer to our problem) are much higher than those of loosing (i.e. waiting for
a long time before getting an answer.)

Some of the higher moments of A1(g, ζ) have also been proved to be small. For
example, the second moment (thus, also the variance) of A1(g, ζ) is polynomial in
N , as the following result shows:

Theorem 5.7 ([18]). Let 2 ≤ k < 3. Then, the expectation of A1(g, ζ)
k

satisfies
E
(
A1(g, ζ)

k
)
< ∞.

Moreover, let 2 ≤ k < 3− 1
2 lnD . Then, the expectation E

(
A1(g, ζ)

k
)
satisfies,

E
(
A1(g, ζ)

k
)
≤ 22k+k/2+4 e πkn3k−4N2D4k−8 lnD.

In particular, E(A1(g, ζ)
2) ≤ 512eπ2n2N2 lnD.

We have been concentrating on finding one zero of a polynomial system. But
we could find k zeros 0 ≤ k ≤ D by choosing k different random initial pairs using
Theorem 5.5. This process is known from [16] to output every zero of the goal
system h with the same probability 1/D, if h �∈ Σ. Another option is to choose
some initial system g which has k known zeros, and simultaneously continuing the
k homotopy paths with the algorithm of Theorem 4.2. In the case of finding all
zeros the sum of the number of steps to follow each path, is by Theorem 4.2 and
(3.5), bounded above by a constant times

d3/2
∫ dR(g,h)

0

∑
ζt:ht(ζt)=0

μ(ht, ζt)
2 dt.

4We use here the Õ(X) notation: this is the same as O(X log(X)c) for some constant c, that
is logarithmic factors are cleaned up to make formulas look prettier.
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82 CARLOS BELTRÁN AND MICHAEL SHUB

So for the great circle homotopies we have been discussing an analogue of Theorem
5.4 holds:

Theorem 5.8 ([16]). Let g ∈ S be chosen at random with the uniform dis-

tribution. Then, the expected value of
∫ dR(g,h)

0

∑
ζt:ht(ζt)=0 μ(ht, ζt)

2 dt is at most
π√
2
nND. In particular, for such a randomly chosen g, with probability at least 1/2

we have
∫ dR(g,h)

0

∑
ζt:ht(ζt)=0 μ(ht, ζt)

2 dt ≤
√
2πnND, that is, the linear homotopy

for finding all zeros starting at g takes at most a constant times d3/2nND steps to
output all zeros of h, on the average.

Note that in general, one cannot write down all the D zeros of g to begin with,
so Theorem 5.8 does not immediately yield a practical algorithm.

We point out that, even for the case n = 1, no explicit descriptions of pairs
(g, ζ) satisfying A1(g, ζ) ≤ dO(1) are known. Of course, no explicit polynomial g ∈ S

is known in that case satisfying the claim of Theorem 5.8. An attempt to determine
such a polynomial has led to some progress in the understanding of elliptic Fekete
points, see Section 8.

5.2. The roots of unity combined with a method of Renegar: a quasi–
polynomial time deterministic algorithm for problem (2.1). One can also
ask for an algorithm for Problem (2.1) which does not rely on random choices (a
deterministic algorithm). The search of a deterministic algorithm with polynomial
running time for Problem (2.1) is still open, but a quasi–polynomial algorithm is
known since [27].

This algorithm is actually a combination of two: on one hand, we consider the
initial pair

(5.5) g =

⎧⎪⎪⎨⎪⎪⎩
1√
2n

(xd1
0 − xd1

1 )

...
1√
2n

(xd1
0 − xdn

n )

, ζ = (1, . . . , 1)

Then, we have:

Theorem 5.9 ([27]). The projective Newton–based homotopy method with ini-
tial pair ( 5.5) has average running time polynomial in N and nd (recall that d is
the maximum of the degrees).

Theorem 5.9 is a consequence of the following stronger result:

Theorem 5.10 ([27]). The projective Newton–based homotopy method with ini-
tial pair (g, ζ) ∈ V has average running time polynomial in N and in max{μ(g, η) :
g(η) = 0}.

Theorem 5.9 follows from Theorem 5.10 and the fact that μ(g, η) ≤ 2(n + 1)d

for g given by (5.5) for every zero η of g.
For small (say, bounded) values of d, the quantity nd is polynomial in n and

thus polynomial in N , but for big values of d the quantity nd is not bounded
by a polynomial in N , and thus Theorem 5.9 does not claim the existence of a
polynomial running time algorithm. However, it turns out that there is a previously
known algorithm, based on the factorization of the u–resultant, that has exponential
running time for small degrees, but polynomial running time for high degrees (this
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may seem contradictory, but it is not: when the degrees are very high, the input
size is big, and thus bounding the running time by a polynomial in the input size
is sometimes possible in this case.) More precisely:

Theorem 5.11 ([27, 48]). There is an algorithm with average running time
polynomial in N and D that, on input h ∈ P(H(d)) \ Σ, outputs an approximate
zero associated to every single exact zero of h.

Note that D is usually exponential in n, but as suggested above, if the degrees
are very high compared to n, then D can be bounded above by a polynomial in
the input size N and thus the algorithm of Theorem 5.11 becomes a polynomial
running time algorithm.

An appropriate combination of theorems 5.9 and 5.11, using the homotopy
method of Theorem 5.9 for moderately low degrees and the symbolic–numeric
method of Theorem 5.11 for moderately high degrees turns out to be quasipolyno-
mial for every choice of n and (d) . Indeed:

Theorem 5.12 ([27]). The average (for random h ∈ S) running time of the
following procedure is O(N log logN ): on every input h ∈ P(H(d))\Σ, run simultane-
ously the algorithms of theorems 5.9 and 5.11, stopping the computation whenever
one of the two algorithms gives an output.

Note that the running time of this algorithm is thus quasi–polynomial in N .
Moreover, the algorithm is deterministic because it does not involve random choices.

5.3. Homotopy paths based on the evaluation at one point. Another
approach to construct homotopies was considered in [57] and generalized in [4].

Given h ∈ H(d) and ζ ∈ P(Cn+1), consider g = h− ĥζ , where ĥζ ∈ H(d) is defined
as

ĥζ(z) = Diag

(
〈z, ζ〉di

〈ζ, ζ〉di

)
h(ζ).

Then, g(ζ) = 0. So, we consider the homotopy ht = (1− t)g + th = h− (1− t)ĥζ .
We continue the zero ζ from h0 = g to h1 = h. For any fixed ζ, for example
ζ = e0 = (1, 0, . . . , 0), the homotopy may be continued for almost all h ∈ H(d). Let

K(h, ζ) = number of steps sufficient to continue ζ to a zero of h,

and

K(h) = Eζ∈P(Cn+1)(K(h, ζ)).

Then,

Theorem 5.13 ([4]).

Eh∈H(d)
(K(h)) ≤ Cd3/2Γ(n+ 1)2n−1

(2π)Nπn

∫
h∈H(d)

⎛⎝ ∑
η:h(η)=0

μ(h, η)2

‖h‖2 Θ(h, η)

⎞⎠ e−‖h‖2/2 dh,

where

Θ(h, η) =

∫
ζ∈B(h,η)

(‖h‖2 − T 2)1/2

T 2n−1
Γ(T 2/2, n)eT

2/2 dζ,

T = ‖Diag(‖ζ‖−di))h(ζ)‖,
and Γ(α, n) =

∫ +∞
α

tn−1e−t dt is the incomplete gamma function.
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In Theorem 5.13, B(h, η) is the basin of η, which we now define. Suppose η
is a non–degenerate zero of h ∈ H(d). We define the basin of η, B(h, η), as those

ζ ∈ P(Cn+1) such that the zero ζ of g = h − ĥζ continues to η for the homotopy
ht = (1− t)g + th. We observe that the basins are open sets.

Not much is known about E(K). See [4] for precise questions and motivations.
Here is one:

Problem 5.14. Is E(K) a quantity polynomial in N?

6. The condition Lipschitz–Riemannian structure

Let us know turn our sight back to (4.1). If we drop the condition number
μ(ht, ζt) from that formula, we get

L =

∫ b

a

‖ḣt, ζ̇t)‖ dt,

that is simply the length of the path (ht, ζt) in the solution variety V , taking on V
the natural metric: the one inherited from that of the product P(H(d))× P(Cn+1).
The formula in (4.1) can now be seen under a geometrical perspective: Lκ is just the
length of the path (ht, ζt) when V is endowed with the conformal metric obtained
by multiplying the natural one by the square of the condition number. Note that
this new metric is only defined on W = V \ Σ′. We call this new metric the
condition metric in W . This justifies the name condition length we have given
to Lκ. Theorem 4.2 now reads simply as follows: the complexity of following a
homotopy path (ht, ζt) is at most a small constant cd3/2 times the length of (ht, ζt)
in the condition metric. This makes the condition metric an interesting object of
study: which are the theoretical properties of that metric? given p, q ∈ W , what is
the condition length of the shortest path joining p and q?

The first thing to point out is that μ is not a C1 function, as it involves a
matrix operator norm. However, μ is locally Lipschitz. Thus, the condition metric
is not a Riemannian metric (usually, one demands smoothness or at least C1 for
Riemannian metrics,) but rather we may call it a Lipschitz–Riemannian structure.
This departs from the topic of most available books and papers dealing with ge-
ometry of manifolds, but there are still some things we can say. It is convenient to
take a tour to a slightly more general kind of problems; that’s the reason for the
following section.

6.1. Conformal Lipschitz–Riemann structures and self–convexity. Let
M be a finite–dimensional Riemannian manifold, that is a smooth manifold with a
smoothly varying inner product defined at the tangent space to each point x ∈ M,
let us denote it 〈·, ·〉x. Let α : M → [0,∞) be5 a Lipschitz function, that is, there
exists some constant K ≥ 0 such that

|α(x)− α(y)| ≤ KdR(x, y), ∀x, y ∈ M,

where dR(x, y) is the Riemannian distance from x to y. Then, consider on each
point x ∈ M the inner product 〈·, ·〉α,x = α(x)〈·, ·〉x. Note that this need no longer
be smoothly varying with x, for α(x) is just Lipschitz. We call such a structure

5The reader may have in mind the case α(h, ζ) = μ(h, ζ)2 defined in M = V.
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a (conformal) Lipschitz–Riemannian structure in M, and call it the α–structure.
The condition length of a C1 path γ(t) ⊆ M, a ≤ t ≤ b, is just

Lα(γ) =

∫ b

a

‖γ̇(t)‖α,γ(t) dt =
∫ b

a

〈γ̇(t), γ̇(t)〉1/2α,γ(t) dt

The distance between any to points p, q ∈ M in this α–structure is defined as

(6.1) dα(p, q) = inf
γ(t)⊆V

Lα(γ), p, q ∈ M,

where the infimum is over all C1 paths with γ(0) = p, γ(1) = q.
A path γ(t), a ≤ t ≤ b is called a minimizing geodesic if Lα(γ) = dα(γ(a), γ(b))

and ‖γ̇(t)‖α,γ(t) ≡ 1, that is, if it minimizes the length of curves joining its extremal
points and if it is parametrized by arc–length. Then, a curve γ(t) ⊆ M, for t in
some (possibly unbounded) interval I is called a geodesic if it is locally minimizing,
namely if for every t in the interior of I there is some interval [a, b] ⊆ I containing
t and such that γ |[a,b] is a minimizing geodesic.

Each connected component of the set M with the metric given by dα is a path
metric space, and it is locally compact because M is a smooth finite–dimensional
manifold. We are in a position to use Gromov’s version of the classical Hopf–Rinow
theorem [36, Th.1.10], and we have:

Theorem 6.1. Let M and α be as in the discussion above. Assume additionally
that M is connected and that (M, dα) is a complete metric space. Then:

• each closed, bounded subset is compact,
• each pair of points can be joined by a minimizing geodesic.

Theorem 6.1 gives us sufficient conditions for conformal Lipschitz–Riemannian
structures to be “well defined” in the sense that the infimum of (6.1) becomes a
minimum. We can go further:

Theorem 6.2 ([11]). In the notation above, any geodesic is of class C1+Lip,
that is it is C1 and has a Lipschitz derivative.

See [22] for an early version of Theorem 6.2 and for experiments related to this
problem.

One often thinks of the function α as some kind of “squared inverse of the
distance to a bad set”, so for each connected component of M the set (M, dα) will
actually be complete.

A natural property to ask about is the following: given p, q ∈ M, and given a
geodesic γ(t) such that γ(a) = p, γ(b) = q, does α attain its maximum on γ in the
extremes? Namely, if we think on α as some kind of squared inverse to a bad set,
do we have to get closer to the bad set than what we are in the extremes?

Example 6.3. A model to think of is Poincaré half–plane with the metric given
by the usual scalar product in R2∩{y > 0}, multiplied by α(x, y) = y−2. Geodesics
then become just portions of vertical lines or half–circles with center at the axis
y = 0. It is clear that, to join any two points, the geodesic does not need to become
closer to the bad set {y = 0}.

We can ask for more: we say that α is self–convex (an abbreviation for self–
log–convex) if for any geodesic γ(t), the following is a convex function:

t �→ log(α(γ(t))).
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Note that this condition is stronger than just asking for t �→ α(γ(t)) to be convex,
and thus stronger than asking for the maximum of α on γ to be at the extremal
points.

6.2. Convexity properties of the condition number. We have the fol-
lowing result:

Theorem 6.4 ([10]). Let k ≥ 1 and let N ⊆ Rk be a C2 submanifold without
boundary of R2. Let U ⊆ Rn \ N be the biggest open set all of whose points have
a unique closest point in N. Then, the function α(x) = distance(x,N)−2 is self–
convex in U .

Note that Theorem 6.4 is a more general version of Example 6.3, where the
horizontal line {y = 0} is changed to a submanifold N.

A well–known result usually attributed to Eckart and Young [35] and to Schmidt
and Mirsky (see [61]) relates the usual condition number of a full rank rectangular
matrix to the inverse distance to the set of rank–deficient matrices:

Theorem 6.5 (Condition Number Theorem of linear algebra). Let A ∈ Cmn be
a m× n matrix for some 1 ≤ m ≤ n. Let σ1(A), . . . , σm(A) be its singular values.
Then,

σm(A) = distance(A, {rank–deficient matrices}).
In particular, in the case of square maximal rank matrices, we can rewrite this as
‖A−1‖ = distance(A, {rank–deficient matrices})−1, that is the (unscaled) condition
number ‖A−1‖ equals the inverse of the distance from A to the set of singular ma-
trices. We more generally call σ−1

m (A) the unscaled condition number of a (possibly
rectangular) full–rank matrix A.

One feels tempted to conclude from theorems 6.4 and 6.5 that the function
sending a full–rank complex matrix A to the squared inverse of its smallest singular
value (i.e. to the square of its unscaled condition number) should be self–convex.
Indeed, one cannot apply Theorem 6.4 because the set of rank–deficient matrices
is not a C2 manifold, and because the distance to it is for many matrices (more
precisely: whenever the multiplicity of the smallest singular value is greater than
1) not attained in a single point. It takes a considerable effort to prove that the
result is still true:

Theorem 6.6 ([11]). The function defined in the space of full–rank m × n
matrices, 1 ≤ m ≤ n, as the squared inverse of the unscaled condition number, is
self–convex.

Note that this implies that, given any two complex matrices A,B of size m×n,
and given any geodesic γ(t), a ≤ t ≤ b in the α–structure defined in

C
mn \ { rank–deficient matrices}

by α(C) = σm(C)−2 such that γ(a) = A, γ(b) = B, the maximum of α along γ is
α(A) or α(B).

Note that, if a similar result could be stated for the α–structure defined by
(h, ζ) �→ μ(h, ζ)2 in W , we would have quite a nice description of how geodesics in
the condition metric of W are. Proving this is still an open problem:

Problem 6.7. Prove or disprove μ2 is a self–convex function in W.
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Note that from Theorem 3.4, the function μ2 is not exactly the squared inverse
of the distance to a submanifold, but it is still something similar to that. This
makes it plausible to believe that Problem 6.7 has an affirmative answer. A partial
answer is known:

Theorem 6.8 ([11]). The function h �→ μ2(h, e0) defined in the set {h ∈
P(H(d)) : h(e0) = 0} is self–convex. Here, e0 = (1, 0, . . . , 0).

7. Condition geodesics and the geometry of W
Although we do not have an answer to Problem 6.7, we can actually state some

bounds that give clues on the properties of the geodesics in the condition structure
in W . More precisely:

Theorem 7.1 ([17]). For every two pairs (h1, ζ1), (h2, ζ2) ∈ W, there exists a
curve γt ⊆ W joining (h1, ζ1) and (h2, ζ2), and such that

Lκ(γt) ≤ 2cnd3/2 + 2
√
n ln

(
μ(h1, ζ1)μ(h2, ζ2)

n

)
,

c a universal constant.

In the light of Theorem 4.2, this means that if one can find geodesics in the
condition structure in W , one would be able to follow these paths in very few steps:
just logarithmic in the condition number of the starting pair and the goal pair.

Corollary 7.2. A sufficient number of projective Newton steps to follow some
path in W starting at the pair (g, e0) of ( 5.2) to find an approximate zero associated
to a solution ζ of a given system h ∈ P(H(d)) is

cd3/2
(
nd3/2 +

√
n ln

(
μ(h, ζ)√

n

))
,

c a universal constant.

Note that only the logarithm of the condition number appears in Corollary
7.2. Thus, if one could find an easy way to describe condition geodesics in W , the
average complexity of approximating them using Theorem 4.2 would involve just
the expectation of the average of ln(μ), not that of μ2 as in Theorem 5.3. As a
consequence, the average number of steps needed by such an algorithm would be
O(nd3 lnN). See [18, Cor. 3] for a more detailed statement of this fact. At this
point we ask a rather naive, vague question:

Problem 7.3. May homotopy methods be useful in solving linear systems of
equations? Might using geodesics help as in Corollary 7.2 and the comments above?

Large sparse systems are frequently solved by iterative methods and the con-
dition number plays a role in the error estimates. So Problem (7.3) has some
plausibility.

Remark 7.4. There is an exponential gap between the average number of
steps needed by linear homotopy O(d3/2nN) and those promised by the condition
geodesic–based homotopy (which stays at a theoretical level by now, because one
cannot easily describe those geodesics). This exponential gap occurs frequently in
theoretical computer science. For example NP–complete problems are solvable in
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simply exponential time but polynomial with a witness. The estimates for homo-
topies with condition geodesics may likely serve as a lower bound for what can be
achieved. Also, properties of geodesics as we learn them can inform the design of
homotopy algorithms.

There is more we can say about the geometry (and topology) of W , by studying
the Frobenius condition number in W , which is defined as follows:

μ̃(h, ζ) = ‖h‖ ‖Dh(ζ)† Diag(‖ζ‖di−1d
1/2
i )‖F , ∀(h, ζ) ∈ W,

where ‖ · ‖F is Frobenius norm (i.e. Trace(L∗L)1/2 where L∗ is the conjugate
transpose of L) and † is Moore-Penrose pseudoinverse.

Remark 7.5. The Moore-Penrose pseudoinverse L† : F → E of a linear operator
L : E → F of finite dimensional Hilbert spaces is defined as the composition

(7.1) L† = iE ◦ (L |Ker(L)⊥)
−1 ◦ πImage(L),

where πImage(L) is the orthogonal projection on image L, Ker(L)⊥ is the or-
thogonal complement of the nullspace of L, and iE is the inclusion. If A is a
m × (n + 1) matrix and A = UDV ∗ is a singular value decomposition of A,
D = Diag(σ1, . . . , σk, 0, . . . , 0) then we can write

(7.2) A† = V D†U∗, D† = Diag(σ−1
1 , . . . , σ−1

k , 0, . . . , 0).

In [19] we prove that μ̃ is an equivariant Morse function defined in W with a
unique orbit of minima given by the orbit B of the pair of (5.2) under the action of
the unitary group (U, (h, ζ)) �→ (h ◦ U∗, Uζ).

The function A1(g, ζ) or even its upper bound (up to a
√
2 factor) estimate 6

B1(g, ζ) =
1

ν(S)

∫
h∈S

∫ π

0

μ(ht, ζt)
2 dt dS

is an average of μ2 in great circles. This remark motivates the following

Problem 7.6. Is A1(g, ζ) or B1(g, ζ) also an equivariant Morse function whose
only critical point set is a unique orbit of minima?

If so, due to symmetry considerations, it is the orbit through the conjectured
good starting point (5.2). Here, one may want to replace the condition number μ in
the definition of B1 with a smooth version such as the Frobenius condition number.
A positive solution to this problem solves our main problem: the conjectured good
initial pair (5.2) is not only good but even best.

Because the Frobenius condition number is an equivariant Morse function, the
homotopy groups of W are equal to those of B, that can be studied with standard
tools from algebraic topology. In the case that n > 1, for example, we get:

π0(W) = {0}
π1(W) = Z/aZ

π2(W) = Z

π3(W) = πk(SUn+1) (k ≥ 3),

where SUn+1 is the set of special unitary matrices of size n + 1, a = gcd(n, d1 +
· · ·+ dn − 1) and Z/aZ is the finite cyclic group of a elements.

6see (5.3).
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In particular, we see that if all the d′is are equal then a = 1 and W is simply
connected; in particular, any curve can be continously deformed into a minimizing
geodesic. See [19] for more results concerning the geometry of W . We can also
prove a lower bound similar to the upper bound of Theorem 7.1:

Theorem 7.7. let α : [a, b] → W be a C1 curve. Then, its condition length is
at least

1

d3/2
√
n+ 1

∣∣∣∣ln(μ(α(a))μ(α(b))

)
− ln

√
n+ 1

∣∣∣∣ .
Remark 7.8. We have written Theorem 7.7 using the condition metric as

defined in this paper. The original result [19, Prop. 11] was written for the so–
called smooth condition length, obtained by changing μ to μ̃ in the definition of
the condition length. This change produces the

√
n+ 1 factors in Theorem 7.7.

In his article [59], Smale suggests that the input size of an instance of a nu-
merical analysis problem should be augmented by logW (y) where W (y) is a weight
function “... to be chosen with much thought...” and he suggests that “ the weight
is to resemble the reciprocal of the distance to the set of ill–posed problems.” That
is the case here. The condition numbers we have been using are comparable to
the distance to the ill–posed problems and figure in the cost estimates. It would
be good to develop a theory of computation which incorporates the distance to
ill–posedness, or condition number and distance to ill-posedness in case they may
not be comparable, (and precision in the case of round–off error) more systemat-
ically so that a weight function will not require additional thought. For the case
of linear programming Renegar [49] accomplished this. It is our main motivating
example as well as the work we have described on polynomial systems. The book
[28] is the current state of the art. The geometry of the condition metric will to
our mind intervene in the analysis. If floating point arithmetic is the model of
arithmetic used then ill-posedness will include points where the output is zero as
well as points where the output is not Lipschitz.

8. The univariate case and elliptic Fekete points

Let us now center our attention in the univariate case, that, once homogenized,
is the case of degree d homogeneous polynomials in two variables. Then,

μ(h, ζ) = d1/2‖‖h‖‖(Dh(ζ) |ζ⊥)−1‖ζ‖d−1.

If we are given a univariate polynomial f(x) and a complex zero z of f , we can also
use the following more direct (and equivalent) formula for μ(h, ζ) where h is the
homogeneous counterpart of f and ζ = (1, z) :

μ(h, ζ) =
d1/2(1 + |z|2) d−2

2

|f ′(z)| ‖h‖.

It was noted in [54] that the condition number is related to the classical problem
of finding elliptic Fekete points, which we recall now in its computational form (see
[9] for a survey on the state of art of this problem.)

Given d different points x1, . . . , xd ∈ R3, let X = (x1, . . . , xd) and

E(X) = E(x1, . . . , xd) = −
∑
i<j

log ‖xi − xj‖
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be its logarithmic potential. Sometimes E(X) is denoted by E0(X), E(0, X) or
VN (X). Let S(1/2) be the Riemann sphere in R3, that is the sphere of radius 1/2
centered at (0, 0, 1/2), and let

md = min
x1,...,xd∈S(1/2)

E(x1, . . . , xd)

be the minimum value of E . A minimising d–tuple X = (x1, . . . , xd) is called a set
of elliptic Fekete points 7.

The computational problem of finding elliptic Fekete points is another of the
problems in Smale’s list 8.

Smale’s 7th problem [60]: Can one find X = (x1, . . . , xd) such that

(8.1) E(X)−md ≤ c log d, c a universal constant.

The first clue that this problem is hard comes from the fact that the value of md

is not known, even to O(d). A general technique (valid for Riemannian manifolds)
given by Elkies shows that

md ≥ d2

4
− d log d

4
+O(d).

Wagner [64] used the stereographic projection and Hadamard’s inequality to get
another lower bound. His method was refined by Rakhmanov, Saff and Zhou [45],
who also proved an upper bound for md using partitions of the sphere. The lower
bound was subsequently improved upon by Dubickas and Brauchart [34], [24]. The
following result summarizes the best known bounds:

Theorem 8.1. Let Cd be defined 9 by

md =
d2

4
− d log d

4
+ Cdd.

Then,

−0.4375 ≤ lim inf
d�→∞

Cd ≤ lim sup
d�→∞

Cd ≤ −0.3700708...

The relation of this problem to the condition number relies on the fact that
sets of elliptic Fekete points are naturally “well separated”, and are thus good
candidates to be the zeros of a “well–conditioned” polynomial, that is a polynomial
all of whose zeros have a small condition number. In [54] Shub and Smale proved
the following relation between the condition number and elliptic Fekete points.

Theorem 8.2 ([54]). Let ζ1, . . . , ζd ∈ P(C2) be a set of projective points, and
consider them as points in the Riemann sphere S(1/2) with the usual identification
P(C2) ≡ S(1/2). Let h be a degree d homogeneous polynomial such that its zeros
are ζ1, . . . , ζd. Then,

max{μ(h, ζi) : 1 ≤ i ≤ d} ≤
√
d(d+ 1) eE(ζ1,...,ζd)−md .

7Such a d–tuple can also be defined as a set of d points in the sphere which maximize the
product of their mutual distances.

8Smale thinks on points in the unit sphere, but we may think on points in the Riemann
sphere, as the two problems are equivalent by sending (a, b, c) ∈ S(1/2) to 2(a, b, c)− (0, 0, 1).

9The result in the original sources is written for the unit sphere, we translate it here to the
Riemann sphere.
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In particular, is x1, . . . , xd are a set of elliptic Fekete points, then

max{μ(h, ζi) : 1 ≤ i ≤ d} ≤
√
d(d+ 1).

Remark 8.3. Let Re and Im be, respectively, the real and complex part of a
complex number. Here is alternative, equivalent definition for h and the ζi. Instead
of considering projective points in P(C2) we may just consider a set of complex
numbers z1, . . . , zd ∈ C. Then, for 1 ≤ i ≤ d, we can define ζi ∈ S as

(8.2) ζi =

(
Re(zi)

1 + |zi|2
,
Im(zi)

1 + |zi|2
,

1

1 + |zi|2

)T

∈ S(1/2), 1 ≤ i ≤ d,

f as the polynomial whose zeros are z1, . . . , zd, and h as the homogeneous counter-
part of f .

There exists no explicit known way of describing a sequence of polynomials
satisfying max{μ(h, ζ) : h(ζ) = 0} ≤ dc, for any fixed constant c and d ≥ 1.
Theorem 8.2 implies that, if a d–tuple satisfying (8.1) can be described for any d,
then such a sequence of polynomials can also be generated. From Theorem 5.10,
such h′s are good starting points for the linear homotopy method, both for finding
one root and for finding all roots. So, solving the elliptic Fekete points problem
solves the starting point problem for n = 1. The reciprocal question is: does solving
the starting point problem for n = 1 help with the Fekete point problem?

Problem 8.4. Suppose n = 1 and g ∈ S minimizes
∑

ζ:g(ζ)=0 μ(g, ζ)
2. Do

ζ1, . . . , ζd (the zeros of g, seen as points in S(1/2)) solve Smale’s 7–th problem?

We have seen in Theorem 5.3 that the condition number of (h, ζ) where h is
chosen at random and ζ is uniformly chosen at random among the zeros of h, grows
polynomially in d. Then, Theorem 8.2 suggests that spherical points associated with
zeros of random polynomials might produce small values of E . We can actually put
some numbers to this idea. First, one can easily compute the average value of E
when x1, . . . , xd are chosen at random in S(1/2), uniformly and independently with
respect to the probability distribution induced by Lebesgue measure in S(1/2):

EX∈S(1/2)dE(X) =
d2

4
− d

4
.

By comparing this with Theorem 8.1, we can see that random choices of points in
the sphere already produce pretty low values of the minimal energy. One can prove
that random polynomials actually produce points which behave better with respect
to E :

Theorem 8.5 ([3]). Let n = 1 and h ∈ S be chosen at random w.r.t. the
uniform distribution in S. Let ζ1, . . . , ζd ∈ S(1/2) be the zeros of h. Then, the
expected value of E(ζ1, . . . , ζd) equals

d2

4
− d log d

4
− d

4
.

By comparing this with Theorem 8.1, we conclude that spherical points coming
from zeros of random polynomials agree with the minimal value of E , to order O(d).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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This result fits into a more general10 result related to random sections on Riemann
surfaces, see [65,66].

9. The algebraic eigenvalue problem

The double fibration scheme proposed in (3.2) has been – at least partly –
successfully used in other contexts. For example, in [1] a similar projection scheme
(9.1)

Veig = {((A, λ), v) ∈ P(Cn2+1)× P(Cn) : Av = λv}
π1 ↙ ↘ π2

P(Cn2+1) P(Cn+1)

was used to study the complexity of a homotopy–based eigenvalue algorithm, ob-
taining the following:

Theorem 9.1. A homotopy algorithm can be designed that continues an eigenvalue–
eigenvector pair (λ0, v0) of a n×n matrix A0 to one (λ1, v1) of another matrix A1,
the number of steps bounded above by

c

∫ 1

0

‖(Ȧ, λ̇, v̇)‖μeig(A, λ, v) dt,

c a universal constant. Here, μeig is the condition number 11 for the algebraic
eigenvalue problem , defined as

(9.2) μeig(A, λ, v) = max
{
1, ‖A‖F ‖πv⊥(λIn −A) |−1

v⊥ ‖
}
,

where ‖A‖F = trace(A∗A)1/2 is the Frobenius norm of A.

Of course, we do not intend to summarize here the enormous amount of methods
and papers dealing with the eigenvalue problem (see [61] for example). We just
point out that there exists no proven polynomial–time algorithm for approximating
eigenvalues (although different numerical methods achieve spectacular results in
practice.) See [44] for some statistics about the QR (and Toda) algorithms for
symmetric matrices. We don’t know a good reference for the more difficult general
case. Unshifted QR is not the fast algorithm of choice. The QR algorithm with
Francis double shift executed on upper Hermitian matrices should be the gold
standard.

Problem 9.2. Does the QR algorithm with Francis double shift fail to attain
convergence on an open subset of upper Hessenberg matrices?

See [6] for open sets where Rayleigh quotient iteration fails, and [5] for a proof
of convergence for normal matrices as well as a good introduction to the dynamics
involved.

Theorem 9.1 can probably be used in an analysis similar to that of Section 5
to complete a complexity analysis. Note that the integral in Theorem 9.1 is very
similar in spirit to that of (4.1). This allows to introduce a condition metric in

10Steve Zelditch tells us that “the relation between the special case of the round metric on
S(1/2) and the general metric on any Riemann surface is that the expansion terminates on S(1/2)
because the Fubini-Study metric is balanced,i.e. the szego kernel is constant on the diagonal. For
general metrics it will not terminate.”

11A quantity similar in spirit to the condition number μ for the polynomial system solving
problem.
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Veig. Some of the results in previous sections can be adapted to this new case. For
example, an analogue of Theorem 7.1 holds (i.e. short geodesics exist,) see [2].

The eigenvalue problem and the problem of finding roots of a polynomial in
one variable are, of course, connected. Given an n × n matrix A we may com-
pute the characteristic polynomial of A, p(z) = det(zI − A) and then solve p(z).
The zeros of p(z) are the eigenvalues of A. Trefethen and Bau [62] write “This
algorithm is not only backward unstable but unstable and should not be used”.
Indeed when presented with a univariate polynomial p(z) to solve, numerical linear
algebra packages may convert the problem to an eigenvalue problem by consid-
ering the companion matrix of p(z) and then solve the eigenvalue problem. If
p(z) = zd + ad−1z

d−1 + · · ·+ a0 the companion matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

. . .
. . .

...
...

...
. . .

. . . 0 −ad−2

0 · · · · · · 0 1 −ad−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is already in upper Hessenberg form. So conceivably Francis double shifted
QR may fail to converge on an open set of companion matrices?

Let us recall that the condition number of a polynomial and root is a property
of the output map as a function of the input. So it doesn’t depend on the algorithms
to solve the problem. This motivates the following

Problem 9.3. What might explain the experience of numerical analysts, re-
lating the polynomial solving methods versus that of eigenvalue solving? Might the
condition number of the eigenvalue problem have small average over the set of n×n
matrices with a given characteristic polynomial?

Finally, we can consider the problem Av = λv as a system of n quadratic
equations in n unknowns. By Bezout’s theorem, after we homogenize, we expect
2n roots counted with multiplicity. But there are only n eigenvalues. In [1, 2]
it is shown that the use of multihomogeneous Bezóut theorem yields the correct
zero count for this problem. Thus, a reasonable thing to do is to introduce a new
variable α and consider the bilinear equation Aαv = λv which is bilinear in (α, λ)
and v.

Problem 9.4 (see [32]). Prove an analogue of Theorem 9.1 in the general
multihomogeneous setting.

Appendix A. A model of computation for machines with round-off and
input errors

This section has been developed in discussions with Jean Pierre Dedieu and his
colleagues Paola Boito and Guillaume Chèze. We thank Felipe Cucker for helpful
comments.

A.1. Introduction. During the second half of the 20th century, with the
emergence of computers, algorithms have taken a spectacular place in mathemat-
ics, especially numerical algorithms (linear algebra, ode’s, pde’s, optimization), but
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also symbolic computation. In this context, complexity studies give a better un-
derstanding of the intrinsic difficulty of a problem, and describe the performance
of algorithms which solve such problems. One can associate the classical Turing
model to symbolic computation based on integer arithmetic, and the BSS model
to scientific computation on real numbers. However this ideal picture suffers from
an important defect. Scientific computation does not use the exact arithmetic of
real numbers but floating-point numbers and a finite precision arithmetic. Thus, a
numerical algorithm designed on real numbers and the same algorithm running in
finite precision arithmetic give a priori two different results. Any numerical analysis
undergraduate book has at least one chapter dealing with the precision of numerical
computations. See for example [62] or [38]. Yet, there is no solid approach to the
definition and study of a model of computation including this aspect, as well as the
role that conditioning of problems should play in the complexity estimates.

Besides linear algebra problems and iterative processes, a key point to bear
in mind is that we sometimes use floating point computers to answer decision (i.e
Yes/No) problems, as is this matrix singular? or does this polynomial have a real
zero?. The first attempts to use round-off machines to study decision problems
are [30], and [29]. The authors consider questions like: under which conditions
is the decision taken by a BSS machine the same as the decision taken by the
corresponding round-off machine? Or, under which conditions is the decision taken
by a round-off machine for a given input the same as the decision taken by the BSS
machine on a nearby input?

In these pages we point towards the development of a theory of finite precision
computation via a description of round–off machines, size of an input, cost of a com-
putation, single (resp. multiple) precision computations (a computation is “single
precision” when a sufficient round-off unit δ to reach relative precision u for any
input x in the considered range is proportional to u), finite precision computability
and finite precision decidability. These concepts have to be related to the intrinsic
characteristics of the problem: its condition number (the local Lipschitz constant
of the solution map), and its posedness (the distance to ill-posed problems).

The model we propose is inspired by the BSS model but it stays close to real-life
numerical computation. We prefer relative errors to absolute ones (this is the basis
of the usual floating-point arithmetic.) We mention two papers of interest about
the foundations of scientific computing, [25,26], with a point of view different than
ours.

A.2. Round–off machine. A round-off machine is an implementation of a
BSS-machine accounting for input error and round-off error of computations. These
errors may mimic a particular floating point arithmetic but are designed to be more
general. In particular, they are not tied down to a particular floating point model.
Let R

∞ be the disjoint union of the sets Rn, n ≥ 0. For given x ∈ R∞ we define
‖x‖ = maxi |xi|. A subset U ⊆ R∞ is open if it is the disjoint union of Un with
Un ⊆ R

n an open set. For this topology, a mapping f : R∞ → R is continuous iff
each restriction fn = f |Rn is continuous.

A (real number) BSS machine M is a directed graph with with several kinds
of nodes including an input node, with input x ∈ R∞, output nodes, computation
nodes where rational functions are generally computed but here we restrict ourselves
without loss of generality to the standard arithmetic operations, branching nodes
(we branch on an inequality of the form y ≥ 0.) A machine is a decision machine
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when the output is −1 or 1. The halting set H ofM is the set of inputs giving rise to
an output. We denote by O : H → R∞ the output map. There are a few technical
concepts (mainly the input map IM (x) and the computing endomorphism HM )
associated toM , the nonfamiliar reader may find formal definitions in [20, Chapters
2 and 3].

Given a BSS machine M with nodes {1, . . . , N} and state space R∞, we aug-
ment the state space R∞ by an extra copy of R so the new state space is R×R∞.
The state space component of the input map is (1, IM (x)). We define a new next

node next state map ĤM by

ĤM (η, k, x) = (π1(HM (η, x)), k + 1, π2(HM (η, x)),

so the first coordinate acts as a counter (of the number of nodes visited by M). We

say that the machine defined ĤM is a counting BSS machine. A little programming
shows that adding this extra coordinate does nothing to change the computability
or complexity theory of real BSS machines (indeed because R × R∞ ≡ R∞, one
can easily see that this newly defined machine is actually a BSS machine). We will
moreover assume that our BSS machines are elementary, that is that the computa-
tion nodes of our machines contain only elementary operations, that is operations of
the form a◦b where a, b ∈ R and ◦ ∈ {+,−,×, /}. It is a routine task to convert any
given BSS machine into a counting elementary machine (this process can be done
in many ways, because there are many different ways to compute a polynomial).

Definition A.1 (Round–off machine associated to a given BSS machine).
Given a counting, elementary BSS machine M defined over the real numbers and
0 ≤ δ ≤ 1, a round-off machine associated to M and δ is another machine (i.e. a
directed graph with the same type of nodes as a BSS machine) denoted (M, δ). The
nodes and state space of (M, δ) are the same as for M . The input map I(M,δ) of
(M, δ) satisfies |I(M,δ)(x)j − IM (x)j | < δ|IM (x)j | that is to say the relative error of
the input is less than δ for every coordinate j. The next node next state of (M, δ) at
a computation node has the same next node component as HM , and the jth compo-
nents of the next states satisfy |H(M,δ),state(x)j −HM,state(x)j | < δ|HM,state(x)j |,
unless HM,state(x)j = xj in which case there is no error (i.e. H(M,δ),state(x)j = xj).
The next node next state map is unchanged at a branch node or at a shift node.

Given any BSS machine M defined over the real numbers and 0 ≤ δ ≤ 1, a
round–off machine associated to M and δ is a round–off machine (M̃, δ) associated

to M̃ and δ where M̃ is some counting, elementary version of M .

Remark A.2. The rounding error introduced at each computation node de-
pends on the whole state and, because M is assumed to be a counting machine,
the rounding error may thus depend on the counter. Thus, the rounding error in-
troduced at a given node visited twice may be different (because the counter may
be different). Note that the counter is also affected by rounding errors.

Note that a round off machine is not necessarily a BSS machine, and that given
M and δ, there are many machines satisfying this definition. For example, M itself
satisfies this definition for every δ. The power of the definition is that certain claims
will hold for every such a round–off machine, allowing us to use just the defining
properties and not the particular structure of a given round–off machine.
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Definition A.3. Given a BSS machine M and 0 < δ < 1, a δ pseudo–
computation with input x is the sequence of pairs (node, state) generated by some
round–off machine associated to some counting, elementary version of M .

We also point out that not every BSS machine can be (reasonably) converted
into a round–off machine. For example, assume that a BSS machine performs the
operation x = (x1, . . . , xN ) �→ x1+xN . This machine must contain a loop counting
up to N . If the form of the if node defining the loop is k ≥ 0 (k the counter which
is, say, diminished by 1 at each step) then an arbitrarily small error in the counter
of the loop may produce that an associated round–off machine on input x outputs
x1 + xN−1 instead of x1 + xN . A clear way out is to consider the slightly different
BSS machine which checks if −1/2 ≤ k ≤ 1/2 instead of k ≥ 0. Then, a round–off
machine with reasonable precision δ = O(1/N) will do the job. Note that this fits
perfectly into the definition of single precision computation (A.7) below. This also
reflects the fact, known to every numerical analyst or programmer, that not every
program is suitable for floating point conversion: a little care needs to be taken!

A.3. Computability. In the sequel, we will only consider functions f : Ω ⊆
R∞ → R∞ such that, for each n, the restriction fn of f to Ωn = Ω ∩ Rn takes its
values in Rm for an m depending only on n.

Such a function is round-off computable when there exists a BSS machine M
such that for any x ∈ Ω and any 0 < ε < 1, there exists a δ(x, ε) such that any

round–off machine (M, δ(x, ε)) outputs Õ(x) with

|Õ(x)j − f(x)j | ≤ ε|f(x)j |,
that is the output of (M, δ(x, ε)) is coordinatewise equal to f(x) up to relative error
ε. Equivalently, we say that M round–off computes f if given x ∈ Ω and 0 < ε < 1,
there is δ(x, ε) such that all δ(x, ε) pseudo–computations of M on input x output
f(x) with relative precision ε.

Example A.4. The function f : R2 → R, f(x, y) = xy (we can let it be zero
in R∞ \ R2) is round–off computable. Indeed, let x, y �= 0 and 0 < ε < 1. The
output of a round–off machine (M, δ) associated to the natural BSS machine for
computing f(x, y) is a number

z = xy(1 + δ1)(1 + δ2)(1 + δ3),

for some δ1, δ2, δ3 bounded in absolute value by δ. It is useful to note the elementary
inequality ∣∣∣(1 + u

n

)n
− 1
∣∣∣ ≤ 2u, ∀ 0 ≤ |u| ≤ 1.(A.1)

From this, we obviously have |z − xy| ≤ ε|xy| by taking

δ((x, y), ε) =
ε

6
,(A.2)

The output of any round–off machine if x = 0 or y = 0 is clearly 0, and hence the
same value for ε of (A.2) suffices to satisfy the definition of computability.

Example A.5. The same argument proves that the function f : R∞ → R given
by f(x1, . . . , xn) = x1 · · ·xn is round–off computable (say, we compute first x1x2

then x1x2x3 and so on) with

δ((x, y), ε) =
ε

4n− 2
,(A.3)
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Example A.6. A longer computation shows that the function f : {(x, y) ∈
R2 : x + y �= 0} → R, f(x, y) = x + y (again, we let it be zero in R∞ \ R2) is also
round–off computable. It suffices to take

δ((x, y), ε) =
ε

2max
(
1,
∣∣∣ x
x+y

∣∣∣ , ∣∣∣ y
x+y

∣∣∣) .
A more simple and still valid formula is

δ((x, y), ε) =
|x+ y|

3
√
2
√
x2 + y2

ε.(A.4)

Example A.7. Let us now see that f(x) = x1+. . .+xn is round–off computable
in the set Ω = {x ∈ R∞ : xi ≥ 0 ∀i}. Indeed, let 0 < ε < 1 and let us consider
the most simple BSS machine which computes first x1 + x2, then adds x3 and so
on12 A round–off machine with precision δ will produce, on input x = (x1, . . . , xn),
a number

x1

(
n∏

k=1

(1 + δ
(k)
1 )

)
+ x2

(
n∏

k=1

(1 + δ
(k)
2 )

)
+ · · ·+ xn

(
n∏

k=n−1

(1 + δ(k)n )

)
,

for some δ
(k)
i bounded in absolute value by δ. This follows from the fact that, in

addition to the input error on each coordinate, x1 and x2 go through n−1 additions
(which generate n+1 errors), x3 goes though n− 2 additions and so on. Note that

x1(1− δ)n ≤ x1

(
n∏

k=1

(1 + δ
(k)
1 )

)
≤ x1(1 + δ)n.

Choosing δ = αε/(2n), 0 < α ≤ 1 and using (A.1) we conclude that∣∣∣∣∣x1

(
n∏

k=1

(1 + δ
(k)
1 )

)
− x1

∣∣∣∣∣ ≤ αεx1,

and the same formula holds for x2, . . . , xn. The output of a round–off machine thus
satisfies

Õ(x) =

n∑
i=1

xi(1 + αεi), 0 ≤ |εi| ≤ ε.

That is, ∣∣∣∣∣Õ(x)−
n∑

i=1

xi

∣∣∣∣∣ =
n∑

i=1

xiαεi ≤
n∑

i=1

xiα|εi| ≤ αε
n∑

i=1

xi,

proving that f(x) is round–off computable in that set (just take α = 1).

Example A.8. Let us now see that f(x) = x1+. . .+xn is round–off computable
in the set Ω = {x ∈ R∞ :

∑
xi �= 0}. We consider the BSS machine that first adds

all the nonnegative numbers, call a the result, then adds all the negative numbers,
call b the result, and then computes a − b. Let 0 < ε < 1. We note that from
Example A.7 by choosing δ = αε/(2n) (some 0 < α ≤ 1) the round–off computation
of the sum of positive (resp. negative) terms will be

ã = a(1 + αε1), b̃ = b(1 + αε2), for some 0 ≤ |ε1|, |ε2| ≤ ε.

12This is not the algorithm of choice in practical programming but is sufficient for our pur-
poses here.
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From Example A.6, if we let

α =
|a+ b|

3
√
2
√
a2 + b2

,

that is if we let

δ(x, ε) ≤ |a+ b|
3
√
2
√
a2 + b2

ε

2n
,

then Õ(x) =
∑

i xi up to relative precision ε. Using that a2 + b2 ≤ n
∑

x2
i , we can

also use the formula

δ(x, ε) =
|
∑n

i=1 xi|
6
√
2n3/2

√∑n
i=1 x

2
i

ε.(A.5)

Example A.9. Combining examples A.5 and A.8 we see that the evaluation
map of any multivariate polynomial p(x1, . . . , xn) is round–off computable in the
complement of its zero set (just compute first the monomials and them add all the
results).

A.4. Ill–conditioned instances, condition number, posedness. Let us
think of a function f : Ω ⊆ R∞ → R∞ as the solution map associated with some
problem to be solved. The condition number associated with f and x measures the
first–order (relative) componentwise or normwise variations of f(x) in terms of the
first–order (relative) variations of x.

First assume that f : Ω → R, that is the function is real–valued. We say that
x ∈ Ω̄ (the topological closure of Ω) is well–conditioned when:

• Either ‖x‖ �= 0, and f can be extended to a Lipschitz function defined
in a neighborhood of x in Ω̄ with |f(x)| �= 0. In that case we define the
componentwise condition number by

κf (x) = lim sup
x′ �→x,x′∈Ω̄

|f(x′)−f(x)|
|f(x)|
‖x′−x‖
‖x‖

,

• or f is constant in a neighborhood of x with |f(x)| = 0. In this later case
we define the condition number by κf (x) = 0.

Otherwise, we say that x ∈ Ω̄ is ill–conditioned. The set of ill–conditioned instances
is denoted by Σf , and for x ∈ Σf , we let κf (x) = ∞.

For a general f : Ω → R∞, we define

κf (x) = sup
j

κfj (x) (componenwise condition number)

that is the condition number of f is the supremum of the condition numbers of
its coordinates. Sometimes it is more useful to consider the normwise condition
number, that we denote by the same letter as the context should make clear which
one is used on each problem:

κf (x) = lim sup
x′ �→x,x′∈Ω̄

‖f(x′)−f(x)‖
‖f(x)‖
‖x′−x‖
‖x‖

(normwise condition number),

We define the posedness of a problem instance x with ‖x‖ �= 0 as the distance
to ill–posed problems:

πf (x) =
d(x,Σf )

‖x‖ .
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Here, d(x,Σf ) = inf{d(x, y) : y ∈ Σf}. The relation between condition number and
posedness is an important but unclear problem. Following [33], we may expect a
relation of the type

πf (x) ≈ κf (x)
−1

(condition number theorem) or at least inequalities like

C1πf (x)
ρ1 ≤ κf (x)

−1 ≤ Cwπf (x)
ρ2

for suitable positive constants Ci, ρi (cf. Lojasiewicz’s inequality.) To get such
a relation ill–posed problems should correspond to infinite condition numbers, but
this is not always the case. Consider for example the decision problem: Is x2+y2 ≤
Π? The problem is well conditioned except on the circle x2+y2 = Π, but the distance
to this circle determines the precision we need in the computation.

Let Kf (x) = max(κf (x), πf (x)
−1).

Example A.10. For f(x) = x1 · · ·xn defined in R∞, it is easy to see that

κf (x) =
√
x2
1 + · · ·+ x2

n

√
1

x2
1

+ · · ·+ 1

x2
n

,

whenever x1, . . . , xn �= 0. If xi = 0 for any i then κf (x) = ∞.
On the other hand,

πf (x) =
min(|x1|, . . . , |xn|)√

x2
1 + · · ·+ x2

n

.

Thus, we have

κf (x) ≤
√
x2
1 + · · ·+ x2

n

√
n

min(|x1|, . . . , |xn|)2
=

√
nπf (x)

−1,

and

κf (x) ≥
√
x2
1 + · · ·+ x2

n

√
1

min(|x1|, . . . , |xn|)2
= πf (x)

−1.

Namely,

πf (x)
−1 ≤ κf (x) ≤

√
nπf (x)

−1.

Example A.11. For f(x) = x1+ · · ·+xn defined in Ω = {x ∈ R∞ :
∑

xi �= 0},
we have:

• For x ∈ Ω, a simple computation shows that

κf (x) =

√
n
√∑

x2
i

|
∑

xi|
.

• For x ∈ ∂Ω, that is
∑

xi = 0, we have κf (x) = ∞.

Thus, we have

πf (x) =
d(x, {x :

∑
xi = 0})√∑
x2
i

=
|
∑

xi|√
n
√∑

x2
i

= κf (x, y)
−1.

Namely,

Kf (x) =

√
n
√∑

x2
i

|
∑

xi|
.(A.6)
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A.5. Single, multiple precision. Let f be a round–off computable function,
and let M be a BSS machine satisfying the definition of round–off computability
above. This computation is single precision when for every 0 < ε < 1 there is a
δ = δ(ε) such that any round–off machine (M, δ) attains relative precision ε for any
input x ∈ Ω, and such that

(A.7) δ ≥ c0ε

Kf (x)c2 dim(x)c3

for some positive constants c0, c2, c3. This computation is multiple precision when
there exists δ such that

(A.8) δ ≥ c0ε
c1

Kf (x)c2 dim(x)c3
,

for some c1 > 1. We say that the computation is strictly multiple precision when
it is multiple precision but not single precision.

Example A.12. The inductive, naive algorithm for computing the round–off
computable function f(x1, . . . , xn) = x1 · · ·xn defined in R

∞ is single precision,
from (A.3). The algorithm given in Example A.8 for computing the round–off
computable function f(x) = x1 + · · ·+ xn defined in {x ∈ R∞ :

∑
xi �= 0} is single

precision from (A.5) and (A.6).

A.6. Size of an input. In many practical problems, we want to specify an
output precision ε. From our definition of round–off computable function, given
x ∈ Ω and 0 < ε < 1 some δ(x, ε) will exist guaranteeing the desired precision,
although it may be very hard to compute this δ in some cases. Moreover, from
(A.8), the number Kf (x) will in general play a role in the value of δ(x, ε) needed
for any machine solving the problem. This dependence suggests that maybe the
input should be considered as (x, ε) and not just as x. These thoughts justify our
definition of the size of an input, which includes a term related to ε and another
related to Kf (x):

(A.9) dim(x) + | log ε|+ log(Kf (x) + 1).

A.7. Cost of a computation. The cost of a computation on a round-off
machine (M, δ) which outputs ỹ on input x is

T (x, δ) ·
(
max

i
dim(y(i)) + | log δ|

)
,

where T (x, δ) is the time for the computation to halt and

x = y(0), . . . , yT (x,δ) = ỹ

are the different vectors computed by (M, δ) on input x.
We say that a function f : Ω → R∞ is polynomial cost computable if there

exists a BSS machine M such that for every x ∈ Ω and 0 < ε < 1 there exists
δ(x, ε) such that any round–off machine (M, δ(x, ε)) computes ỹ which equals f(x)
to relative error ε, with cost polynomially bounded by the input size (A.9).

The most important cases of polynomial cost computability will be in the cases
where we restrict the space of functions to single (multiple) precision functions,
for example in the case of single precision to the definition of polynomial cost we
add the restriction that δ(x, ε) must satisfy (A.7). These two possibilities (single
or multiple precision) will give us two theories, both of which deserve to be worked
out.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

POLYNOMIAL SYSTEM SOLVING 101

Now that we have the notion of polynomial cost the classes P and NP may be
defined and the problem: Does P = NP? stated.
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Boston, MA, 1993, pp. 267–285. MR1230872 (94m:68086)

[54] Michael Shub and Steve Smale, Complexity of Bezout’s theorem. III. Condition number and

packing, J. Complexity 9 (1993), no. 1, 4–14, DOI 10.1006/jcom.1993.1002. Festschrift for
Joseph F. Traub, Part I. MR1213484 (94g:65152)

[55] Michael Shub and Steve Smale, Complexity of Bezout’s theorem. IV. Probability of suc-
cess; extensions, SIAM J. Numer. Anal. 33 (1996), no. 1, 128–148, DOI 10.1137/0733008.
MR1377247 (97k:65310)

[56] M. Shub and S. Smale, Complexity of Bezout’s theorem. V. Polynomial time, Theoret. Com-
put. Sci. 133 (1994), no. 1, 141–164, DOI 10.1016/0304-3975(94)90122-8. Selected papers of
the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993). MR1294430
(96d:65091)

[57] Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer.
Math. Soc. (N.S.) 4 (1981), no. 1, 1–36, DOI 10.1090/S0273-0979-1981-14858-8. MR590817
(83i:65044)

[58] Steve Smale, Newton’s method estimates from data at one point, computational mathematics
(Laramie, Wyo., 1985), Springer, New York, 1986, pp. 185–196. MR870648 (88e:65076)

[59] S. Smale. The fundamental theorem of algebra and complexity theory, SIAM Rev. 32 (1990),
no. 2, 211–220.

[60] Steve Smale, Mathematical problems for the next century, Mathematics: frontiers and per-
spectives, Amer. Math. Soc., Providence, RI, 2000, pp. 271–294. MR1754783 (2001i:00003)

[61] G. W. Stewart and Ji Guang Sun,Matrix perturbation theory, Computer Science and Scientific
Computing, Academic Press Inc., Boston, MA, 1990. MR1061154 (92a:65017)

[62] Lloyd N. Trefethen and David Bau III, Numerical linear algebra, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR1444820 (98k:65002)

[63] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by
homotopy continuation. ACM Trans. Math. Softw., 25 (1999), no. 2, 251–276. Available at
http://www.math.uic.edu/∼jan.

[64] Gerold Wagner, On the product of distances to a point set on a sphere, J. Austral. Math.
Soc. Ser. A 47 (1989), no. 3, 466–482. MR1018975 (90j:11080)

http://www.ams.org/mathscinet-getitem?mr=2798351
http://www.ams.org/mathscinet-getitem?mr=2798351
http://www.ams.org/mathscinet-getitem?mr=1306011
http://www.ams.org/mathscinet-getitem?mr=1306011
http://www.ams.org/mathscinet-getitem?mr=796429
http://www.ams.org/mathscinet-getitem?mr=796429
http://www.ams.org/mathscinet-getitem?mr=907192
http://www.ams.org/mathscinet-getitem?mr=907192
http://www.ams.org/mathscinet-getitem?mr=986672
http://www.ams.org/mathscinet-getitem?mr=986672
http://www.ams.org/mathscinet-getitem?mr=1344668
http://www.ams.org/mathscinet-getitem?mr=1344668
http://www.ams.org/mathscinet-getitem?mr=1246139
http://www.ams.org/mathscinet-getitem?mr=1246139
http://www.ams.org/mathscinet-getitem?mr=2496558
http://www.ams.org/mathscinet-getitem?mr=2496558
http://www.ams.org/mathscinet-getitem?mr=1175980
http://www.ams.org/mathscinet-getitem?mr=1175980
http://www.ams.org/mathscinet-getitem?mr=1230872
http://www.ams.org/mathscinet-getitem?mr=1230872
http://www.ams.org/mathscinet-getitem?mr=1213484
http://www.ams.org/mathscinet-getitem?mr=1213484
http://www.ams.org/mathscinet-getitem?mr=1377247
http://www.ams.org/mathscinet-getitem?mr=1377247
http://www.ams.org/mathscinet-getitem?mr=1294430
http://www.ams.org/mathscinet-getitem?mr=1294430
http://www.ams.org/mathscinet-getitem?mr=590817
http://www.ams.org/mathscinet-getitem?mr=590817
http://www.ams.org/mathscinet-getitem?mr=870648
http://www.ams.org/mathscinet-getitem?mr=870648
http://www.ams.org/mathscinet-getitem?mr=1754783
http://www.ams.org/mathscinet-getitem?mr=1754783
http://www.ams.org/mathscinet-getitem?mr=1061154
http://www.ams.org/mathscinet-getitem?mr=1061154
http://www.ams.org/mathscinet-getitem?mr=1444820
http://www.ams.org/mathscinet-getitem?mr=1444820
http://www.ams.org/mathscinet-getitem?mr=1018975
http://www.ams.org/mathscinet-getitem?mr=1018975


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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